C++死锁解决心得
- 格式:pdf
- 大小:158.73 KB
- 文档页数:9
死锁的原因及解决方法死锁是指在并发系统中,两个或多个进程无限地等待对方释放已占用资源的状态。
死锁是多进程协作的一种异常情况,普遍存在于操作系统中。
理解死锁的原因以及采取适当的解决方法是确保计算机系统稳定运行的重要一环。
本文将探讨死锁的原因以及解决方法。
一、死锁的原因1. 互斥条件死锁发生的首要原因是资源的互斥使用。
即某一资源在同一时间只能被一个进程使用,如果有其他进程请求该资源,则必须等待,直至该资源被释放。
当出现多个进程同时占用多个资源,并且它们之间互相等待对方所占用的资源时,就可能产生死锁。
2. 请求与保持条件当一个进程请求资源而该资源又被其他进程占用时,请求进程必须等待,但同时保持已获得的资源不被释放。
如果多个进程都在等待其他进程占用的资源同时保持自己占用的资源,则可能形成循环等待,导致死锁的发生。
3. 不可剥夺条件资源分配后不能被剥夺的特性也会导致死锁。
即已分配的资源只能由拥有它的进程主动释放,其他进程无法将其剥夺。
当一个进程占用资源并等待获取其他资源时,如果其他进程无法剥夺已占用的资源,那么这种情况会导致死锁。
4. 循环等待条件当存在一组进程互相等待对方所占用的资源时,就会产生循环等待的条件。
这个循环等待的环路可以是单个资源的循环,也可以是多个资源之间的循环,但无论是哪种情况,只要出现循环等待,就会发生死锁。
二、死锁的解决方法1. 预防死锁预防死锁是通过破坏死锁发生的四个必要条件来防止死锁的产生。
其中最直接有效的方法是破坏循环等待条件,可以通过引入资源有序分配来达到目的。
也可以通过破坏请求与保持条件,即请求资源时一次性申请所需要的全部资源,而不是一次请求一个资源,以消除死锁发生的可能性。
2. 避免死锁避免死锁是在程序执行时进行资源分配,通过安全序列的原理来避免系统进入不安全状态。
所谓安全序列,即在系统中存在一个进程执行顺序,使得每个进程能够按照顺序执行并顺利完成。
通过安全序列的判断,可以避免死锁的发生。
C#中lock死锁实例教程在c#中有个关键字lock,它的作⽤是锁定某⼀代码块,让同⼀时间只有⼀个线程访问该代码块,本⽂就来谈谈lock关键字的原理和其中应注意的⼏个问题:lock的使⽤原型是:lock(X){//需要锁定的代码....}⾸先要明⽩为什么上⾯这段话能够锁定代码,其中的奥妙就是X这个对象,事实上X是任意⼀种引⽤类型,它在这⼉起的作⽤就是任何线程执⾏到lock(X)时候,X需要独享才能运⾏下⾯的代码,若假定现在有3个线程A,B,C都执⾏到了lock(X)⽽ABC因为此时都占有X,这时ABC就要停下来排个队,⼀个⼀个使⽤X,从⽽起到在下⾯的代码块内只有⼀个线程在运⾏(因为此时只有⼀个线程独享X,其余两个在排队),所以这个X必须是所有要执⾏临界区域代码进程必须共有的⼀个资源,从⽽起到抑制线程的作⽤。
下⾯再来谈谈lock使⽤中会遇到和注意的问题,lock最需要注意的⼀个问题就是线程死锁!在MSDN上列出了3个典型问题:通常,应避免锁定 public 类型,否则实例将超出代码的控制范围。
常见的结构 lock (this)、lock (typeof (MyType)) 和 lock ("myLock") 违反此准则:如果实例可以被公共访问,将出现 lock (this) 问题。
如果 MyType 可以被公共访问,将出现 lock (typeof (MyType)) 问题。
由于进程中使⽤同⼀字符串的任何其他代码将共享同⼀个锁,所以出现 lock(“myLock”) 问题。
最佳做法是定义 private 对象来锁定, 或 private shared 对象变量来保护所有实例所共有的数据。
(1)lock (this) 问题:假定有两个类:class A{}class B{}有两个公共对象:A a=new A();B b=new B();⾸先在A中若有⼀函数内的代码需要锁定:代码1:lock(this)//this在这⾥就是a{//....lock(b){//......}}然⽽此时B中某函数也有如下代码需要锁定:代码2:lock(this)//this在这⾥就是b{//....lock(a){//......}}设想⼀下上⾯两段代码在两个线程下同时执⾏会有什么后果?结果就是,代码1执⾏到lock(this)后a被锁定,代码2执⾏到lock(this)后b被锁定,然后代码1需求b,代码2需求a,此时两个需求都被相互占有出现僵持状态,程序死锁了。
解决死锁的4种基本方法
1、预防死锁:通过审慎的资源分配来避免发生死锁,比如,准备一个资源分配算法,在当前的可分配资源范围内,根据一定的规则——比如比较进程运行时间、锁等待时间以及优先级等,合理地分配资源,将可能发生死锁的场景排除在外。
2、避免死锁:在资源分配时,允许部分回收和重新分配,以避免发生死锁,比如,可以指定资源分配算法中,定量来回收资源,以确保充分利用资源,同时也避免死锁问题。
3、解除死锁:当死锁发生时,就需要手动进行解除,比如忽略某些进程的要求,或强行回收其已经获得的资源,以便解除死锁,其技术较为复杂。
4、检测死锁:检测进程是否发生了死锁,如果发生,就需要采取措施来解决,比如,可以使用“图方法”,根据存储器使用情况,示意存储器分配情况,检测是否存在循环等待,以此来检测发生死锁的情况,进而采取措施解决。
系统产生死锁的四个必要条件:(1)互斥条件:一个资源每次只能被一个进程使用。
(2)请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3)不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4)循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
处理死锁的策略1.忽略该问题。
例如鸵鸟算法,该算法可以应用在极少发生死锁的的情况下。
为什么叫鸵鸟算法呢,因为传说中鸵鸟看到危险就把头埋在地底下,可能鸵鸟觉得看不到危险也就没危险了吧。
跟掩耳盗铃有点像。
2.检测死锁并且恢复。
3.仔细地对资源进行动态分配,以避免死锁。
4.通过破除死锁四个必要条件之一,来防止死锁产生。
这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。
死锁的解除与预防:理解了死锁的原因,尤其是产生死锁的四个必要条件,就可以最大可能地避免、预防和解除死锁。
所以,在系统设计、进程调度等方面注意如何不让这四个必要条件成立,如何确定资源的合理分配算法,避免进程永久占据系统资源。
此外,也要防止进程在处于等待状态的情况下占用资源。
因此,对资源的分配要给予合理的规划。
好象是叫CPU超频锁?一组进程中每个进程均等待此组进程中某一其他进程所占用的因而永远无法得到的资源这中现象叫死锁简单来说就是2个进程(也可简单的看做是一个有独立功能的程序)同时抢夺一个无法分配的资源一组进程中每个进程均等待此组进程中某一其他进程所占用的因而永远无法得到的资源这中现象叫死锁简单来说就是2个进程(也可简单的看做是一个有独立功能的程序)同时抢夺一个无法分配的资源相关阅读:什么是死锁?如果一个进程集合里面的每个进程都在等待只能由这个集合中的其他一个进程(包括他自身)才能引发的事件,这种情况就是死锁。
这个定义可能有点拗口,一个最简单的例子就是有资源A和资源B,都是不可剥夺资源,现在进程C已经申请了资源A,进程D也申请了资源B,进程C接下来的操作需要用到资源B,而进程D恰好也在申请资源A,那么就引发了死锁。
死锁的处理办法
要处理死锁,首先要知道为什么会出现死锁。
一般来说,要出现死锁问题需要满足以下条件:
1. 互斥条件:一个资源每次只能被一个线程使用。
2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3. 不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺。
4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
只要破坏死锁4 个必要条件之一中的任何一个,死锁问题就能被解决。
死锁解决方案:
死锁是由四个必要条件导致的,所以一般来说,只要破坏这四个必要条件中的一个条件,死锁情况就应该不会发生。
1、如果想要打破互斥条件,我们需要允许进程同时访问某些资源,这种方法受制于实际场景,不太容易实现条件;
2、打破不可抢占条件,这样需要允许进程强行从占有者那里夺取某些资源,或者简单一点理解,占有资源的进程不能再申请占有其他资源,必须释放手上的资源之后才能发起申请,这个其实也很难找到适用场景;
3、进程在运行前申请得到所有的资源,否则该进程不能进入准备执行状态。
这个方法看似有点用处,但是它的缺点是可能导致资源利用率和进程并发性降低;
4、避免出现资源申请环路,即对资源事先分类编号,按号分配。
这种方式可以有效提高资源的利用率和系统吞吐量,但是增加了系统开销,增大了进程对资源的占用时间。
操作系统中的死锁问题及解决方法讨论在计算机科学中,死锁是指两个或多个进程互相等待对方释放资源,从而导致它们都无法继续执行的情况。
死锁是多道程序系统中常见的问题,如果不及时解决,会导致系统资源占用不当,影响系统的稳定性和性能。
死锁通常发生在进程之间相互竞争有限的资源时,例如内存、文件、网络连接等。
当一个进程持有一些资源并等待另一个进程持有的资源时,就可能发生死锁。
为了避免死锁问题,操作系统设计者提出了多种解决方法:1. 预防死锁:通过合理地设计系统资源分配算法,尽量避免进程发生死锁。
例如,可以使用银行家算法来保证资源请求序列是安全的,从而避免死锁的发生。
2. 避免死锁:在资源分配之前,系统可以根据当前的资源状态来判断是否分配资源会导致死锁,如果是,则不分配资源。
常用的避免死锁算法有资源分配图算法和银行家算法。
3. 检测死锁:系统可以周期性地检测系统中是否存在死锁情况,一旦检测到死锁,就采取相应的措施进行恢复。
常用的检测死锁算法有图论算法、银行家算法等。
4. 解除死锁:一旦系统检测到死锁的存在,就需要解除死锁。
解除死锁的常用方法包括资源剥夺和进程终止。
资源剥夺是指系统剥夺一些进程的资源,以解除死锁;进程终止是指系统终止一些进程,以释放资源。
死锁问题是操作系统中一个重要且常见的问题,在设计和使用操作系统时,需要重视死锁问题并采取相应的预防和解决措施。
合理地设计系统资源分配策略、优化进程调度算法、定期检测死锁情况等都可以帮助系统避免死锁,提高系统的可靠性和稳定性。
操作系统的死锁问题及解决方法一直是计算机科学领域的研究热点,希望未来能够提出更加有效的死锁预防和解决方案,为操作系统的稳定性和性能提供更好的保障。
什么是死锁?如何避免死锁的算法所谓死锁:是指两个或两个以上的进程在执⾏过程中,因争夺资源⽽造成的⼀种互相等待的现象,若⽆外⼒作⽤,它们都将⽆法推进下去。
此时称系统处于死锁状态或系统产⽣了死锁,这些永远在互相等待的进程称为死锁进程。
由于资源占⽤是互斥的,当某个进程提出申请资源后,使得有关进程在⽆外⼒协助下,永远分配不到必需的资源⽽⽆法继续运⾏,这就产⽣了⼀种特殊现象死锁。
虽然进程在运⾏过程中,可能发⽣死锁,但死锁的发⽣也必须具备⼀定的条件,死锁的发⽣必须具备以下四个必要条件。
1)互斥条件:指进程对所分配到的资源进⾏排它性使⽤,即在⼀段时间内某资源只由⼀个进程占⽤。
如果此时还有其它进程请求资源,则请求者只能等待,直⾄占有资源的进程⽤毕释放。
2)请求和保持条件:指进程已经保持⾄少⼀个资源,但⼜提出了新的资源请求,⽽该资源已被其它进程占有,此时请求进程阻塞,但⼜对⾃⼰已获得的其它资源保持不放。
3)不剥夺条件:指进程已获得的资源,在未使⽤完之前,不能被剥夺,只能在使⽤完时由⾃⼰释放。
4)环路等待条件:指在发⽣死锁时,必然存在⼀个进程——资源的环形链,即进程集合{P0,P1,P2,···,Pn}中的P0正在等待⼀个P1占⽤的资源;P1正在等待P2占⽤的资源,……,Pn正在等待已被P0占⽤的资源。
1) 预防死锁。
这是⼀种较简单和直观的事先预防的⽅法。
⽅法是通过设置某些限制条件,去破坏产⽣死锁的四个必要条件中的⼀个或者⼏个,来预防发⽣死锁。
预防死锁是⼀种较易实现的⽅法,已被⼴泛使⽤。
但是由于所施加的限制条件往往太严格,可能会导致系统资源利⽤率和系统吞吐量降低。
a 破坏互斥条件 如果允许系统资源都能共享使⽤,则系统不会进⼊死锁状态。
但有些资源根本不能同时访问,如打印机等临界资源只能互斥使⽤。
所以,破坏互斥条件⽽预防死锁的⽅法不太可⾏,⽽且在有的场合应该保护这种互斥性。
b 破坏不剥夺条件 当⼀个已保持了某些不可剥夺资源的进程,请求新的资源⽽得不到满⾜时,它必须释放已经保持的所有资源,待以后需要时再重新申请。
数据库的死锁解决方法
数据库的死锁是指两个或多个事务在相互等待对方释放资源的情况下,无法继续执行的情况。
这种情况会导致数据库系统的性能下降,甚至会导致系统崩溃。
因此,解决数据库的死锁问题是非常重要的。
下面介绍几种解决数据库死锁的方法:
1. 优化数据库设计
数据库设计的不合理会导致死锁的发生。
因此,优化数据库设计是解决死锁问题的一个重要方法。
例如,可以通过合理的表结构设计、索引设计等方式来减少死锁的发生。
2. 优化事务处理
事务处理是数据库中最常见的操作,也是死锁发生的主要原因之一。
因此,优化事务处理是解决死锁问题的另一个重要方法。
例如,可以通过减少事务的并发性、缩短事务的执行时间等方式来减少死锁的发生。
3. 使用死锁检测和死锁超时机制
死锁检测和死锁超时机制是解决死锁问题的常用方法。
死锁检测是指系统在发现死锁时,通过回滚某些事务来解除死锁。
死锁超时机制是指系统在一定时间内检测到死锁后,强制回滚某些事务来解除死锁。
4. 使用锁粒度控制
锁粒度控制是指通过控制锁的范围来减少死锁的发生。
例如,可以通过使用行级锁、表级锁等方式来控制锁的范围,从而减少死锁的发生。
解决数据库的死锁问题是非常重要的。
通过优化数据库设计、优化事务处理、使用死锁检测和死锁超时机制、使用锁粒度控制等方式,可以有效地减少死锁的发生,提高数据库系统的性能和稳定性。
死锁和解决死锁的方法
死锁是指两个或多个进程因为相互等待对方所持有的资源而陷入无限等待状态,每个进程都在等待其他进程所持有的资源。
如果不采取措施解决死锁,系统将永远停滞下去。
解决死锁的方法有以下四种:
1. 预防死锁:通过合理规划资源的分配顺序,避免进程发生死锁。
例如,使用银行家算法预测系统的安全状态,判断在分配资源时是否会导致死锁的发生。
2. 避免死锁:基于资源需求量、可用资源量、已分配资源量等信息,动态地判断系统是否安全,是否存在死锁,从而避免死锁的发生。
例如,使用银行家算法,只有在系统安全状态才会分配资源,从而避免死锁的发生。
3. 检测死锁:为了避免死锁的发生,可以定期检测系统的资源分配状态,判断是否存在死锁。
一旦检测到死锁,可以通过回滚、剥夺资源等方法解除死锁。
例如,使用死锁检测算法来检测死锁并解除死锁。
4. 解除死锁:当检测到死锁时,可以采取解除死锁的措施,如剥夺某个进程所占用的资源、撤回某个进程的资源申请等,以解除死锁状态。
通常需要考虑到进程的优先级、资源占用量等因素,选择合适的解除死锁策略。
银行家算法实验报告c语言银行家算法实验报告引言:计算机科学中的银行家算法是一种资源分配和避免死锁的算法。
它是由艾德加·戴克斯特拉(Edsger Dijkstra)在1965年提出的。
银行家算法通过判断一个系统是否处于安全状态来决定是否分配资源给进程。
本实验旨在使用C语言实现银行家算法,并通过一系列的实例来验证其有效性。
一、实验背景银行家算法是为了解决资源分配中的死锁问题而提出的。
在多进程系统中,每个进程都需要一定数量的资源来完成任务。
然而,如果资源分配不当,可能会导致死锁的发生,即所有进程都陷入无法继续执行的状态。
银行家算法通过合理地分配资源,避免了死锁的发生。
二、实验目的本实验的主要目的是通过C语言实现银行家算法,并通过实例验证其正确性和有效性。
具体而言,我们将模拟一个系统中的多个进程,并为每个进程分配资源。
然后,我们将使用银行家算法来判断系统是否处于安全状态,从而决定是否继续分配资源。
三、实验过程1. 创建进程和资源我们首先创建了5个进程和3种资源。
每个进程需要的资源数量是随机生成的,以模拟真实情况下的资源需求。
2. 分配资源根据银行家算法的原则,我们按照以下步骤来分配资源:- 首先,检查每个进程的资源需求是否小于等于系统当前可用的资源数量。
- 如果满足条件,将资源分配给该进程,并更新系统剩余资源数量。
- 如果不满足条件,暂时不分配资源给该进程,继续检查下一个进程。
3. 判断系统状态在每次资源分配后,我们需要判断系统是否处于安全状态。
为此,我们使用银行家算法的核心原则:只有当系统能够为每个进程提供所需的资源时,系统才是安全的。
我们通过遍历所有进程来检查其资源需求是否小于等于系统剩余资源数量,如果满足条件,说明系统是安全的。
4. 实例验证我们进行了多个实例验证,以确保银行家算法的正确性。
在每个实例中,我们模拟了不同的进程和资源需求,并观察系统的状态。
通过比较实验结果和预期结果,我们验证了银行家算法的有效性。
死锁和解决死锁的方法
死锁是指在多进程或多线程并发执行的情况下,两个或多个进程或线程因为互相占用对方所需的资源而陷入一种互相等待的状态,无法继续执行的情况。
死锁的出现会导致系统资源浪费、程序运行缓慢甚至崩溃,因此解决死锁问题也成为了计算机科学中一项重要的任务。
解决死锁问题的方法有以下几种:
1. 预防死锁:通过破坏死锁的四个必要条件之一来避免死锁的
发生。
例如,避免循环等待、按照统一的顺序获取资源等。
2. 避免死锁:通过资源分配策略来避免死锁的发生。
例如,银
行家算法就是一种避免死锁的算法。
3. 检测死锁:通过算法检测当前系统是否存在死锁。
例如,银
行家算法中的安全性算法就可以检测是否存在死锁。
4. 解除死锁:通过回收资源等方式解除死锁。
例如,可采用抢
占式调度、撤销进程等解除死锁。
总之,解决死锁问题需要多方面的策略和方法,需要根据具体情况采取不同的解决方案。
只有有效地解决死锁问题,才能保证计算机系统的正常运行。
- 1 -。
一、实验目的本次实验旨在通过模拟操作系统的资源分配和请求过程,深入理解死锁的概念、产生死锁的必要条件以及如何通过银行家算法来避免死锁的发生。
通过实验,学生能够掌握以下知识点:1. 死锁的概念及产生条件;2. 银行家算法的基本原理和实现方法;3. 资源分配和请求过程中的安全性检查;4. 通过银行家算法避免死锁的发生。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 20194. 实验环境:一台配置较高的计算机三、实验原理1. 死锁的概念死锁是指多个进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,这些进程都将无法继续执行。
2. 产生死锁的必要条件产生死锁的必要条件有四个,分别为:(1)互斥条件:资源不能被多个进程同时使用;(2)持有和等待条件:进程已获得至少一个资源,但又提出了新的资源请求,而该资源已被其他进程占有,此时该进程会等待;(3)非抢占条件:已分配给进程的资源,在进程完成之前,不能被抢占;(4)循环等待条件:存在一种进程资源的循环等待链,即进程P1等待P2占有的资源,P2等待P3占有的资源,以此类推,最后Pn等待P1占有的资源。
3. 银行家算法银行家算法是一种避免死锁的算法,通过以下步骤实现:(1)初始化系统资源、进程最大需求、已分配资源等数据结构;(2)当进程请求资源时,判断是否满足以下条件:a. 当前可用资源数量大于等于进程请求的资源数量;b. 根据当前资源分配情况,系统处于安全状态;若满足以上条件,则分配资源;否则,进程等待。
(3)当进程释放资源时,更新可用资源数量和分配资源情况。
四、实验内容1. 设计系统资源、进程最大需求、已分配资源等数据结构;2. 实现银行家算法,包括资源分配、安全性检查等功能;3. 模拟进程请求资源和释放资源的过程,观察系统状态变化;4. 分析实验结果,验证银行家算法是否能够避免死锁的发生。
死锁的原因及解决方法死锁是指在并发系统中,两个或多个进程因竞争系统资源而造成阻塞,且它们都无法继续执行,称为死锁。
一旦发生死锁,系统资源无法恢复,只能通过终止其中一个或多个进程来解除死锁。
以下是死锁的原因及解决方法的详细回答。
一、死锁的原因:1. 互斥条件:一个资源每次只能被一个进程使用,其他进程必须等待。
2. 请求与保持条件:一个进程在请求其他资源的同时继续占有已分配到的资源。
3. 不可剥夺条件:已分配的资源不能被其他进程抢占,只能由占有它的进程主动释放。
4. 循环等待条件:若干进程之间形成一种头尾相接的等待资源关系,形成了一个进程等待环路。
二、解决方法:1. 预防死锁:a. 破坏互斥条件:如允许多个进程同时访问资源。
b. 破坏请求与保持条件:一次性申请所有所需资源。
c. 破坏不可剥夺条件:允许资源被抢占。
d. 破坏循环等待条件:通过资源静态分配顺序来规避循环等待。
2. 避免死锁:a. 资源分配图算法:进程和资源之间可以表示为图,通过回溯法进行动态检查资源分配是否会造成死锁,并进行资源分配决策。
b. 银行家算法:通过银行家对于进程资源请求的审核来避免死锁,确保系统资源分配的安全性。
3. 检测死锁:a. 死锁检测算法:利用资源分配图算法,检测系统是否进入死锁状态,若检测到死锁,则采取相应的措施解除死锁。
b. 资源分配状态记录:记录系统的资源分配状态,通过不断的实时检测资源的分配和释放情况来判断是否发生了死锁。
4. 解除死锁:a. 抢占恢复法:通过抢占一些资源来解除死锁,抢占的资源可以由进程主动释放或回收。
b. 撤销进程法:从系统中选择一个或多个进程终止,将它们释放占有的资源。
c. 进程回滚法:将一个或多个进程回滚到之前的检查点,释放已经占有的资源。
d. 动态分配资源法:在发生死锁时,应根据进程优先级和资源的重要性进行资源重新分配。
总结:死锁是并发系统中一个常见的问题,解决死锁的过程是一个繁琐而复杂的任务。
数据库死锁的原因与解决方法概述:在数据库管理系统中,死锁是指两个或多个事务互相等待彼此持有的资源,从而导致系统处于无法前进的状态。
死锁可能会导致系统性能降低,甚至完全卡死,造成严重的影响。
本文将探讨数据库死锁的原因,并提供一些常见的解决方法。
原因:1. 事务之间的相互竞争:当多个事务同时申请数据库中的资源时,如果它们之间存在循环等待资源的情况,可能会导致死锁。
2. 不恰当的资源锁定顺序:如果事务对资源的锁定顺序不一致,也可能导致死锁的产生。
例如,事务A先锁定了资源X,然后等待资源Y,而事务B则先锁定了资源Y,然后等待资源X,这种情况可能会引发死锁。
3. 长时间持有事务锁:如果某个事务在执行期间持有锁的时间过长,并且在持有锁期间其他事务无法进行需要的操作,则可能导致其他事务等待并最终形成死锁。
解决方法:1. 死锁检测与解除:数据库管理系统可以通过检测死锁的发生来解决此问题。
一种常见的死锁检测方法是使用图论来建模死锁关系,并通过检测图中的循环来确定死锁的存在。
一旦死锁被检测到,系统可以选择中断一个或多个事务来解除死锁。
2. 适当的资源锁定顺序:为了避免死锁,事务在锁定资源时应该保持一致的顺序。
例如,可以按照资源的唯一标识符顺序进行锁定,或者根据资源的层次结构来确定锁定顺序。
3. 降低锁的粒度:减少事务对资源的锁定范围可以减少死锁的可能性。
例如,可以仅在必要时锁定资源的部分而不是全部,以使其他事务能够继续执行。
4. 设置合理的超时机制:为事务设置适当的超时机制,当一个事务无法获取所需的资源时,可以在一定时间内等待,超过设定的超时时间后放弃获取资源,以避免死锁的产生。
5. 优化数据库设计和查询语句:良好的数据库设计和查询语句可以减少事务之间的竞争,从而减少死锁的风险。
例如,合理使用索引、避免全表扫描、避免冗余数据等。
预防与预警:为了防止和及时处理死锁问题,可以采取以下预防与预警措施:1. 监控死锁情况:数据库管理系统可以提供死锁监控功能,实时监测死锁的发生情况,并及时发出预警。
[整理]死锁的四个必要条件以及处理策略⽬录⼀、什么是死锁多线程以及多进程改善了系统资源的利⽤率并提⾼了系统的处理能⼒。
然⽽,并发执⾏也带来了新的问题:死锁。
死锁是指两个或两个以上的进程(线程)在运⾏过程中因争夺资源⽽造成的⼀种僵局(Deadly-Embrace [ɪm'breɪs]拥抱) ,若⽆外⼒作⽤,这些进程(线程)都将⽆法向前推进。
下⾯我们通过⼀些实例来说明死锁现象。
先看⽣活中的⼀个实例:2个⼈⼀起吃饭但是只有⼀双筷⼦,2⼈轮流吃(同时拥有2只筷⼦才能吃)。
某⼀个时候,⼀个拿了左筷⼦,⼀⼈拿了右筷⼦,2个⼈都同时占⽤⼀个资源,等待另⼀个资源,这个时候甲在等待⼄吃完并释放它占有的筷⼦,同理,⼄也在等待甲吃完并释放它占有的筷⼦,这样就陷⼊了⼀个死循环,谁也⽆法继续吃饭。
在计算机系统中也存在类似的情况。
例如,某计算机系统中只有⼀台打印机和⼀台输⼊设备,进程P1正占⽤输⼊设备,同时⼜提出使⽤打印机的请求,但此时打印机正被进程P2 所占⽤,⽽P2在未释放打印机之前,⼜提出请求使⽤正被P1占⽤着的输⼊设备。
这样两个进程相互⽆休⽌地等待下去,均⽆法继续执⾏,此时两个进程陷⼊死锁状态。
关于死锁的⼀些结论:参与死锁的进程数⾄少为两个参与死锁的所有进程均等待资源参与死锁的进程⾄少有两个已经占有资源死锁进程是系统中当前进程集合的⼀个⼦集死锁会浪费⼤量系统资源,甚⾄导致系统崩溃。
⼆、死锁、饥饿、活锁饥饿(Starvation[stɑr'veɪʃn])指某⼀线程或多个线程在某种情况下⽆法获取所需要的资源,导致程序⽆法执⾏。
⽐如,当某个线程的优先级太低的时候,那么⾼优先级的线程会始终霸占着资源,⽽低优先级的线程由于⽆法得到相应的资源⽽⽆法⼯作。
活锁(Livelock)指的是线程不断重复执⾏相同的操作,但每次操作的结果都是失败的。
尽管这个问题不会阻塞线程,但是程序也⽆法继续执⾏。
活锁通常发⽣在处理事务消息的应⽤程序中,如果不能成功处理这个事务那么事务将回滚整个操作。
四、死锁题型死锁题型一般以交通题目(如过河问题)为代表。
在讲解生产者---消费者题型时,曾讲过死锁与PV操作的关系,再重复一遍:在一些PV操作习题里,尤其是生产者---消费者题型,要求给出“无死锁”的解法。
PV操作和死锁有什么关系?我们又怎样在PV操作习题中找到死锁的可能呢?我们在课程第一轮,学习过死锁的四个必要条件:●资源独占(一个资源不能同时分配给两个以上进程)●资源非抢占式●资源保持申请(申请新资源时不释放老资源)●循环等待(参与死锁的进程互相等待彼此的资源)。
指出:只有上述四个必要条件同时存在,系统才有可能发生死锁。
我们还学习过死锁的预防(资源预先分配、有序分配)、死锁的避免(进程安全序列、银行家算法),这些策略都是针对死锁的四个必要条件,打破或避免其中一个必要条件而进行的。
我们还指出,多道程序环境下死锁是小概率事件,而用专门的算法(比如银行家算法)解决死锁问题开销太大,在实际的操作系统中一般不含有专门的“死锁处理”模块,死锁的解决由各个并发程序自行负责。
这就引出了死锁和PV操作的关系。
PV操作是操作系统内核及并发应用程序常用的,本着死锁的分散处理原则,我们在PV操作习题中应该考虑死锁的处理。
PV操作习题中考虑死锁的处理,其理论依据仍是死锁的四个必要条件,但前三个必要条件一般是题目隐含的且不可避免和打破的,所以我们一般只需考虑第四个必要条件“循环等待”,我们要考虑题目中是否存在循环等待资源的进程并设法避开或打破它。
常用的是资源的有序分配方法(给资源编号,按从大到小或从小到大的次序申请)。
一座小桥(最多只能承重两个人)横跨南北两岸,任意时刻同一方向只允许一人过桥,南侧桥段和北侧桥段较窄只能通过一人,桥中央一处宽敞,允许两个人通过或歇息。
试用信号灯和PV操作写出南、北两侧过桥的同步算法。
解:把南北两岸换成左右两岸,桥可分成以下区:21 3 4按题意:左岸过河者同时只能有一个(互斥),过河顺序为1,2,4。
死锁问题及其解决方法一、死锁的介绍死锁(Deadlocks)通常发生在两个或多个进程(sessions)对被彼此锁住的资源发出请求的情况下。
其最常见的锁的类型为:行级锁(row-level locks)和块级锁(block-level locks)。
ORACLE会自动侦察到死锁情况,并通过回滚其中一个造成死锁的语句,从而释放其中一个锁来解决它,如上图中的C时间所示。
需要说明的,如果一个事务中的某个语句造成死锁现象,回滚的只是这个语句而不是整个事务。
二、行级死锁及其解决方法行级锁的发生如下图所示,在A时间,Transacrion1和Transction2分别锁住了它们要update的一行数据,没有任何问题。
但每个Transaction都没有终止。
接下来在B时间,它们又试图update当前正被对方Transaction锁住的行,因此双方都无法获得资源,此时就出现了死锁。
之所以称之为死锁,是因为无论每个Transaction等待多久,这种锁都不会被释放。
行级锁的死锁一般是由于应用逻辑设计的问题造成的,其解决方法是通过分析trace文件定位出造成死锁的SQL语句、被互相锁住资源的对象及其记录等信息,提供给应用开发人员进行分析,并修改特定或一系列表的更新(update)顺序。
以下举例说明出现行级死锁时如何定位问题所在。
1.环境搭建create table b (b number);insert into b values(1);insert into b values(2);commit;session1: update b set b=21 where b=2;session2: update b set b=11 where b=1;session1: update b set b=12 where b=1;session2: update b set b=22 where b=2;此时出现死锁现象。
1.嵌入式系统中经常要用到无限循环,如何用C编写死循环答:while(1){} 或者for(;;)2.程序的局部变量存在于哪里,全局变量存在于哪里,动态申请数据存在于哪里。
答:程序的局部变量存在于栈区;全局变量存在于静态区;动态申请数据存在于堆区。
3.关键字const有什么含义?答:1)只读。
2)使用关键字const也许能产生更紧凑的代码。
3)使编译器很自然地保护那些不希望被改变的参数,防止其被无意的代码修改。
4.请问以下代码有什么问题:答:没有为str分配内存空间,将会发生异常,问题出在将一个字符串复制进一个字符变量指针所指地址。
虽然可以正确输出结果,但因为越界进行内在读写而导致程序崩溃。
5.已知一个数组table,用一个宏定义,求出数据的元素个数答:#define NTBL (sizeof(table)/sizeof(table[0]))6.写一个"标准"宏MIN ,这个宏输入两个参数并返回较小的一个。
答:#define MIN(A,B) ((A) <= (B) ? (A) : (B))考点:1) 标识#define在宏中应用的基本知识。
这是很重要的。
因为在嵌入(inline)操作符变为标准C的一部分之前,宏是方便产生嵌入代码的唯一方法,对于嵌入式系统来说,为了能达到要求的性能,嵌入代码经常是必须的方法。
2) 三重条件操作符的知识。
这个操作符存在C语言中的原因是它使得编译器能产生比if-then-else更优的代码,了解这个用法是很重要的。
3) 懂得在宏中小心地把参数用括号括起来。
7.do……while和while有什么区别?答:前一个循环一遍再判断,后一个判断以后再循环。
8.什么是预编译,何时需要预编译?答:1、总是使用不经常改动的大型代码体。
程序由多个模块组成,所有模块都使用一组标准的包含文件和相同的编译选项。
在这种情况下,可以将所有包含文件预编译为一个预编译头。