死锁检测算法
- 格式:docx
- 大小:104.27 KB
- 文档页数:5
死锁检测算法(操作系统)死锁检测算法(操作系统)1.引言在多进程/线程的操作系统中,死锁是一种非常常见的问题。
当多个进程或线程彼此持有对方需要的资源,并且又无法释放自己持有的资源时,就会发生死锁。
死锁会导致系统陷入无法继续执行的状态,严重影响系统的可用性和性能。
因此,设计有效的死锁检测算法是操作系统的重要任务之一。
2.死锁概述死锁是指系统中的若干进程或线程因为竞争有限资源而陷入无限等待的状态。
死锁通常具有以下四个必要条件:●互斥条件:每个资源同时只能被一个进程或线程持有;●占有并等待:进程或线程至少占有一个资源,并且正在等待获取其他进程或线程占有的资源;●不可抢占:资源只能由占有者自愿释放,不能被其他进程或线程抢占;●循环等待:存在一个进程或线程的等待链,使得环路形成。
3.死锁检测算法分类为了检测死锁,操作系统可以采用以下两种常见的死锁检测算法:3.1 鸽巢原理算法它的基本思想是假定系统中没有死锁,并通过不断监测系统的资源分配状态来验证这种假设。
当检测到系统的资源分配状态将导致无法满足至少一个进程或线程的资源申请时,就表明可能发生了死锁。
3.2 资源分配图算法资源分配图算法使用有向图来描述系统中的进程或线程和资源之间的关系。
该算法通过检测资源分配图中是否存在环路来判断是否发生死锁。
如果存在环路,则表示发生了死锁。
4.鸽巢原理算法详解鸽巢原理算法的实现步骤如下:1) 初始化:将系统中所有进程或线程标记为未访问状态。
2) 模拟资源分配过程:按照系统当前的资源分配状态,模拟进程或线程请求和释放资源的过程。
3) 检查系统状态:检查系统当前的资源分配状态是否能够满足所有进程或线程的资源需求。
如果不能,则有可能发生死锁。
4) 恢复系统状态:根据资源的请求和释放情况,恢复系统的资源分配状态。
5) 重复步骤2至步骤4,直到确认系统无死锁。
5.资源分配图算法详解资源分配图算法的实现步骤如下:1) 初始化:根据系统中的进程或线程和资源,构建初始的资源分配图,包括进程或线程节点和资源节点。
操作系统十大算法具体内容操作系统是计算机系统的核心组成部分,主要负责管理计算机的硬件资源和提供各种系统服务。
操作系统算法是操作系统实现各种功能和服务的基础,包括进程调度、内存管理、文件系统等方面。
下面将介绍操作系统中的十大算法,以及它们在操作系统中的具体内容:1.进程调度算法进程调度算法决定了操作系统如何选择就绪队列中的进程分配处理机资源。
常见的进程调度算法包括先来先服务调度算法(FCFS)、最短作业优先调度算法(SJF)、轮转调度算法(RR)等。
这些算法基于进程的优先级、执行时间、资源需求等考虑,来决定选择哪个进程获得处理机资源。
2.内存管理算法内存管理算法决定了如何有效地分配和回收内存资源。
常见的内存管理算法包括固定分区算法、动态分区算法和虚拟内存管理算法等。
这些算法根据进程的内存需求和空闲内存空间的情况,来决定如何分配和回收内存资源。
3.页面置换算法页面置换算法是一种在虚拟内存管理中使用的算法,用于将进程的页面从磁盘中换入内存,并选择合适的页面进行置换。
常见的页面置换算法有最佳置换算法(OPT)、先进先出置换算法(FIFO)、最近最少使用置换算法(LRU)等。
这些算法根据页面的访问情况和页面的驻留时间来决定选择哪个页面进行置换。
4.文件管理算法文件管理算法决定了如何组织和管理文件系统中的文件。
常见的文件管理算法有顺序文件组织算法、索引文件组织算法、哈希文件组织算法等。
这些算法根据文件的访问特点和性能需求,来决定如何组织和管理文件数据。
5.磁盘调度算法磁盘调度算法决定了操作系统如何调度磁盘上的IO请求,以提高磁盘的访问效率。
常见的磁盘调度算法有先来先服务调度算法(FCFS)、最短寻半径优先调度算法(SSTF)、扫描调度算法(SCAN)等。
这些算法根据磁盘的寻道距离和IO请求的到达时间等因素,来决定选择哪个IO请求进行调度。
6.死锁检测和解决算法死锁是指多个进程因为互相等待而无法继续执行的情况。
数据库中解决死锁的常用方法在数据库管理系统中,死锁是一种常见但麻烦的问题。
当多个事务同时请求数据库中的资源,并且这些资源被彼此占用,但是又无法相互释放时,就会发生死锁。
死锁的出现可能导致系统性能下降,甚至是数据库崩溃。
因此,解决死锁问题是数据库管理人员需要重视和解决的重要任务。
那么,在数据库中,有哪些常用的方法来解决死锁问题呢?下面将为大家介绍几种常见且有效的死锁解决方法。
第一种方法是通过设置超时时间来解决死锁。
当一个事务请求某个资源时,如果在规定的超时时间内无法获取到该资源,系统就会自动中断这个事务,并回滚所有已经执行的操作。
这种方法虽然简单,但是可能会引起一些业务问题,因为这样做会导致一些事务被中断,可能需要重新执行。
第二种方法是通过死锁检测来解决死锁。
这种方法通常通过算法来检测死锁,并且在检测到死锁时采取一些措施来解决它。
常见的死锁检测算法有银行家算法和图论算法。
这些算法可以在死锁发生时,找到导致死锁的事务,并且选择一个事务进行回滚,从而解除死锁。
但是,这种方法需要消耗系统资源,可能会影响数据库的性能。
第三种方法是通过锁粒度的优化来解决死锁。
将原本被一次性锁住的资源拆分为多个资源,可以降低死锁的概率。
例如,如果一个事务需要修改多个记录,可以将这些记录分开,分别为每个记录加锁。
这样做可以减少死锁的发生,但是也增加了系统的复杂性。
第四种方法是通过加锁顺序的优化来解决死锁。
如果多个事务都会请求相同的资源集合,可以约定一个统一的加锁顺序。
例如,可以规定按照资源的唯一标识符进行加锁,这样不同的事务就会按照相同的顺序加锁,避免了死锁的发生。
这种方法适用于事务之间需要访问多个资源的情况。
第五种方法是通过动态资源分配来解决死锁。
在数据库管理系统中,可以通过动态分配资源的方式来避免死锁。
例如,可以实时监测事务的资源请求情况,并根据当前系统情况来决定是否分配资源。
如果系统资源紧张,可以选择不分配资源,以避免死锁的发生。
判断死锁的方法
死锁是一种多线程并发编程中常见的问题,指两个或多个线程在等待对方释放资源的状态,导致程序无法继续执行。
判断死锁的方法可以分为以下几种:
1. 观察程序的运行状况:如果发现程序长时间不响应或者停止了运行,很可能是死锁了。
可以使用任务管理器查看程序是否处于等待状态。
2. 分析程序的代码:通过分析程序的代码,查看是否存在两个或多个线程互相等待对方释放资源的情况。
例如,两个线程同时请求同一个锁,但是又互相等待对方释放锁。
3. 使用工具来检测死锁:各种编程语言和操作系统都提供了一些工具来检测死锁。
例如,在Java中可以使用jstack命令来查看线程状态,如果发现多个线程处于BLOCKED状态,就有可能是死锁了。
4. 使用算法分析死锁:死锁可以看作是一个图,其中线程是节点,资源是边。
可以使用图论算法来分析死锁,找出造成死锁的原因。
无论是哪种方法,都需要有一定的经验和技巧。
在编写多线程程序的时候,需要特别注意避免死锁的出现。
- 1 -。
操作系统(三)——信号量、死锁1、信号量信号量机制:概念:其实就是⼀个变量,可以⽤⼀个信号量来表⽰系统中某种资源的数量、⽤户进程通过使⽤操作系统提供的⼀对原语来对信号量进⾏操作,从⽽⽅便的实现了进程互斥。
这⾥的⼀对原语是指wait(S)和signal(S),也简写为P(S)和V(S),即申请和释放资源。
P、V操作必须成对出现。
整数型信号量:⽤⼀个整数作为信号量,数值表⽰某种资源数。
对信号量的操作只有三种:初始化、P操作、V操作。
不满⾜让权等待原则。
记录型信号量:S.value表⽰某种资源数,S.L指向等待该资源的队列。
P操作中,先S.value++,之后可能执⾏block阻塞原语。
V操作中,先S.value--,之后可能执⾏wakeup唤醒原语。
可以⽤记录型信号量实现系统资源的申请和释放,申请S.value--,然后如果S.value<0说明资源分配完了,就阻塞;释放S.value++,然后如果S.value<=0说明还有进程在等待队列中等待,就唤醒。
记录型信号量可以实现进程互斥、进程同步。
实现进程互斥:划定临界区。
设置互斥信号量mytex,初值为1。
在临界区之前执⾏P(mutex),在临界区之后执⾏V(mutex)。
实现进程同步:分析那些地⽅是必须保证⼀前⼀后执⾏的两个操作。
设置同步信号量S,初始值为0。
在“前操作”之后执⾏V(S)。
在“后操作”之前执⾏P(S)。
实现前驱关系:每⼀对前驱关系都是⼀个进程同步问题。
为每⼀对前驱关系设置⼀个同步变量,初始值为0。
在“前操作”之后执⾏V操作。
在“后操作”之前执⾏P操作。
⽣产者消费者问题:⽣产者每次⽣产⼀个产品放⼊缓冲区,消费者每次从缓冲区取出⼀个产品使⽤。
缓冲区满⽣产者必须等待(同步关系1),缓冲区空消费者必须等待(同步关系2)。
缓冲区是临界资源,必须被互斥访问(互斥关系)。
问题中的P、V操作:⽣产者每次P⼀个缓冲区,V⼀个产品。
消费者每次V⼀个缓冲区,P⼀个产品。
死锁检测算法⽬录Tips:建议打开word【导航视图】与批注阅读,数据结构部分的代码编辑在【批注】内。
拓展实验4:死锁检测算法1. 实验⽬的分析操作系统的核⼼功能模块,理解相关功能模块实现的数据结构和算法,并加以实现,加深对操作系统原理和实现过程的理解。
本次实验:通过c语⾔模拟实现死锁检测算法。
⼆、实验内容模拟死锁检测算法1.数据输⼊:"资源分配表"⽂件,每⼀⾏包含资源编号、进程编号两项(均⽤整数表⽰,并⽤空格分隔开),记录资源分配给了哪个进程。
"进程等待表"⽂件,每⼀⾏包含进程编号、资源编号两项(均⽤整数表⽰,并⽤空格分隔开),记录进程正在等待哪个资源。
下⾯是⼀个⽰例:资源分配表:1 12 23 3进程等待表:1 22 33 12.处理要求:程序运⾏时,⾸先提⽰"请输⼊资源分配表⽂件的⽂件名:";再提⽰"请输⼊进程等待表⽂件的⽂件名:"。
输⼊两个⽂件名后,程序将读⼊两个⽂件中的有关数据,并按照死锁检测算法进⾏检测。
3.输出要求:第⼀⾏输出检测结果:有死锁或⽆死锁。
第⼆⾏输出进程循环等待队列,即进程编号(如果有死锁)。
三、实现思路死锁检测机制:(1)为每个进程和每个资源指定唯⼀编号(2)设置⼀张资源分配状态表,每个表⽬包含资源号和占有该资源的进程号两项,资源分配表中记录了每个资源正在被哪个进程所占。
(3)设置⼀张进程等待分配表,每个表⽬包含进程号和该逃程所等待的资源号两项。
(4)死锁检测法:当任⼀进程申请⼀个已被其他进程占⽤的资源时,进⾏死锁检测。
检测算法通过反复查找资源分配表和进程等待表,来确定进程对资源的请求是否导致形成环路,若是,便确定出现死锁。
四、主要的数据结构//头⽂件与宏定义#include<stdio.h>//进程结构体定义typedef struct node//初始化函数void initial()//读⼊数据⽂件int readData()//输出所读⼊的数据cout<<endl<<endl<<"输出所读⼊的数据"<<endl;//检测void check()//显⽰信息函数void version()//主函数void main()五、算法流程图六、运⾏与测试资源分配表导⼊:进程等待表导⼊:被读⼊⽂件的存放⽬录:死锁检测:七、总结每种类型⼀个资源的死锁检测算法是通过检测有向图是否存在环来实现,从⼀个节点出发进⾏深度优先搜索,对访问过的节点进⾏标记,如果访问了已经标记的节点,就表⽰有向图存在环,也就是检测到死锁的发⽣。
数据库中死锁的检测与解决方法死锁是数据库中常见的并发控制问题,指的是两个或多个事务在互相等待对方释放资源或锁的状态,导致所有事务无法继续执行的情况。
数据库中的死锁会导致资源浪费、系统性能下降甚至系统崩溃。
因此,死锁的检测与解决方法是数据库管理中非常重要的一环。
1. 死锁的检测方法死锁的检测旨在及时发现死锁并采取措施进行解决。
以下是几种常见的死锁检测方法。
1.1 死锁检测图算法死锁检测图算法是通过构建资源分配图以及等待图来检测死锁。
资源分配图以资源为节点,以事务与资源之间的分配关系为边;等待图以事务为节点,以事务之间等待请求关系为边。
如果存在一个循环等待的环,那么就可以判断系统中存在死锁。
可以采用深度优先搜索或广度优先搜索的算法遍历图,查找是否存在环。
1.2 超时监控方法超时监控方法是通过设定一个时间阈值,在事务等待资源的过程中进行计时。
如果某个事务等待资源的时间超过阈值,系统将判断该事务可能存在死锁,并采取相应的措施解锁资源。
1.3 等待图算法等待图算法是通过分析等待图来检测死锁。
等待图的构建是以事务为节点,以资源之间的竞争关系为边。
如果图中存在一个有向环,那么就可以判断系统中存在死锁。
2. 死锁的解决方法一旦死锁被检测到,必须采取措施加以解决。
以下是几种常见的死锁解决方法。
2.1 死锁剥夺死锁剥夺是通过终止一个或多个死锁事务来解决死锁。
首先需要选择一个死锁事务,然后终止该死锁事务并释放其所占用的资源。
这种方法会造成一些事务的回滚,需要谨慎操作。
2.2 死锁预防死锁预防是通过对资源的分配与释放进行约束,从而避免死锁的发生。
例如,可以采用事务串行化,即每次只允许一个事务执行;或者采用事务超时,即设定一个时间阈值,如果事务等待时间超过阈值,则自动结束事务。
2.3 死锁检测与恢复死锁检测与恢复是在发生死锁后,通过死锁检测算法找到死锁并进行恢复。
方法可以是终止一个或多个死锁事务,也可以是通过资源抢占来解除死锁。
死锁产⽣条件以及预防和处理算法 ⼀、死锁的概念 在多道程序系统中,虽可借助于多个进程的并发执⾏,来改善系统的资源利⽤率,提⾼系统的吞吐量,但可能发⽣⼀种危险━━死锁。
所谓死锁(Deadlock),是指多个进程在运⾏中因争夺资源⽽造成的⼀种僵局(Deadly_Embrace),当进程处于这种僵持状态时,若⽆外⼒作⽤,它们都将⽆法再向前推进。
⼀组进程中,每个进程都⽆限等待被该组进程中另⼀进程所占有的资源,因⽽永远⽆法得到的资源,这种现象称为进程死锁,这⼀组进程就称为死锁进程。
⼆、死锁产⽣的原因 产⽣死锁的原因主要是: (1)因为系统资源不⾜。
(2)进程运⾏推进的顺序不合适。
(3)资源分配不当等。
如果系统资源充⾜,进程的资源请求都能够得到满⾜,死锁出现的可能性就很低,否则就会因争夺有限的资源⽽陷⼊死锁。
其次,进程运⾏推进顺序与速度不同,也可能产⽣死锁。
产⽣死锁的四个必要条件: (1)互斥条件:⼀个资源每次只能被⼀个进程使⽤。
(2)请求与保持条件:⼀个进程因请求资源⽽阻塞时,对已获得的资源保持不放。
(3)⾮抢占:进程已获得的资源,在末使⽤完之前,不能强⾏抢占。
(4)循环等待条件:若⼲进程之间形成⼀种头尾相接的循环等待资源关系。
三、死锁处理⽅法: (1)可使⽤协议以预防或者避免死锁,确保系统不会进⼊死锁状态; (2)可允许系统进⼊死锁状态,然后检测他,并加以恢复; (3)可忽视这个问题,认为死锁不可能发⽣在系统内部。
四、死锁预防 1、互斥:对于⾮共享资源,必须要有互斥条件; 2、占有并等待: 为了确保占有并等待条件不会出现在系统中,必须保证:当⼀个进程申请⼀个资源时,它不能占有其他资源。
⼀种可以使⽤的协议是每个进程在执⾏前申请并获得所有资源,可以实现通过要求申请资源的系统调⽤在所有的其他系统调⽤之前执⾏。
3、⾮抢占: 为了确保第三个条件不成⽴,可以使⽤如下协议:如果⼀个进程占有资源并申请另⼀个不能⽴即分配的资源,那么其现已分配资源都可被抢占; 4、循环等待: 为了确保循环等待条件不成⽴,⼀种可⾏的算法是:对所有资源进程排序,且要求每个进程按照递增顺序来申请进程。
程序中死锁检测的方法和工具翟宇鹏;程雪梅【摘要】死锁一直都是并发系统中最重要的问题之一,对死锁检测的研究一直都在不断地进行着.模型检测方法是一种重要的自动验证技术,越来越多地被用在验证软硬件设计是否规范的工作中.针对死锁检测的问题进行综述,统计已有的死锁检测方法的文献资料并给出统计结果.然后对搜集出来的文献进行分析,介绍许多动态以及静态的死锁检测方法.最后介绍两种常用的模型检测工具,提出使用模型检测工具进行死锁检测的思路与方法,并证实这种方法的可行性.【期刊名称】《现代计算机(专业版)》【年(卷),期】2017(000)003【总页数】5页(P41-44,53)【关键词】死锁检测;模型检测;文献计量分析【作者】翟宇鹏;程雪梅【作者单位】四川大学计算机学院,成都610065;四川大学计算机学院,成都610065【正文语种】中文随着计算机行业的不断发展,软件规模和复杂度也在不断扩大,软件故障已成为计算机系统出错和崩溃的主要因素。
死锁[1]是分布式系统以及集成式系统中的最重要的问题之一,也是影响软件安全的主要因素。
死锁会导致程序无法正常运行或终止,甚至导致系统崩溃,带来不必要的损失。
同时,死锁的运行状态空间过大,难于重现和修正等问题使其成为软件领域的难题之一,因此,如何有效地检测死锁,提高软件的可靠性和安全性,成为急需解决的问题。
本文针对10年内国内外各知名数据库中与死锁检测以及模型检测相关的论文进行查询、筛选、分类、比较、整理等,然后对整理好的论文进行总结,分析出死锁检测的方法并进行罗列比较,以及模型检测的工具以及方法,从而再将二者结合,找出模型检测工具在死锁检测里的应用。
对搜索出来的412篇论文的不同方向进行了计量分析,并对统计的数据进行了描述,以及通过计量分析来找出这方面研究领域的热点。
因为近10年的论文更能体现出研究的正确方向,所以对于论文时间进行分析,得知最近10年每年论文发表量随着时间在平缓地增多,可知对于这方面问题的研究总体保持在增长的状态。
判断死锁的公式(一)判断死锁的公式在计算机科学领域,死锁是指多个进程或线程因争夺系统资源而产生的一种阻塞现象,导致系统无法前进。
为了判断是否发生死锁,提出了一些公式和算法。
下面列举了几个常用的判断死锁的公式:1. 死锁必要条件死锁的发生需要满足以下四个条件: - 互斥条件:每个资源只能同时被一个进程或线程占用。
- 占有和等待条件:已经获得资源的进程可以等待其他资源,同时阻塞其他进程对已获得资源的访问。
- 不可抢占条件:已分配给进程的资源不能被强制性地抢占,只能由占有资源的进程释放。
- 循环等待条件:存在一个进程资源的循环等待链,每个进程都在等待下一个进程所占有的资源。
如果以上四个条件同时满足,就有可能发生死锁。
2. 死锁检测算法死锁检测算法可以根据系统资源的状态来判断是否发生死锁。
其中最著名的算法是银行家算法(Banker’s algorithm),其公式如下:Available: 各资源的可用数量Max: 各进程对各资源的最大需求Allocation: 各进程已分配到的资源数量Need = Max - Allocation: 各进程尚需的资源数量Work = AvailableFinish[i] = false,对所有进程i初始化为falsewhile (存在一个未标记完成的进程P){if (Need[P] <= Work){Work += Allocation[P]Finish[P] = true}P = 下一个未标记完成的进程}该算法通过判断系统是否存在一个安全序列来确定是否发生死锁。
3. 死锁预防公式死锁预防是在系统设计阶段采取措施,避免死锁的发生。
其中一个常用的公式是银行家公式(Banker’s formula),用于计算进程对资源的最大需求量。
公式如下:Need[i, j] = Max[i, j] - Allocation[i, j]其中,Need[i, j]表示进程i对资源j的最大需求量,Max[i, j]表示进程i对资源j的最大需求量,Allocation[i, j]表示进程i已分配到的资源j的数量。
死锁的原因及解决方法死锁是指在并发系统中,两个或多个进程因竞争系统资源而造成阻塞,且它们都无法继续执行,称为死锁。
一旦发生死锁,系统资源无法恢复,只能通过终止其中一个或多个进程来解除死锁。
以下是死锁的原因及解决方法的详细回答。
一、死锁的原因:1. 互斥条件:一个资源每次只能被一个进程使用,其他进程必须等待。
2. 请求与保持条件:一个进程在请求其他资源的同时继续占有已分配到的资源。
3. 不可剥夺条件:已分配的资源不能被其他进程抢占,只能由占有它的进程主动释放。
4. 循环等待条件:若干进程之间形成一种头尾相接的等待资源关系,形成了一个进程等待环路。
二、解决方法:1. 预防死锁:a. 破坏互斥条件:如允许多个进程同时访问资源。
b. 破坏请求与保持条件:一次性申请所有所需资源。
c. 破坏不可剥夺条件:允许资源被抢占。
d. 破坏循环等待条件:通过资源静态分配顺序来规避循环等待。
2. 避免死锁:a. 资源分配图算法:进程和资源之间可以表示为图,通过回溯法进行动态检查资源分配是否会造成死锁,并进行资源分配决策。
b. 银行家算法:通过银行家对于进程资源请求的审核来避免死锁,确保系统资源分配的安全性。
3. 检测死锁:a. 死锁检测算法:利用资源分配图算法,检测系统是否进入死锁状态,若检测到死锁,则采取相应的措施解除死锁。
b. 资源分配状态记录:记录系统的资源分配状态,通过不断的实时检测资源的分配和释放情况来判断是否发生了死锁。
4. 解除死锁:a. 抢占恢复法:通过抢占一些资源来解除死锁,抢占的资源可以由进程主动释放或回收。
b. 撤销进程法:从系统中选择一个或多个进程终止,将它们释放占有的资源。
c. 进程回滚法:将一个或多个进程回滚到之前的检查点,释放已经占有的资源。
d. 动态分配资源法:在发生死锁时,应根据进程优先级和资源的重要性进行资源重新分配。
总结:死锁是并发系统中一个常见的问题,解决死锁的过程是一个繁琐而复杂的任务。
死锁检测与解除算法死锁是指在并发系统中,两个或多个进程因为争夺有限的资源而陷入无限等待的状态,无法继续执行下去。
为了避免和解决死锁问题,需要进行死锁检测与解除。
死锁检测算法是通过资源分配图进行分析,来判断系统是否处于死锁状态。
资源分配图是一个有向图,其中节点表示进程和资源,边表示进程对资源的请求和分配关系。
常用的死锁检测算法有图算法和银行家算法。
图算法通过深度优先或广度优先来遍历资源分配图,从而检测出是否存在环路。
如果存在环路,则说明存在死锁。
该算法的时间复杂度为O(n^2),其中n为进程数或资源数。
银行家算法是一种基于资源的分配和回收策略的死锁避免算法。
该算法通过安全状态判断来检测死锁。
安全状态是指系统能够按照一些进程请求资源的顺序分配资源,使得所有进程都能顺利执行完毕而不会进入死锁状态。
如果系统处于安全状态,则说明不存在死锁。
该算法的时间复杂度为O(n*m^2),其中n为进程数,m为资源数。
死锁解除算法是在检测到系统处于死锁状态时,通过释放资源和回滚进程等方式来解除死锁。
常用的死锁解除算法有抢占法、撤销法和回滚法。
抢占法是指终止一个或多个进程并回收其资源,以解除死锁。
在实施抢占前,需要对进程进行优先级排序,选择优先级最低的进程进行终止。
然后将被终止进程的资源释放给等待资源的进程。
抢占法虽然可以解除死锁,但会导致被终止进程的工作丢失,因此需要谨慎使用。
撤销法是指回滚一个或多个进程的动作,从而释放它们所占用的资源。
撤销是通过记录进程的执行状态和资源分配信息,并按照回滚机制进行恢复。
撤销法通常会涉及进程的暂停和恢复,对系统的影响较大,需要谨慎考虑。
回滚法是指将系统恢复到之前的安全状态,从而解除死锁。
回滚方法的实现需要保留系统历史状态的信息,并进行状态回滚。
回滚通常需要使用一种类似于文件系统的持久化存储来保存系统状态,以便在死锁发生时进行恢复。
回滚法对系统的影响较小,但需要一定的开销去保持历史状态信息。
数据库事务管理中的死锁检测与解决方法死锁是在多并发环境下,当两个或多个事务互相等待对方释放资源时变成无限等待状态的情况。
死锁会导致系统资源浪费,同时也会影响系统的性能和可用性。
在数据库事务管理中,死锁的发生是常见的,因此采取适当的死锁检测与解决方法是至关重要的。
1. 死锁检测方法1.1 死锁定位在死锁检测之前,首先需确定是否存在死锁。
一种常用的方法是通过等待图(Wait-for Graph)来检测死锁。
等待图是用来表示多个事务之间资源的竞争关系,当等待图中存在环路时,就意味着存在死锁。
1.2 系统资源监控监控数据库系统的资源使用情况,包括锁、事务等。
通过定期获取数据库系统的资源信息,可以发现死锁的发生情况。
1.3 死锁检测算法常见的死锁检测算法有:图算法、等待-图算法、死锁定时调度算法等。
其中图算法和等待-图算法较为常用,可以通过构建资源使用和等待的有向图来检测死锁。
2. 死锁解决方法2.1 死锁避免死锁避免是通过合理地预防死锁的发生,使得系统在运行时避免出现死锁。
这种方法主要基于资源请求和资源释放的顺序,通过对事务的资源请求进行动态分配和回收,避免死锁的发生。
常见的死锁避免算法有银行家算法和证据排斥检验算法。
2.2 死锁检测与解除如果死锁的避免方法不能满足需求,系统可能还是会发生死锁。
这时需要采取死锁检测和解除的方法。
常见的解除死锁的方式有回滚事务和剥夺资源。
回滚事务是指撤销某个或某些事务的执行,放弃已经占有的资源,以解除死锁。
而资源剥夺是指系统强制终止某个事务,然后再释放其所占有的资源,以解除死锁。
2.3 死锁超时处理死锁超时处理是通过设置一个死锁最大等待时间来处理死锁。
当一个事务遇到死锁时,如果等待超过设定的时间仍未解锁,系统会检测到死锁,并按照事先设定的处理方式来解锁。
3. 实践建议3.1 合理设计操作顺序在设计数据库应用时,应该尽量避免事务之间出现循环等待的情况。
在对资源进行请求时,需要明确资源请求的顺序,避免出现互相等待资源的情况。
数据库事务处理中的死锁与并发控制策略在数据库管理系统中,死锁和并发控制是关键的概念,涉及到确保多个并发事务能够同时运行而不发生冲突的问题。
本文将讨论数据库事务处理中的死锁和并发控制策略,以解决这些问题。
一、死锁的概念和原因1. 死锁的定义死锁是指两个或多个事务互相等待对方持有的资源,并导致彼此无法继续执行的情况。
如果不采取措施来解决死锁,系统将进入无限等待的状态。
2. 死锁的产生原因死锁通常由以下四个条件同时满足而产生:- 互斥条件:资源只能被一个事务占用,其他事务需要等待。
- 持有并等待条件:事务在持有一些资源的同时,还等待获取其他资源。
- 不可剥夺条件:已被一事务占用的资源不能被其他事务剥夺。
- 循环等待条件:一系列事务形成一种循环等待资源关系。
二、死锁的检测与解决策略1. 死锁的检测死锁的检测是指通过算法检测系统中是否有死锁的发生,一旦检测到死锁,系统可以采取相应的策略来解决。
常见的死锁检测算法有图论算法和资源分配图算法。
2. 死锁的解决策略- 死锁预防:通过破坏死锁产生的四个必要条件之一来预防死锁的发生。
例如,破坏持有并等待条件,要求事务在执行前一次性申请所需的全部资源。
- 死锁避免:通过事务请求资源时的动态分配,根据资源的状况决定是否分配给请求资源的事务。
常用的避免算法有银行家算法和资源分配图算法。
- 死锁检测与解除:先进行死锁检测,一旦检测到死锁的存在,通过撤销事务、资源抢占或回滚等方式解除死锁。
三、并发控制策略1. 一致性与隔离级别一致性和隔离级别是数据库中的重要概念,用于定义并发事务的行为和执行结果的可见性。
- 一致性:确保并发事务的执行结果与顺序执行结果相同。
基本原则是事务应该遵守数据库的完整性约束和业务逻辑。
- 隔离级别:定义了一种隔离的程度,用于控制并发事务间相互干扰的程度。
隔离级别从低到高分为读未提交、读提交、可重复读和串行化。
2. 并发控制技术为了确保并发执行的多个事务能够正确地访问和修改数据库,数据库管理系统中使用了多种并发控制技术。
一、实验目的
采用银行家算法来预防死锁是可靠的,但也是非常保守的,因为它限制了进程对资源的存取,从而降低了进程的并发运行程度。
死锁检测并不限制进程对资源的申请,只要有,就分配,但这也可能造成死锁。
但由于死锁并不是经常发生的,故大大提高了系统运行的效率。
通过本实验,可使学生进一步加深理解和掌握死锁的检测算法。
二、实验题目
两个题目任选其一:
1、编写对每种类型多个资源的死锁检测算法。
2、使用检测“进程—资源循环等待链”的方法,编写死锁检测算法(有参考代码)
三、实验要求
题目2:
(1)利用“进程—资源循环等待链”的方法,编写死锁检测算法的具体方法可参考教材的算法,在了解此算法思想的基础上,也可参考给定代码;具体代码描述参
见3.3.5。
(2)对图3-2中的资源分配图完成对该算法的测试。
图3-2 资源分配图
四、实验报告要求
•画出所实现算法的详细框图;
•说明所采用的数据结构;
•列出输入数据(进程和所申请的资源数据可用命令行或文件输入);
•列出运算的输出结果(输入结果包括是否死锁,死锁进程有哪些,也可包含中间结果);
•实验总结与心得。
•根据情况可以列出代码。
五、实验结果
框图如下:
运行结果如下:
当把框图改为如下所示时:
再次执行可得此处没有死锁出现,说明程序的正确性。
六、试验总结
(1)通过这次实验,了解到进程死锁的具体过程,对死锁的各方面理解都有了更深层次的认识。
系统在为进程分配资源时并不一定能满足进程的需求,因此检测系统的安全性是非常有必要的,安全性的检测使用银行家算法得以实现。
(2)在刚开始的学习中,对于死锁理解,只是认为从第一个进程开始剥夺其资源,也不管它是不是发生了死锁,一直剥夺到死锁解除为止。
虽然利用银行家算法来预防死锁是可靠的,但也是非常保守的,因为它限制了进程对资源的存取,从而降低了进程的并发运行程度。
(3)死锁检测并不限制进程对资源的申请,只要有,就分配,但这也可能造成死锁。
但由于死锁并不是经常发生的,故大大提高了系统运行的效率。
通过本实验,进一步加深理解和掌握死锁的检测算法。
(4)本次试验需要自己编写进程的调度图,通过自己画出的进程图,经过算法演示,得到预期的结果,然后通过改变回路,进一步证明了算法检测死锁的有效性。