高分子材料加工工艺
- 格式:doc
- 大小:73.51 KB
- 文档页数:5
高分子材料成型加工是将高分子材料通过一系列的工艺操作和设备,使其转变成所需形状和尺寸的过程。
以下是高分子材料成型加工的一些常见方法:
1. 注塑成型:将高分子材料以固体或液态形式注入到模具中,在高压和高温下使其熔化并充满模具腔体,然后冷却固化,最终得到所需形状的制品。
注塑成型广泛应用于塑料制品的生产,如塑料容器、零件等。
2. 挤出成型:将高分子材料通过挤出机加热熔化,然后通过模具的挤压作用将熔融物料挤出成连续的型材,经冷却固化后得到所需形状的制品。
挤出成型常用于生产管道、板材、薄膜等产品。
3. 吹塑成型:利用吹塑机将高分子材料加热熔化,然后通过气流将其吹成空气袋状,同时在模具中形成所需形状,最后冷却固化得到制品。
吹塑成型常用于生产塑料瓶、塑料薄膜等。
4. 压延成型:将高分子材料以固体或液态形式置于两个或多个辊子之间,通过辊子的旋转和挤压,使其逐渐变薄并得到所需形状和尺寸,最后冷却固化。
压延成型常用于生产塑料薄膜、塑料板材等。
5. 注塑吹塑复合成型:将注塑成型和吹塑成型结合在一起,先通过
注塑将制品的大部分形状成型,然后通过吹塑将其膨胀、加压并使得内部空腔形成所需形状。
注塑吹塑复合成型常用于生产中空制品,如玩具、塑料容器等。
除了上述常见的成型加工方法外,还有其他方法如压缩成型、发泡成型、旋转成型等,不同的高分子材料和产品要求会选择适合的成型加工方法。
成型加工过程中需要考虑材料的熔化温度、流动性、冷却速度等因素,同时也要注意模具设计和工艺参数的优化,以获得良好的成型效果和制品质量。
高分子材料成型加工简介高分子材料成型加工是指通过加热、挤压、拉伸等工艺将高分子材料转变成所需形状和尺寸的过程。
高分子材料广泛应用于各个领域,如塑料制品、橡胶制品、纤维材料等。
本文将介绍高分子材料成型加工的基本原理、常用的加工方法以及在实际应用中的注意事项。
基本原理高分子材料成型加工是利用高分子材料的可塑性进行加工的过程。
高分子材料的可塑性是指在一定的温度和压力下,可以被加工成各种形状的性质。
其基本原理可以归纳为以下几点:1.熔融:高分子材料在一定的温度范围内可以被熔化成流体状态,使得材料更易于流动和变形。
2.成型:将熔融的高分子材料注入到模具中,通过模具的形状和尺寸限制,使得熔融材料在冷却后得到所需的形状和尺寸。
3.冷却固化:熔融材料在模具中冷却后逐渐固化成固体,成为最终的成型品。
常用的加工方法注塑成型注塑成型是一种常用的高分子材料成型加工方法,适用于制造各种塑料制品。
其基本流程包括:1.材料准备:选择合适的塑料颗粒作为原料,将其加入注塑机的进料口中。
2.加热熔融:注塑机将原料加热、熔融,并将熔融的塑料材料注入到模具中。
3.冷却固化:模具中的熔融塑料材料在冷却后逐渐固化成固体,形成最终的成型品。
4.取出成品:将固化的成型品从模具中取出,并进行后续加工,如修整边缘、打磨表面等。
挤出成型挤出成型是另一种常用的高分子材料成型加工方法,适用于制造各种管材、板材等长型产品。
其基本流程包括:1.材料准备:将高分子材料以颗粒形式加入到挤出机的料斗中。
2.加热熔融:挤出机将颗粒状的高分子材料加热、熔融,并通过螺杆将熔融的材料挤出。
3.模具成型:挤出的熔融材料通过模具的形状和尺寸限制,被冷却成所需的形状和尺寸。
4.冷却固化:在模具中冷却后,熔融材料逐渐固化成固体,形成最终的成型品。
5.切割成品:挤出机会根据需要将成型品切割成所需的长度,以便后续使用。
除了注塑成型和挤出成型,还有许多其他的高分子材料成型加工方法,如压延成型、注射拉伸成型等,根据材料和产品的需求选择合适的加工方法。
高分子材料的生产工艺
高分子材料的生产工艺主要包括:
1. 原料处理:将原料(例如聚合物、单体、添加剂等)进行筛选、破碎、粉碎等处理,以获得适合生产的原料。
2. 混炼:将不同的原料按照一定的配比加入到混炼机中,进行混合搅拌,使原料充分混合均匀。
3. 加热熔融:将混合好的原料送入熔融机或挤出机中,通过加热使其熔化成为熔融状,以便后续的成型。
4. 成型:将熔融的高分子材料通过挤出、注塑、吹塑等方法,使其成型为所需的产品形状,如薄膜、棒材、管材等。
5. 冷却固化:将成型的高分子材料放置在冷却装置中,使其迅速冷却并固化成为固态,以便后续的加工。
6. 后处理:对固化后的高分子材料进行去除残留物、表面处理、修整等工艺,使其达到所需的质量标准和外观要求。
7. 检测与质量控制:通过各种测试方法对生产出来的高分子材料进行检测,确保其性能和质量符合要求。
8. 包装和出货:将符合要求的高分子材料进行包装,标明产品信息和批次号,并进行出货。
高分子材料加工技术
高分子材料加工技术是指将高分子材料(如塑料、橡胶)通过一系列的加工工艺,使其变成所需的产品或零部件的过程。
它包括以下几种常见的加工技术:
1. 注塑成型:将高分子材料加热熔融后,通过注塑机将熔融物注入模具中,然后冷却固化成型。
2. 吹塑成型:将高分子材料加热熔融后通过吹塑机,将其吹入充气的模具中,然后冷却固化成型。
3. 挤出成型:将高分子材料加热熔融后,通过挤出机将熔融物挤出成型。
4. 压延成型:将高分子材料通过双辊压延机,经过连续的冷却和压延,使其变成薄膜或板材。
5. 注塑拉伸吹塑成型:将高分子材料通过注塑机注塑成形后,再通过拉伸和吹塑成型,制成透明的容器或瓶子。
6. 焊接和粘接:在高分子材料表面使用热焊或化学粘接剂
将两个或多个零部件连接在一起。
此外,还有其他加工技术如热压、胎具法、模压、拉伸成
型等。
这些加工技术都有各自的特点和适用范围,根据实
际需求选择合适的加工技术可以提高生产效率和产品质量。
一.挤出成型挤出成型工艺适用于所有的高分子材料,制造各种连续制品如管材、型材、板材(或片材)、薄膜、电线电缆包覆、橡胶轮胎胎面条、内胎胎筒、密封条等。
其中的塑料挤出成型几乎能成型所有的热塑性材料,也可用于少数几种热固性材料,如酚醛。
原因:因为挤出成型工艺具有以下特点:1.连续成型,产量大,生产效率高;2.制品连续,断面形状不变,制品外形简单;3.制品质量均匀密实,尺寸准确较好。
二.注射成型注射成型的应用十分广泛,几乎所有的热塑性塑料及多种热固性塑料都可用此法成型,也可以成型橡胶制品。
但主要是热塑性塑料的注射。
原因:因为注射成型工艺具有以下特点:1.成型周期短,生产效率高,易实现自动化;2.能成型形状复杂,尺寸精确;3.带有金属或非金属嵌件的塑料制件;4.产品质量稳定。
三.模压成型模压成型工艺广泛用于热固性塑料和橡胶制品的成型加工,几乎所用的高分子材料都可用此方法来成型制品。
目前主要用于:热固性塑料的成型;橡胶制品的成型;复合材料的成型。
原因:因为模压成型工艺具有以下特点:1.与挤出和注射等成型工艺相比,模压成型工艺所需设备结构简单、制造精度不髙、制造费用低,所以投资少、见效快,为发展多品种、小批量的生产提供了有利条件;2.在模压成型过程中,由于塑料的流动距离很短,受填料的定向影响小,所以塑件的尺寸变动小,不易变形,尺寸稳定性好,机械性能稳定;3.相同吨位的压机可以成型较大平面的制品;4.模压成型工艺成熟,生产过程易于控制;5.模压成型中没有浇注系统,原材料浪费相对较少。
对于不能重复利用的热固性材料来讲,节约原料尤为重要;6.模压成型基本上适合于加工各种塑料,尤其像氨基树脂、环氧树脂和聚酰亚胺等材料,用注射成型既困难又会影响制品外观质量;对于用石棉或玻璃纤维等增强的塑料,在注射和挤出成型中,纤维易在浇口部分断裂,使制品的机械强度特别是冲击强度降低,失去增强的意义;聚酯团状和片状模塑料若采用注射成型,则需特殊的强迫加料装置,导致设备费用昂贵。
高分子材料生产工艺高分子材料生产工艺是指将原材料经过一系列的加工和处理工序,制成高分子材料产品的过程。
以下是一个典型的高分子材料生产工艺流程。
1. 原料准备:首先需要准备好高分子材料的原料。
通常情况下,高分子材料的原料主要由单体和辅助物质组成。
单体是高分子材料的主要成分,可以通过化学合成或提取方法获得。
辅助物质包括催化剂、稳定剂、填料等,用于改善材料的性能。
2. 单体合成:对于需要化学合成的高分子材料,单体合成是一个重要的工序。
该工序一般包括原料与催化剂的混合、加热反应、冷却等步骤。
通过控制反应条件,可以实现单体的聚合,生成高分子链。
3. 成型加工:得到的高分子材料通常是一种无定形的物质,需要通过成型加工得到所需的形状。
常见的成型加工方法包括挤出、注塑、压延、吹塑等。
在成型加工过程中,高分子材料需要经过加热、加压、冷却等步骤,以实现形状的塑性变形和固化。
4. 表面处理:某些高分子材料产品需要进行表面处理,以改善其表面性能。
例如,可以通过喷涂、镀膜、离子束处理等方法,给高分子材料的表面增加一层保护层或改善其光滑度、耐磨性等特性。
5. 检测与质量控制:在高分子材料生产工艺中,检测与质量控制是一个不可或缺的环节。
通过使用各种物理、化学、机械等检测手段,对高分子材料的成品进行检测,以确保其质量符合标准要求。
检测项目包括密度、硬度、拉伸强度、耐热性、化学稳定性等。
6. 包装与运输:高分子材料成品需要进行包装,以保护其不受外界环境的危害。
常见的包装材料包括塑料袋、纸箱、木箱等。
在运输过程中,需要注意避免高温、潮湿等不利因素对成品的影响。
7. 储存与销售:高分子材料成品通过储存和销售环节,进入市场。
在储存过程中,需要注意适宜的环境条件,以防止成品的老化、变形等问题。
销售环节需要通过有效的市场营销手段,将成品宣传和推广给潜在的客户。
以上是一个典型的高分子材料生产工艺流程。
根据具体的高分子材料种类和产品要求,实际的生产工艺可能会有所不同。
高分子材料加工工艺学
高分子材料加工工艺学是研究原材料加工和性能改善的一种材料加工技术。
它主要涉及的内容:第一是研究复合材料的成型工艺,如热压、挤压、拉伸、挤出等方法用于生产复合材料和复合部件;第二是制备高分子复合材料,如高分子溶液、聚合物增强等方法;第三是研究高分子添加剂,根据高分子材料的应用特点裁定相应的添加剂;第四是研究高分子材料塑料加工和制造技术,探讨不同的工艺、装备和工艺条件之间的关联;最后是研究热塑性高分子模压成型工艺中的因素变化,如模具的准备、模具的设计、模流特征和模具温度等。
上述是高分子材料加工工艺学的主要内容。
从加工工艺方面来看,研究包括热塑性高分子成型和复合材料的成型工艺,其中复合成型包括热压、挤压、拉伸、挤出等技术;从材料配比方面来看,研究包括添加剂的种类、量和混合比例;从设备配置方面来看,研究包括机械设备、电气设备、热力学设备及气体控制系统等设备的搭配。
另外,高分子材料加工工艺学还运用了计算机技术对材料成型过程中的原料,工艺参数和工件状态进行模拟和优化,进而提高材料制备过程中的控制手段及生产效率。
高分子材料加工高分子材料是一类具有高分子量、由重复单元结构组成的材料,广泛应用于塑料、橡胶、纤维等领域。
高分子材料的加工是指将原料通过一系列工艺加工成成品的过程,包括塑料成型、橡胶硫化、纤维纺丝等多种加工方法。
本文将重点介绍高分子材料加工的一些常用方法和技术。
首先,塑料成型是高分子材料加工中最常见的方法之一。
塑料成型包括挤出成型、注塑成型、吹塑成型等多种方法。
挤出成型是将塑料通过挤出机加热后挤出成型,常用于生产管材、板材等产品;注塑成型是将塑料加热后注入模具中成型,常用于生产各种塑料制品;吹塑成型是将热塑性塑料加热后吹制成型,常用于生产各种塑料容器。
这些方法都是通过加热塑料使其变软,然后通过模具或模具组合使其成型,是塑料制品生产中不可或缺的加工方法。
其次,橡胶硫化是橡胶制品加工中的重要环节。
橡胶硫化是指将橡胶加入硫化剂和促进剂后进行加热处理,使其发生交联反应从而获得所需的物理性能。
橡胶硫化的方法有热硫化、冷硫化等多种,其中热硫化是最常用的方法。
在橡胶硫化过程中,控制硫化温度、时间和硫化剂的种类和用量是非常重要的,这直接影响着橡胶制品的质量和性能。
最后,纤维纺丝是纤维制品加工中的关键环节。
纤维纺丝是指将聚合物溶液或熔体通过纺丝机械加工成纤维的过程,包括湿法纺丝、干法纺丝等多种方法。
湿法纺丝是将聚合物溶液挤出成纤维后通过凝固、拉伸、固化等工艺制备纤维;干法纺丝是将聚合物熔体挤出后通过拉伸、冷却等工艺制备纤维。
纤维纺丝是制备纤维制品的关键步骤,直接影响着纤维制品的质量和性能。
综上所述,高分子材料加工涉及多种方法和技术,对原料的选择、工艺参数的控制、设备的运行等都有着严格的要求。
只有在加工过程中严格控制各项参数,才能获得具有优良性能的高分子材料制品。
希望本文介绍的内容能够对高分子材料加工有所了解,并在实际生产中加以应用。
高分子材料加工技术复习提纲
一、填空题
1.大材料包括(金属)、(非金属)、(高分子)。
2.高分子材料加工前,原料的状态可分为(粉状)、(粒料)、(溶液)、(分散体)。
3.成型加工后进行的处理有(调温)、(调湿)、(调温调湿)。
4.塑料可分为(热塑性)塑料、(热固性)塑料两大类。
5.塑料的三态:(玻璃态)、(高弹态)、(粘流态)。
6.高分子材料热机械特性与成型加工的关系(6个空)。
二、名词解释
1.挤出成型:挤出成型时预处理过的物料经料斗加入挤出机中,在外部加热和内摩擦生热作用下以流动状态通过口模成型的方法。
2.注塑成型:注塑成型是将热塑性塑料先在加热机筒中均匀塑化,然后由螺杆或柱塞推压到闭合的模具型腔中,经冷却定型后得到所需的塑料制品的过程。
3.焦烧:橡胶分子在贮存和生产过程中提前硫化的现象.
4.喷霜:橡胶助剂渗出制品表面的现象。
5.塑料:相对分子量在10000以上,以高分子化合物为基本成分,添加助剂能够自由成型的一类材料的总称。
6.橡胶:橡胶是一种高弹性的高分子化合物,是无定形的高聚物。
7.弹性体:材料在受力发生大变形再撤出外力后迅速回复其近似初始形状和尺寸的材料。
8.相溶性:聚合物的共混物制品在预期的使用期内,其组分始终不析出或者不分层。
三、 简答题
1.简述塑料挤出造粒的工艺流程及影响因素。
原料预处理
配料挤出机头成型冷却
牵引造粒
2.简述塑料挤出成型的工艺流程并阐述影响注塑成型的主要因素。
3.简述橡胶配方的五大体系。
生胶体系、硫化促进活化体系、补强填充体系、防老体系、增塑体系 4.简述压缩模塑的工艺流程及其影响因素。
加料闭模排气固化脱模
清理模具
影响因素:模压压力、模压温度、模压时间。
5.简述压延成型的工艺流程及其影响因素。
6.简述热固性塑料、热塑性塑料的定义和区别,并举例。
热固性塑料:成型过程中,发生化学反应,生成不溶不熔网状结构的一类聚合物。
热塑性塑料:能反复加热软化,冷却硬化的一类高分子材料。
热固性塑料:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯 热塑性塑料:PE 、PP 、PVC 、PS 、ABS
口模
冷却定型
原料预处理
电、加热、内摩擦生热
7.简述橡胶混炼中的加料顺序。
生胶或塑炼胶固体软化剂小料(促进剂、活性剂、防老剂、防焦剂)补强填充剂液体软化剂硫黄超速促进剂小料先加,大料后加;促进剂、硫磺后加;难分散的先加,易分散的后加。
8.简述常见的加工设备及工艺流程。
注射成型
树脂配合剂冲击试验
样品SEM
生脂TEM
压制成型机械加工熔融指数
PVC拉伸试验其他
热固性塑料
力学性能
结构性能
9.橡胶塑料共混体系改性方法
增韧:加入弹性体
增强:加入偶联剂、表面处理过的无机物
既增韧又增强:既加入弹性体又加入偶联剂、表面处理过的无机物
10.简述塑料成型与橡胶成型的主要区别。
塑料成型主要设备有挤出机、注塑机;橡胶成型主要设备有压延机、挤出机;
塑料挤出机的作用是塑化,多数为双螺杆;橡胶成型的作用是供料,一般为单螺杆;
11.简述塑料由原料到制品的过程。
单体助剂预处理原料树脂生产树脂塑料制造塑料成型加工
塑料制品
后加工
12.简述橡胶由原料到制品的过程。
配料塑炼混炼成型硫化
四、综合题
1.橡胶配方
NR100.0生胶生胶体系
S 2.5硫化剂
CZ0.5促进剂硫化促进活化体系
NOBS0.5促进剂
ZnO 6.0活化剂
SA 2.5活化剂
HAF20.0补强剂
ISAF30.0补强剂
AW0.5防老剂防老体系
4010NA 1.5防老剂
松焦油 5.0增塑剂增塑体系
石蜡 1.0增塑剂
2.常见塑料的物理性质、加工方法、改性手段。
聚烯烃类:
①PE
加工时不干燥;熔点:HDPE 130137℃ LDPE 108~115℃;LDPE料筒温度控制 140~180 ℃ HDPE料筒温度控制180220℃;注射压力:60~80MPa ;模温:LDPE 35~60℃HDPE 50~80℃。
②PP
一般不干燥;熔点为165~170℃;料筒温度控制210~280℃;喷嘴温度可比料筒温度低10~30℃。
③RPVC
成型温度160~190℃;喷嘴温度应比料筒末端温度低10~20℃;可不干燥(必要时,在热循环烘箱中,在90~100℃下干燥1~2.5h;注塑时高压低速。
聚酰胺类:
PA(240~280℃)
熔点:尼龙n系列:尼龙-6 215为220℃,尼龙-12为178℃;尼龙m、n系列:尼龙-46为295℃,尼龙-66为255~265℃,尼龙-610为215~223℃,尼龙1010为200℃;熔体粘度低,注射压力为70~100MPa,不超过120℃,要进行调温调湿处理,通常在沸水或醋酸钾水溶液中进行。
聚酯类:
①PBT
熔点为225℃左右,分解温度为280℃;干燥温度120℃,时间为4h;中等注射压力50~
100MPa ;注射温度240~265℃。
②PC
无定形塑料;Tg为149~150℃;Tf为215~225;成型温度为250~310℃;充分干燥90~100℃,2~4h;粘度高;注射压力80~120 MPa,可适当提高至120~150℃。