储层评价
- 格式:ppt
- 大小:1.51 MB
- 文档页数:34
4.储层微观特征及分类评价4.1孔隙类型本次孔隙分类采用以孔隙产状为主,并考虑溶蚀作用,结合本区实际,将孔隙分类如下:1. 粒间孔隙粒间孔隙是指位于碎屑颗粒之间的孔隙。
它可以是原生粒间孔隙或残余原生粒间孔隙,即原生粒间孔隙在遭受机械压实作用、胶结作用等一系列成岩作用破坏后而保留下来的那一部分孔隙。
多呈三角形,无溶蚀标志。
另一方面它也可以是粒间溶蚀孔隙,即原生粒间孔隙经溶蚀作用强烈改造而成,或者是颗粒间由于强烈溶蚀作用的结果。
粒间空隙一般个体较大,连通性较好。
粒间孔隙是本区主要的孔隙类型。
2. 粒内(晶内)孔隙这类孔隙主要是砂岩中的长石、岩屑等非稳定组分的深部溶蚀形成的,在研究区深层砂岩中普遍存在。
长石等非稳定组分的溶蚀空隙可以进一步分为粒内溶孔和晶溶孔。
晶内溶孔是指长石颗粒内的溶孔,而粒内溶孔是指岩屑等碎屑内部的易溶组分在深部酸性流体作用下形成。
常常沿长石的解理缝、双晶纹和岩屑内矿物之间的接触部位等薄弱带进行溶蚀并逐渐扩展,因而常见沿解理缝和双晶结合面溶蚀形成的栅状溶孔。
长石、岩屑等非稳定组分的溶蚀孔的发育常常使彼此孤立的、或很少有喉管项链的次生加大晶间孔的连通性大为改进,而且,这类孔隙的孔径相对较大,从而优化了深部储层的储集性能。
3. 填隙物孔隙填隙物孔隙包括杂基内孔隙、自生矿物晶间孔和晶内溶孔。
杂基内孔隙多发育与杂基含量较高的(>10%)砂岩中,孔隙数量多,个体细小,连通性差。
自生矿物晶间孔隙发育在深埋条件下自生矿物,如石英、方解石、沸石、碳酸岩小晶体以及石盐晶体之间,个体小,数量多随埋深有增加之趋势。
但由于常生长于粒间孔隙中,连通性较好,又由于其晶体小,比表面积大,孔隙结构复杂,影响流体渗流。
因此在埋深3500米以下,孔隙度降低较慢,而渗透率降低很快。
这类晶间孔隙在徐东-唐庄地区相对发育。
另外,杜桥白地区深层还可见到丰富的碳酸盐晶内溶孔和石盐晶内溶孔。
4. 裂隙裂缝在黄河南地区较不发育,在桥24井沙三段3547.5米砂岩中见一构造裂缝,此外多见泥质粉砂岩或细砂岩中泥质细条带收缩缝。
储层评价技术储层评价是指通过一系列的技术手段和方法来评价油气储层的性质和储集条件,为油田开发提供依据。
储层评价的目的是确定储层的孔隙度、渗透率、饱和度等参数,进而评估储层的储量和产能,为油田开发和生产提供科学的指导。
储层评价技术主要包括岩心实验、地震勘探和测井技术等。
岩心实验是通过采集储层岩石样品,并进行一系列的实验分析,来获得储层岩石的物理性质和流体性质。
常用的岩心实验包括岩心物性实验、岩心饱和度实验、岩心渗透率实验等。
岩心实验可以提供直接的储层参数数据,为储层评价提供重要依据。
地震勘探是通过地震波在地下介质中传播的方式来获取储层的地质信息。
地震勘探可以获得储层的层位分布、厚度、构造等信息,进而推断储层的孔隙度、渗透率及饱和度等参数。
地震勘探主要包括地震勘探数据采集、地震资料处理和解释等过程。
地震勘探可以提供广泛的储层信息,对于评价储层的连通性和储量有着重要的作用。
测井技术是通过测井仪器对井下的地层进行测量,获取储层的物性参数和流体性质。
常用的测井技术包括电测井、声测井、自然伽玛测井等。
测井技术可以提供井壁周围地层的电阻率、声波速度、放射性等参数,进而推断储层的孔隙度、饱和度和渗透率等参数。
测井技术是评价储层的一种重要手段,能够在井中直接获取储层参数,对储层评价具有较高的精度。
储层评价技术的选择和应用应根据不同的储层类型和区域特点进行综合考虑。
不同的储层评价技术有其适用的场合和局限性,在实际应用中需合理选择和组合多种技术手段,以达到准确评价储层的目的。
同时,随着技术的不断发展,如岩心CT扫描技术、地震反演技术和三维测井技术的应用,储层评价技术将进一步提高。
综上所述,储层评价技术是评价油气储层性质和储集条件的重要手段,岩心实验、地震勘探和测井技术是常用的评价手段。
通过合理选择和组合多种技术手段,可以获得准确的储层参数和地质信息,为油田开发和生产提供科学的依据。
储层评价技术的发展将进一步推动油气勘探开发的科学化和精细化。
测井储层评价方法测井是石油工程中的一项重要技术,用于评估储层的性质和条件。
测井储层评价方法是通过分析储层岩石的各种特征和性质,从而确定储层的产能和储量。
以下将介绍几种常见的测井储层评价方法。
1.孔隙度和渗透率评价:测井可通过测量孔隙度和渗透率来评价储层的质量。
孔隙度是指储层中可容纳油气的空隙的比例,可以通过电阻率测井等方法获取。
渗透率则是指储层中油气流动能力的大小,可以通过测井测得的渗透率来评价储层的产能。
2.水饱和度评价:水饱和度是指储层中被水填充的孔隙的比例。
测井可以通过测量电阻率来评价储层中的水饱和度。
高水饱和度可能会降低储层的产能。
3.孔隙流体类型评价:测井还可以用来判断储层中流体类型的改变。
常见的方法包括测量γ射线吸收率、中子测井和密度测井等。
这些测井可以帮助确定储层内流体的组成和含量,从而评估油气产能。
4.含油饱和度评价:含油饱和度是指储层中被油填充的孔隙的比例。
常见的评价方法包括声波测井和密度测井等。
通过测井得到的含油饱和度可以帮助确定储层的产能和储量。
5.输导性评价:输导性是指储层中油气的流动能力。
测井可以通过测量孔隙介质的渗透率来评价储层的输导性。
高渗透率表示储层具有较高的产能和流动性。
在实际应用中,常常综合运用多种测井方法进行储层评价,以提高评价结果的准确性。
此外,还可以运用现代地质物理学方法和数学建模等技术手段,进一步分析储层特征和性质,提高测井储层评价的水平。
综上所述,测井储层评价方法是通过分析储层的岩石特征和性质,从而确定储层的性质、产能和储量。
它是石油工程中不可或缺的技术,为油气勘探和开发提供重要的依据。
测井储层评价方法1、测井资料评价孔隙结构储集岩的孔隙结构特征是指岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系,对于碳酸盐岩来说其孔隙结构主要是指岩石具有的孔、洞、缝的大小、形状及相互连通关系。
储集层岩石的孔隙结构特征是影响储层流体(油、气、水)的储集能力和开采油、气资源的主要因素,因此明确岩石的孔隙结构特征是发挥油气层的产能和提高油气采收率的关键。
常规岩石孔隙结构特征的描述方法主要包括:室内实验方法和测井资料现场评价法。
室内实验方法是目前最主要,也是应用最广泛的描述和评价岩石孔隙结构特征的方法,主要包括:毛管压力曲线法(半渗透隔板法、压汞法和离心机法等)、铸体薄片法、扫描电镜法及CT扫描法利用测井资料研究岩石孔隙结构特征则为室内实验开辟了另一条途径,且测井资料具有纵向上的连续性,大大方便了储层孔隙结构的研究。
1.1 用测井资料研究孔隙结构1.1.1 用电阻率测井资料研究岩石孔隙结构利用电阻率测井资料研究储层岩石的孔隙结构特征,主要还是建立在岩石导电物理模型和Archie公式的基础之上。
电阻率测井资料反应的是岩石复杂孔隙结构内在不同流体(油、气、水)时的电阻率,因此储层岩石不同的孔隙结构特征一定会对电阻率测井响应产生影响。
国内外关于岩石微观孔隙结构模型、物理模型也较多,包括毛管束模型、曲折度模型、电阻网络模型和渗流理论、有效介质理论等。
毛志强等采用网络模型模拟岩石孔喉大小及分布、水膜厚度、孔隙连通性等微观孔隙结构特征参数的变化对含两相流体岩石电阻率的影响,得出了影响油气层电阻率变化规律的2个主要因素分别是孔隙连通性(以孔喉配位数表示)和岩石固体颗粒表面束缚水水膜厚度。
孔隙连通性差的储集层具有较高的电阻率;相反,当岩石颗粒表面束缚水水膜厚度增加时,储集层的电阻率则明显降低。
杨锦林等采用简化的岩石导电物理模型,定义了一个岩石孔隙结构参数S,综合反映了储层孔隙孔道的曲折程度及其大小。
如果孔隙孔道越大越平直,S值越大,说明储层条件越好;反之孔隙孔道越小,越曲折,S值越小,说明储层条件越差。
页岩气储层的基本特征及其评价一、本文概述页岩气作为一种重要的非传统天然气资源,近年来在全球能源领域引起了广泛关注。
由于其储层特征的复杂性和评价方法的多样性,对页岩气储层的基本特征及其评价进行深入研究具有重要的理论和实践意义。
本文旨在全面概述页岩气储层的基本特征,包括地质特征、物理特征、化学特征以及工程特征等方面,并探讨相应的评价方法和技术手段。
通过对页岩气储层特征的深入剖析,本文旨在为页岩气勘探开发提供理论支撑和实践指导,推动页岩气产业的健康发展。
具体而言,本文首先介绍了页岩气储层的地质背景,包括地层分布、构造特征以及沉积环境等。
在此基础上,重点分析了页岩气储层的物理特征,如孔隙结构、渗透率、含气饱和度等,这些特征直接影响了页岩气的赋存状态和开采难易程度。
同时,本文还关注了页岩气储层的化学特征,如有机质含量、矿物杂质成分等,这些特征对于评估页岩气储层的品质和开采潜力具有重要意义。
在评价方法方面,本文综述了目前常用的页岩气储层评价方法,包括地球物理勘探、地球化学分析、岩石力学测试等。
这些方法和技术手段在页岩气储层评价中各有优缺点,需要根据具体的地质条件和勘探需求进行选择和应用。
本文还将介绍一些新兴的评价技术和方法,如页岩气储层数值模拟、微观孔隙结构表征等,这些新技术和方法的应用将进一步提高页岩气储层评价的准确性和可靠性。
本文旨在全面系统地介绍页岩气储层的基本特征及其评价方法,以期为页岩气勘探开发提供理论支持和实践指导。
通过深入研究页岩气储层的特征和评价方法,有助于更好地认识页岩气资源的分布规律和开发潜力,推动页岩气产业的可持续发展。
二、页岩气储层的基本特征物理性质:页岩储层一般具有较低的孔隙度和渗透率,这与其主要由粘土矿物、石英等细粒沉积物构成有关。
尽管孔隙度低,但页岩的裂缝发育丰富,这些裂缝为页岩气提供了有效的运移和储集空间。
页岩的层理结构明显,这种层状结构对页岩气的分布和运移有重要影响。
化学性质:页岩的化学性质多样,主要取决于其含有的矿物成分。
储层综合评价方法储层评价是预测和评价研究区含油气有利区带的重要技术手段,是对储层研究的综合认识和评判。
针对单因素评价储层结果不惟一的缺点,本文研究了储层综合定量评价的方法(图1)。
该方法分为4个步骤:首先利用特征选择算法对评价参数进行筛选,然后根据灰关联分析来确定各影响因素的权重,进而运用最大值标准化法确定各项参数的评价分数,最后计算各项参数综合得分,在此基础上,运用聚类分析进行储层分类评价。
对储层评价结果进行统计分析,所划分的各类储层特征明显,与研究区储层实际特征具有很好的一致性。
最大限度地应用计算机手段对油气储层进行精细评价和综合解释具有定量化、地质意义明确等优点,有一定应用价值。
图1储层综合评价方法体系框架1评价参数的选择一项参数只从一个方面表征储层的特性,全面评价一个储层,需要采用多项参数,从多个方面进行综合评价。
对储层进行合理的分类是评价储层的基础。
迄今为止,国内外学者提出了许多储层分类的参数与方法,但应该用哪些参数、选用何种方法是一个很难解决的问题。
而储层综合定量评价是在选取储层评价参数的基础上,对储层多个影响因素做综合评价,最终得到一个综合评价指标,并依此对储层分类。
国内研究储层的学者在评价参数选择方面作了不少研究,所选择的评价指标也各不相同。
比如:刘吉余等[7]认为储层综合评价的参数主要为储层的有效厚度、砂体钻遇率、渗透率、有效孔隙度、泥质含量、黏土矿物类型、孔隙结构参数、层内非均质性参数及隔(夹)层的分布参数等;吕红华等[8]选择孔隙度、小层厚度、含油饱和度及小层钻遇率4个参数作为储层评价指标;张晓东等[9]选择有效厚度、沉积相、夹层频数、孔隙度和裂缝渗透率5个参数作为储层评价指标;张琴等[10]选取孔隙度、渗透率、颗粒分选、杂基含量、粒径、储层成岩相带、溶蚀作用及胶结作用共8个参数进行储层评价;马立文等[11]选取孔隙度、渗透率、泥质含量及渗透率突进系数4个参数进行储层评价。