数据手册PM-G7,PM-G7M激光颗粒物传感器产品数据手册V2.2
- 格式:pdf
- 大小:762.49 KB
- 文档页数:10
字在线颗粒物计数目录安全性 (4)安全保护措施 (4)保修信息 (5)1.0基本信息 (6)1.1 准备开始之前 (6)1.2 开箱 (6)1.3 设备标签 (7)1.4 特色与优势 (7)1.5 技术参数 (8)1.6 操作基本理论 (10)2.0安装 (13)2.1 水堰装配 (13)2.2 安装 (14)2.3 配线 (15)配线安全 –为设备接线之前,请注意以下安全防护措施: (15)2.4 取样设置 (20)3.0颗粒物计数仪操作 (23)3.1 用户界面 (小键盘) (23)3.2 读数/显示屏 (24)3.3 用户菜单 / 设置屏幕(User Menu/Setup Screen) (26)3.4 RS-485/RS-232 通讯和电源指示器 (31)3.5 清洗步骤 (32)4.0下载数据 (34)4.1 安装和设置TRACDATA软件 (34)4.2 连接 RS-232下载电缆 (35)4.3 下载数据 (36)4.4 导出数据 (37)5.0推荐备品备件列表 (38)5.1 订购备品备件 (38)附录 A (39)用户菜单示意图 (39)插图目录图 1 光阻法测量 (图表 1) ............................................................................................................. . (10)图 2 颗粒物大小比较.................................................................................................................... (11)图 3 系统组成........................................................................................................................... (12)图 4 PC3400 和流量控制水堰水管.................................................................................... ............ . (12)图 5 水堰组装示意图.............................................................................................................................. .. (13)图 6 系统大小尺寸............................................................................................................................... (14)图 7 115/230V和电源开关..................................................................................................... (15)图 8 警告标签............................................................................................................................... (15)图 9 电源接线盒................................................................................................................... (16)图 10 RS-485 通讯............................................................................................................ (17)图 11 MODBUS TCP通讯可选配置................................................................................. (18)图 12 模拟输入/输出连线终端............................................................................................................... . (18)图 13 模拟输入类型跳线选择.......................................................................................... (19)图 14 模拟输入板卡可选配置.................................................................................................................. (19)图 15 取样口.................................................................................................................................. . (20)图 16 传感器流速调节........................................................................................................ (21)图 17 模拟输出板调节可选配置................................................................................. (30)图 18 传感器清洗方法................................................................................................................... (33)安全性为了保证用户在使用仪器时的安全,PC3400颗粒物计数仪采用如下设计:所有电路均用绝缘的保护装置进行包装。
TOFSense数据手册V2.2Language|语言:简体中文Firmware|固件版本:V2.0.3/V1.0.2NLink|N协议版本:V1.3Product Series|产品系列:TOFSense,TOFSense P,TOFSense PSContent|目录Content|目录 (2)Disclaimer|免责声明 (3)1Introduction|介绍 (4)1.1Product Overview|产品总述 (4)1.2Product Interface|产品接口 (5)1.3Technology Overview|技术总述 (5)1.4Functional Overview|功能总述 (6)2Typical Specifications|典型规格 (6)3Functional Description|功能描述 (7)3.1ID|ID (7)3.2Interface&Baudrate|接口与波特率 (7)3.2.1UART|串口 (7)3.2.2CAN|控制器局域网络 (8)3.3I/O Output Mode|I/O输出模式 (8)3.4Distance Status|距离状态指示 (8)3.5Signal Strength|信号强度 (8)3.6FOV|视场角 (8)3.7Indicator Light|指示灯 (8)3.8Function Key|功能按键 (9)4Typical Performance|典型表现 (9)4.1Test Condition|测试条件 (9)4.2Result|结果 (10)5Protocol|协议 (12)5.1Composition|构成 (12)5.2Endian|字节序 (12)5.3Type|类型 (12)5.4Description|描述 (12)6Firmware|固件 (12)7Software|软件 (12)8Mechanical Specifications|机械规格 (13)8.1Size|尺寸 (13)8.2Figure|图片 (14)9Abbreviation and Acronyms|简写与首字母缩略 (15)10Update Log|更新日志 (15)11Further Information|更多信息 (15)Disclaimer|免责声明Disclaimer|免责声明Document Information|文档信息Nooploop reserves the right to change product specifications without notice.As far as possible changes to functionality and specifications will be issued in product specific errata sheets or in new versions of this document.Customers are advised to check with Nooploop for the most recent updates on this product.Nooploop保留更改产品规格的权利,恕不另行通知。
1PM2.5/PM10浓度二合一有线变送器产品使用手册V1.2版1概述LT-CG-S/D-001-A7020-2-12PM2.5/PM10传感器采用符合国际标准的激光散射原理,内嵌式设计、开发,操作简单,使用方便,模块内部提供激光光源及光电接收装置,激光照射在空气悬浮物颗粒上产生散射,同时在某一角度接收散射光,得到散射光强随时间变化曲线,基于米氏理论算法,得出颗粒物的等效粒径及单位体积内不同粒径颗粒物的数量(PCS/0.1L )、重量(ug/L )两种测量结果,并通过串口分别输出PM1.0、PM2.5、PM10三档不同量程的颗粒物体积浓度或质量浓度数据。
采用DC 6~24V 电源供电,可选配液晶屏实时显示采集参数,还可选配1路继电器报警输出。
作为现场采集从站,标准MODBUS-RTU 通信协议RS485数字信号输出,适合远距离组网传输,完全兼容组态王等多种上位机组态软件,易与第三方设备配套。
产品广泛应用于智能家居,智能商厦,智能养殖,智能交通,气象站等环境测量领域。
2特点1、激光原理测量,信号无衰减,零错误报警率、计数更精确,产品寿命长2、传感器探头可准确测量0.3~10um 直径颗粒,测量范围宽、线性度好3、传感器通过串口分别输出0.3~1um、1~2.5um、2.5~10um 三档不同量程的颗粒物浓度信号,统计更精确、合理4、变送器可选配液晶屏、继电器报警输出等功能5、激光测量PM2.5比IRED 测量方式更专业,1um、2.5um、10um 三档量程更符合国内外权威机构认可3外形规格4产品资料规格型号:LT-CG-S/T-001-A7021-2-12-V1.2(包含液晶屏)LT-CG-S/T-001-A7020-2-12-V1.2(不含液晶屏)LT-CG-S/T-001-A7021-2-DO-12-V1.2(包含液晶屏、1路报警)PM2.5/PM10测量原理:激光散射法2PM2.5/PM10测量直径:0.3~1、1~2.5、2.5~10umPM2.5测量范围:0~999ug/m3,可选0~1999ug/m3(质量浓度)PM10测量范围:0~999ug/m3,可选0~1999ug/m3(质量浓度)体积颗粒物浓度:PCS/0.1L(每0.1升多少颗粒)最小颗粒直径:0.3um精度:<±10%分辨率:0.1ug/m3或1PCS/0.1L重复性:<10%输出信号:瞬时PM1.0、PM2.5、PM10浓度测量稳定时间:5秒响应时间:<10秒工作环境:-20~55度,5~95%RH(无凝结)存储环境:-25~70度供电电压:DC7~24V显示方式:LCD液晶屏(选项)液晶屏规格:08022行显示,每行8个字符报警、控制输出(选配):1路继电器,触点容量(阻性):3A/AC220V、DC24V通信接口:RS485通信速率:2400、4800、9600、19200、38400、115200。
卫星遥感细颗粒物(PM2.5)监测技术指南1 适用范围本标准规定了卫星遥感细颗粒物监测的方法、结果验证、质量控制等内容。
本标准适用于陆地区域卫星遥感细颗粒物监测工作,作为地面监测手段的补充,用于掌握大范围细颗粒物空间分布规律及变化趋势。
2 规范性引用文件本标准引用了下列文件或其中的条款。
凡是注明日期的引用文件,仅注日期的版本适用于本标准。
凡是未注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
HJ 93 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法HJ 653 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法HJ 655 环境空气颗粒物(PM10和PM2.5)连续自动监测系统安装和验收技术规范HJ 817 环境空气颗粒物(PM10和PM2.5)连续自动监测系统运行和质控技术规范3 术语和定义下列术语和定义适用于本标准。
3.1气溶胶光学厚度 aerosol optical depth(AOD)从地面到大气层顶垂直路径中整层气溶胶消光系数的总和,量纲为1。
3.2像元PM2.5浓度 pixel PM2.5 concentration卫星观测1个像元范围内的近地面大气细颗粒物平均质量浓度,计量单位为μg /m3。
3.3行星边界层高度 planetary boundary layer height(PBLH)行星边界层也称摩擦层或大气边界层,是对流层的最下层,一般自地面到1 km~2 km高度;行星边界层高度是指从地面到行星边界层顶的高度,表示污染物在垂直方向能被热力湍流所扩散的范围。
3.4地理加权回归 geographically weighted regression(GWR)一种用回归原理研究具有空间(或区域)分布特征的两个或多个变量之间数量关系的方法,在数据处理时考虑局部特征作为权重。
4 总则4.1 监测原理根据PM2.5质量浓度与AOD、吸湿增长因子、密度、半径、消光效率因子及行星边界层高度等因素的转化关系计算PM2.5质量浓度。
DSENSOR数字式通用颗粒物浓度传感器PMS5XXXST系列数据手册主要特性◆激光散射原理实现精准测量◆零错误报警率◆实时响应并支持连续采集◆最小分辨粒径0.3μm◆全新专利结构,六面全方位屏蔽,抗干扰性能更强◆进出风口方向可选,适用范围广,用户无需再进行风道设计◆可实时输出甲醛监测数据◆可实时输出温度及湿度数据概述PMS5XXXST系列是一款可以同时监测空气中颗粒物浓度、甲醛浓度及温湿度的三合一传感器。
其中颗粒物浓度的监测基于激光散射原理,可连续采集并计算单位体积内空气中不同粒径的悬浮颗粒物个数,即颗粒物浓度分布,进而换算成为质量浓度。
甲醛浓度的监测基于电化学原理,具有高精度、高稳定性的特点。
传感器同时内嵌瑞士生产的温湿度一体检测芯片。
颗粒物浓度数值、甲醛浓度数值及温度、湿度合并以通用数字接口形式输出。
本传感器可嵌入各种与空气质量监测和改善相关的仪器设备,为其提供及时准确的环境参数。
工作原理本传感器采用激光散射原理。
即令激光照射在空气中的悬浮颗粒物上产生散射,同时在某一特定角度收集散射光,得到散射光强随时间变化的曲线。
进而微处理器利用基于米氏(MIE)理论的算法,得出颗粒物的等效粒径及单位体积内不同粒径的颗粒物数量。
传感器各功能部分框图如图1所示图1 传感器功能框图甲醛监测功能采用电化学原理实现,加入数据处理算法,所获得的数据稳定、精确。
技术指标如表1所示表1 传感器技术指标数字接口定义PIN1图2 接口示意图输出结果1.颗粒物浓度:主要输出为单位体积内各浓度颗粒物质量以及个数,其中颗粒物个数的单位体积为0.1升,质量浓度单位为:微克/立方米(μg/m³)。
此外传感输出分为主动输出和被动输出两种状态。
传感器上电后默认状态为主动输出,即传感器主动向主机发送串行数据,时间间隔为200~800ms,空气中颗粒物浓度越高,时间间隔越短。
主动输出又分为两种模式:平稳模式和快速模式。
在空气中颗粒物浓度变化较小时,传感器输出为平稳模式,即每三次输出同样的一组数值,实际数据更新周期约为2s。
The Series PMT2 Particulate Transmitter is designed to measure particulate emission levels from dust collector discharge. Using DC coupled electrostatic induction sensing technology, the transmitter monitors a pA current that is generated as particulate passes near the probe; a 4-20 mA signal will vary based on the particulate level. The PMT2 offers 6 sensitivity ranges allowing the user to choose the range that will best fit the application. The range and test selector switch can also be set to output a 4 mA or 20 mA signal to assist with set up or trouble shooting. Averaging time setting can be used to dampen the signal if desired.FEATURES/BENEFITS• Simple 2-wire installation for PLC and control panels• Non-stick PTFE coated probe to prevent false readings from moist and conductive dusts, condensate, and dust buildup• Remote zero calibration helps to decrease maintenance timeOPERATING PRINCIPLETechnologyThe PMT2 utilizes a highly reliable DC coupled electrostatic induction sensing technology. The sensor probe is mounted in an airflow stream such as a pipe, duct or stack. The inductive effect takes place when particulate passes near the probe transferring a charge from the particulate to the probe. A microprocessor filters and processes the signal into a output that is linear to the mass concentration of particulate. The PTFE coated probe ensures reliable operation with all types of particulate including moist powders and highly conductive dusts. The PTFE coated probe eliminates the need for an air purge and keeps maintenance to a minimum.Particulate MonitoringThe PMT2 is specifically designed to continuously monitor the particulate levels in air flow from stacks or other emission points being passed through a filter within an air filtration system. The transmitter should be installed in the exhaust ductwork and can be used in conjunction with various types of bag, ceramic, cartridge or cyclone filters. When the PMT2 is first installed a baseline reading must be measured and noted. This baseline reading is application dependent and should be measured independently for each installation. From this baseline the operator will monitor output signal from the PMT2. The increase in mA output indicates a rising level of particulate in the air stream which indicates that filters are either wearing out or broken.The PMT2 is designed to give a proportional output based on the particulate levels in a duct or pipe, it is not designed to output a signal based on the particulate volumetric flow. Different types of particulate carry different charges, meaning that two particulates flowing at the same volumetric flow rate could have different output response. The PMT2 is designed to find a baseline under ideal operating conditions and allow an operator to watch the output signal for increases that would signify the bags or filters are starting to wear or break. The six sensitivity ranges allow the PMT2 to monitor particulates with low charge properties or high charge properties. As a reference, Table 1 lists particulate charge properties and the suggested range.INSTALLATIONUnpackingRemove the PMT2 from the shipping carton and inspect for damage. If damage is found, notify the carrier immediately.LocationThe following factors should be considered when determining the installation location for the PMT2:• Make sure the transmitter is rated for the area classification it will be mounted in. • Mount the transmitter in a location that will not exceed the temperature and pressure ratings listed in the specifications. The process pressure should not exceed 30 psi (2 bar).• Make sure the 4-20 mA signal wires are not sharing the same conduit with high voltage power wires.• Make sure the location the transmitter is mounted in meets the NEMA or IP rating for the enclosure.• Locate the transmitter in a location were it can be accessed in case service isrequired.The PMT2 should be mounted in a grounded metal stack, pipe or duct. It should not be mounted in fiberglass or plastic stacks, pipes or ducts. The sensing probe should reach 1/2 to 2/3 the way across the stack, pipe or duct to ensure accurate readings. For the most stable and accurate readings it is recommended to mount the PMT2 in a location where the air flow is as laminar as possible. Avoid mounting the transmitter close to blowers and dampers that cause turbulence. It is ideal to mount the PMT2 in an area with two upstream duct diameters and one down stream duct diameter that are free of turbulent causing objects. The sensing probe is coated in a non-stick PTFE preventing material from coating the probe reducing the need for cleaning or an air purge.Table 1: Suggested rangesCONTROL DRAWING UL LISTED INTRINSIC SAFETY (SUFFIX U2):UL Listed Intrinsically Safe for use in Class I Div. 1 Groups C and D; Class II Div. 1Groups E, F and G; Class III Div. 1; Class I Zone 0 AEx ia IIB T4 Ga; Class I Zone 0 Ex ia IIB T4 Ga; T4@63°C when installed in accordance with Control Drawing 001744-48on page 6 of this document.ATEX COMPLIANT (SUFFIX A2)II 1 G Ex ia IIB T4 Ga (-40°C ≤ Tamb ≤ 63°C) (-40°C ≤ T Process ≤ 120°C) / II 1 D Ex iaIIIC T120°C Da (-40°C ≤ Tamb ≤ 63°C) (-40°C ≤ T Process≤ 120°C) when installed inaccordance with Control Drawing 001744-81 on page 7 of this document.IECEx COMPLIANT (SUFFIX A2)Ex ia IIB T4 Ga (-40°C ≤ Tamb ≤ 63°C) (-40°C ≤ T Process ≤ 120°C) / Ex ia IIIC T120°CDa (-40°C ≤ Tamb ≤ 63°C) (-40°C ≤ T Process ≤ 120°C) when installed in accordancewith Control Drawing 001744-81 on page 7 of this document.INTRINSIC SAFETY INPUT PARAMETERS:4-20 mA Signal, Vmax (Ui) = 28 V; Imax (li) = 93 mA; Ci = .022 μF; Li = 0.373 mH;Pmax (Pi) = 651 mWRemote Zero, Vmax (Ui) = 28 V; Imax (li) = 93 mA; Ci = Negligible; Li = 0 mH; Pmax(Pi) = 651 mWPOWER SUPPLY REQUIREMENTS The maximum DC power supply is 28 VDC. The minimum required DC power supply is based upon the following:1. Minimum DC voltage requirement of the Model PMT2.2. Total load resistance.3. Total leadwire resistance.4. Zener barrier voltage drop (Model PMT2-XX-X-X2 only).The formula for calculating the DC Power Supply is:VDC = VPMT2 + VLOAD + VLEADWIRE + VBARRIER Where VPMT2 = 9.5 V VLOAD = Total load resistance X 20 mA VLEADWIRE = Total leadwire resistance X 20 mA VBARRIER = 8.1 V (Typical zener barrier voltage drop for this application)Example 1: Calculate minimum DC power supply for intrinsically safe models Step 1 VPMT2 = 9.5 V Step 2 Calculate VLOAD. Using the industry standard 250 Ω conversion resistor, VLOAD = 250 X 20 mA = 5 V.Step 3 Calculate VLEADWIRE. For this example assume a leadwire resistance of 10 Ω, VLEADWIRE = 10 X 20 mA = 0.2 V Step 4 VBARRIER = 8.1 V Step 5 VDC = VPMT2 + VLOAD + VLEADWIRE + VBARRIER = 9.5 + 5 + 0.2 + 8.1 = 22.8 V CONTROLS Zero Switch (see Figure 2)Press and hold the switch for 3 seconds and the PMT2 will digitally re-zero. It is recommended to re-zero after a filter failure or filter changes. Re-zeroing should only be done when there is no air flow in the duct.Averaging Time Selection Switch The PMT2 will average the output for the selected amount of time. This will dampen output spikes caused during normal filter cleaning cycles. Range and Test Selection Switch There are 6 sensitivity ranges that can be selected based on the material the PMT2 will be sensing (see Table 1). There is also an option to output a 4 mA or 20 mA signal, these options can assist in the installation of the transmitter or trouble shooting. is neededINTRINSIC SAFETY SPECIFIC CONDITIONS OF USETo maintain Intrinsic Safety the following cautions should betaken:• 4-20 mA signal and remote zero must be treated as separate circuits• Enclosure parts are constructed of aluminum. Enclosure must be protected fromignition hazard due to impact or friction• All openings to enclosure must be sealed using suitable glands and/or plug main-taining a minimum IP rating of IP66 for UL Listed models and IP65 for ATEX/IECExcompliant models• Substitution of parts may impair Intrinsic Safety.LIVE MAINTENANCE PROCEDURE Live maintenance of Zero, Averaging Time, Range and Test controls cannot be performed when a flammable or combustible atmosphere is present.Figure 1: General installation wiring (non-IS)REMOTE ZERO SWITCH (IF USED)4321REMOTE ZERO 4-20 mA Figure 2Zero switch Range and test Averaging time Grounding screwSET UPMountingMake sure the PMT2 is securely mounted to the stack, pipe or duct to prevent vibrationduring operation. Make sure the transmitter is grounded properly.Control Signal Set UpCheck the power supply wiring to make sure the polarity is correct before poweringthe PMT2. Turn the power on to the transmitter and turn the Range and Test selectorswitch to 4 mA (position 2). The PMT should output 4 mA, check the output with amulti-meter or at the device (PLC, Display, etc.) receiving the output signal. Once it isverified the 4 mA signal is being received, switch the Range and Test selector switch to20 mA (position 1) and repeat the process. If the output is 0 mA, make sure the powersupply is on and check for loose wires.Range and Test SelectionWhen selecting one of the 6 available ranges, the baseline and maximum peak signalsthat take place during filter cleaning must be taken into account. The selected rangesshould have enough resolution to monitor the baseline and capture the maximumpeaks during a cleaning cycle. The four linear ranges output 4 mA at 5 pA and 20 mAat maximum range. The two logarithmic ranges have finer resolution at the low end ofthe ranges and less at the high end.LOGARITHMIC RANGE The logarithmic ranges offer a prolonged low-end of the scale while the high-end of the range is compressed. This offers better resolution for the baseline monitoring and still allows the operator to see the particulate spikes during cleaning cycles. Logarithmic ranges are recommended for filter bags since they have a greater tendency for particulate spikes during cleaning cycles.LOGARITHMIC RANGE EQUATIONS pA = Measured (pA) Picoamps M = Measured (mA) Milliamps from the PMT2R = 2 (for Logarithmic Range 5 to 500 pA)R = 3 (for Logarithmic Range 5 to 5000 pA)Example 1: Logarithmic Range 5 to 500 pA with current output of 12 mA:Example 2: Logarithmic Range 5 to 5000 pA with current output of 14 mA:SETTING EMISSION LEVEL ALARMS The PMT2 will provide a 4-20 mA signal based on the range selected at set up. Alarms can be programmed in the PLC or control system based on the 4-20 mA signal from the particulate transmitter. It is suggested to set two alarm set points. One alarm set point to monitor the emission spikes and the second alarm to detect an increase in the baseline. The alarm monitoring the emission spikes should be set to identify changes in the spikes caused by the cleaning cycles. As filters become worn, the spike’s height and duration will increase. The emission spike frequency will also increase because the filters will require more frequent cleaning as they wear out. If there is a continuous output above the emission spike alarm, it is more than likely a filter has torn and should be changed right away. The baseline alarm should detect an increase in the baseline reading. The type of dust collector and facility regulations will dictate where the baseline alarm has to be set. Typically the baseline alarm should be set 4 to 5 times over the initial baseline reading measurement when filters are first installed. So, if the baseline is 10 pA the base line alarm should be set between 40 pA and 50 pA. It is recommended to set a time delay in the PLC or control panel alarm to prevent false alarms during cleaning cycles. When the output signal from the PMT2 is continuously above baseline alarm it is time to replace the filters. If the emission spikes have increased yet the baseline remains unchanged, it’s an early indication that the filters are starting to wear out andwill need to be changed soon.Table 2: Range and test switchFigure 3: Typical filter emissionsTIMEpA = 10 x R + 0.699(M-4)16()pA = 10 x 2 + 0.699pA = 50(12-4)16()pA = 10 x 3 + 0.699pA = 375(14-4)16()AVERAGING SELECTION The PMT2 offers a digital averaging function because of the irregular flow of particulatesand the spikes during cleaning cycles. There are ten options for averaging rangingfrom 1 to 360 seconds. The digital averaging takes a running average of the readingsfor the selected amount of time. This will dampen output spikes from particulatefluctuations that could trip alarm settings. It is important to select an averaging settingthat will allow the operator to see the cleaning cycles. It is recommended to monitor the baseline trend and peak to peak trend between cleaning cycles.ZERO CALIBRATION Even though the PMT2 will come zeroed from the factory it is recommended to zerothe transmitter after installation to ensure the best accuracy. When zeroing the PMT2, make sure the dust collector is shut down and there is no air flow in the duct, stack orpipe the transmitter is monitoring. It is recommended to re-zero the PMT2 once every12 months for optimal performance. Please check your local laws and regulations asclean air standards may require zero calibration on a certain time schedule basedon application. There are two ways the PMT2 can be zeroed. The first method iswith the zero button on the front of the transmitter. Press and hold the button for 3seconds and the transmitter will begin zeroing. The second method is the remote zero.Supply DC voltage as shown in Figure 4 across the zero terminals on the back ofthe transmitter for at least 3 seconds for the transmitter to start zeroing. While thetransmitter is zeroing, the PMT2 will output about 3.5 mA. The zero function will takeapproximately 3 minutes. When zeroing is complete the output will return to a normaloutput signal and the transmitter is ready for operation.Figure 4: Remote zero and zero switchNote: Do not zero the PMT2 while the dust collector is in operation.Remote zero10-28 V -+MAINTENANCE/REPAIR Upon final installation of the Series PMT2, no routine maintenance is required. The Series PMT2 is not field serviceable and should be returned if repair is needed. Field repair should not be attempted and may void warranty.WARRANTY/RETURN Refer to “Terms and Conditions of Sales” in our catalog and on our website. Contact customer service to receive a Return Goods Authorization number before shipping the product back for repair. Be sure to include a brief description of the problem plus anyadditional application notes.NOTES__________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________ __________________________________________________________________________________________________________________________________________©Copyright 2021 Dwyer Instruments, Inc.Printed in U.S.A. 8/21FR# 444122-00 Rev. 3。
DSENSOR数字式通用颗粒物浓度传感器PMS5003T数据手册主要特性◆激光散射原理实现精准测量◆零错误报警率◆实时响应并支持连续采集◆最小分辨粒径0.3μm◆全新专利结构,六面全方位屏蔽,抗干扰性能更强◆进出风口方向可选,适用范围广,用户无需再进行风道设计◆可实时输出温度及湿度数据概述PMS5003T是一款可以同时监测空气中颗粒物浓度及温湿度的二合一传感器。
其中颗粒物浓度的监测基于激光散射原理,可连续采集并计算单位体积内空气中不同粒径的悬浮颗粒物个数,即颗粒物浓度分布,进而换算成为质量浓度。
传感器同时内嵌瑞士生产的温湿度一体检测芯片。
颗粒物浓度数值及温度、湿度合并以通用数字接口形式输出。
本传感器可嵌入各种与空气质量监测和改善相关的仪器设备,为其提供及时准确的环境参数。
工作原理本传感器采用激光散射原理。
即令激光照射在空气中的悬浮颗粒物上产生散射,同时在某一特定角度收集散射光,得到散射光强随时间变化的曲线。
进而微处理器利用基于米氏(MIE)理论的算法,得出颗粒物的等效粒径及单位体积内不同粒径的颗粒物数量。
传感器各功能部分框图如图1所示图1 传感器功能框图技术指标如表1所示表1 传感器技术指标注:颗粒物浓度一致性数据为通讯协议中的数据2(见附录A)测量环境条件为20℃,湿度50%数字接口定义PIN1图2 接口示意图输出结果1.主要输出为单位体积内各浓度颗粒物质量以及个数,其中颗粒物个数的单位体积为0.1升,质量浓度单位为:微克/立方米。
2.输出分为主动输出和被动输出两种状态。
传感器上电后默认状态为主动输出,即传感器主动向主机发送串行数据,时间间隔为200~800ms,空气中颗粒物浓度越高,时间间隔越短。
主动输出又分为两种模式:平稳模式和快速模式。
在空气中颗粒物浓度变化较小时,传感器输出为平稳模式,即每三次输出同样的一组数值,实际数据更新周期约为2s。
当空气中颗粒物浓度变化较大时,传感器输出自动切换为快速模式,每次输出都是新的数值,实际数据更新周期为200~800ms。