高中物理临界极值问题2
- 格式:ppt
- 大小:1.05 MB
- 文档页数:33
物理临界极值问题归纳总结在物理学中,临界极值问题是一类重要而常见的问题,涉及到各种自然现象和物理过程。
在本文中,我们将对一些典型的临界极值问题进行归纳总结,探讨其背后的物理原理和应用。
1. 能量最小问题当一个物体在受到外力作用下移动时,其可能存在最小能量的位置。
例如,在沿着一条曲线从A点到B点的过程中,求物体在这条曲线上,哪个位置可以实现最小的势能状态。
这种求解问题可以使用变分法或者利用物理原理进行分析。
2. 速度最大问题速度最大问题在机械运动学中经常出现。
例如,一个物体自由下落,求其在离地面一定高度时的速度达到最大值。
这类问题可以通过求解速度函数的导数为零的点,找到极值点,并验证其是否是最大值。
3. 加速度最大问题加速度最大问题与速度最大问题类似,但是关注的是物体的加速度达到最大值的情况。
例如,在自由下落的过程中,求物体离地面一定高度时其加速度达到最大值。
可以通过求解加速度函数的导数为零的点来找到极值点。
4. 碰撞问题碰撞问题是临界极值问题中的一个重要分支,涉及到两个或多个物体之间的相互作用。
例如,求两个物体碰撞后的速度以及碰撞瞬间的能量损失。
这类问题可以通过守恒定律和碰撞动量定律来分析,从而得到系统的临界极值情况。
5. 光线折射问题光的折射现象也涉及到一种临界极值问题。
例如,光线从一个介质进入另一个介质时,求解光线的入射角和折射角之间的关系。
这类问题可以利用斯涅尔定律和临界角的概念来解决。
6. 流体力学中的临界极值问题流体力学研究中也存在临界极值问题。
例如,在管道中液体流动速度达到最大值的问题,或者通过调整管道中的形状,使得流体的流量达到最大值。
这类问题可以通过应用伯努利方程和连续性方程来解决。
通过对上述几类典型的临界极值问题进行总结与归纳,我们可以看到它们在物理学研究和应用中的重要性。
在实际问题中,临界极值问题的解决可以帮助我们了解自然现象背后的物理规律,并且为工程设计和科学研究提供有力支持。
高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。
微专题4平衡中的临界极值问题1.三力平衡下的极值问题,常用图解法,将力的问题转化为三角形问题求某一边的最小值.2.多力平衡时求极值一般用解析法,由三角函数、二次函数、不等式等求解.3.若物体受包括弹力、摩擦力在内的四个力平衡,可以把弹力、摩擦力两个力合成一个力,该力方向固定不变(与弹力夹角正切值为μ),从而将四力平衡变成三力平衡,再用图解法求解.1.如图所示,两质量均为M=10kg的物体甲、乙静置于水平地面上,两物体与地面间的动摩擦因数均为μ=0.5,两物体通过一根不可伸长的细绳绕过光滑的动滑轮连接,滑轮质量m=1kg,现用一竖直向上的力F拉滑轮,当滑轮拉起至细绳伸直,甲、乙两物体刚要开始滑动时,连接乙的细绳与水平方向的夹角为θ=53°,设最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6,下列说法正确的是()A.力F的大小为80NB.力F的大小为90NC.轻绳对甲物体的拉力大小为60ND.轻绳对甲物体的拉力大小为80N答案B解析对甲、乙两物体分别受力分析,由平衡可知μ(Mg-F T sin53°)=F T cos53°,解得绳子的拉力F T=50N,则对滑轮受力分析可知F=2F T sin53°+mg=90N,故选B.2.如图两个体重相同的人静止坐在秋千上,两秋千绳子能承受的最大张力是一样的.往两人身上同时慢慢加相同重量的物体,直到绳子断开,则下面的叙述正确的是()A.甲中绳子先断B.甲、乙中绳子同时断C.乙中绳子先断D.不确定答案C解析人的重力和两根绳子拉力的合力等值反向,合力一定,两分力夹角越大,分力越大,所以夹角越大,绳子拉力越大.则乙中绳子容易断,A 、B 、D 错误,C 正确.3.(多选)如图所示,一个重为5N 的大砝码用细线悬挂在O 点,在力F 作用下处于静止状态,现不断调整力F 的方向,但砝码始终静止在如图所示的位置处,则下列说法正确的是()A .调整力F 的方向的过程中,力F 最小值为2.5NB .力F 在竖直方向时,力F 最小C .力F 在竖直方向时,另一侧细线上的张力最小D .当力F 处于水平方向和斜向右上与水平方向夹角60°时,力F 大小相等答案ACD 解析对砝码受力分析如图所示根据平行四边形定则,可知当F 的方向与另一侧细线垂直时,力F 最小,最小值为F min =G sin 30°=2.5N ,故A 正确,B 错误;当力F 在竖直方向时,另一侧细线上的张力F T =0最小,故C 正确;当力F 处于水平方向时,力F 与细线拉力F T 的合力竖直向上,大小等于mg ,由几何关系得F =mg tan 30°=33mg .当力F 处于斜向右上与水平方向夹角为60°时,此时F 、细线拉力F T 与竖直方向的夹角相等,则两力大小相等,合力竖直向上,大小等于mg ,由几何关系得F =mg 2cos 30°=33mg ,故D 正确.4.如图所示,足够长的光滑平板AP 与BP 用铰链连接,平板AP 与水平面成53°角并固定不动,平板BP 可绕水平轴在竖直面内自由转动,质量为m 的均匀圆柱体O 放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g .在使BP 板由水平位置逆时针缓慢转动到竖直位置的过程中,下列说法正确的是()A .平板BP 受到的最小压力为0.8mgB.平板BP受到的最小压力为0C.平板AP受到的最小压力为0.6mgD.平板AP受到的最大压力为1.25mg答案A解析圆柱体受重力,平板AP的弹力F1和平板BP的弹力F2,将F1与F2合成为F,如图:圆柱体一直处于平衡状态,三个力中任意两个力的合力与第三个力等值、反向、共线,故F1与F2的合力F与重力等值、反向、共线;从图中可以看出,BP板由水平位置逆时针缓慢转动过程中,F1越来越大,F2先减小后增大;由几何关系可知,当F2的方向与AP的方向平行(即与F1的方向垂直)时,F2有最小值F2min=45mg,根据牛顿第三定律,平板BP受到的最小压力为45mg,故A正确,B错误;当平板BP沿水平方向时,平板AP对圆柱体的弹力F1=0,即平板AP受到的最小压力为0,故C错误.由图可知,当BP转到竖直方向时,AP对圆柱体的弹力F1最大F1max=mgcos53°=53mg,根据牛顿第三定律知,平板AP受到的最大压力为53mg,故D错误.5.(2022·湖南长郡中学高三月考)固定斜面上的物体A用跨过滑轮的细线与小砂桶相连,连接A的细线与斜面平行,不计细线与滑轮间的摩擦力,若要使物体A在斜面上保持静止,砂桶中砂的质量有一定的范围,已知其最大值和最小值分别为m1和m2(m2>0),重力加速度为g,由此可求出()A.物体A的质量B.斜面的倾角C.物体A与斜面间的动摩擦因数D.物体A与斜面间的最大静摩擦力答案D解析设物体A的质量为M,砂桶的质量为m0,物体与斜面间的最大静摩擦力为F fm,斜面倾角为θ,由平衡条件可得物体A将要上滑时,有m0g+m1g=Mg sinθ+F fm.物体A将要下滑时,有m 0g +m 2g =Mg sin θ-F fm ,可得F fm =m 1g -m 2g 2,即能求解物体A 与斜面间的最大静摩擦力,不能求出其他的物理量,则A 、B 、C 错误,D 正确.6.三角形具有稳定性,生活中随处可见利用三角形支架固定的物体.浴室里洗手盆下的支架、空调外挂机的支架、手机支架等如图甲所示.现有一个悬挂物体的支架,如图乙所示,倾斜支撑杆a 端用铰链固定在墙上,且Oa 杆不可伸长,拉杆bO 左端可上下移动和旋转并且可伸缩以便调节拉杆的长度,轻绳一端固定在O 点,另一端悬挂重物.已知初始时bO 杆水平,aO 杆与竖直方向成60°角,悬挂物质量为m ,重力加速度为g .(1)初始状态下,aO 、bO 杆的作用力大小分别为多少?(2)保持O 点不动,调节拉杆的长度同时左端向上移动到某点c 后固定,可使拉杆上的作用力最小,此时cO 与竖直墙面的夹角为多少?此时aO 、cO 的作用力大小分别为多少?答案(1)2mg 3mg (2)30°12mg 32mg 解析(1)对O 点受力分析如图a 所示,可得F a cos 60°=mg ,F a sin 60°=F b ,联立可得F a =2mg ,F b =3mg(2)重力大小方向不变,aO 方向不变,分析可知,当cO 与aO 垂直时,cO 上的拉力最小,如图b 所示,由几何关系可得此时cO 与竖直墙面的夹角为30°,受力分析如图所示,可得可得F a ′=12mg ,F c =32mg .7.筷子是中国人常用的饮食工具,也是中华饮食文化的标志之一.筷子在先秦时称为“梜”,汉代时称“箸”,明代开始称“筷”.如图所示,用筷子夹质量为m 的小球,筷子均在竖直平面内,且筷子和竖直方向的夹角均为θ,已知小球与筷子之间的动摩擦因数为μ(μ<tan θ),最大静摩擦力等于滑动摩擦力,重力加速度为g .为使小球静止,求每根筷子对小球的压力F N 的取值范围.答案mg 2(sin θ+μcos θ)≤F N ≤mg 2(sin θ-μcos θ)解析筷子对小球的压力最小时,小球恰好不下滑,小球所受最大静摩擦力沿筷子向上,如图甲所示.有2F N sin θ+2F f cos θ=mg ,F f =μF N ,联立解得F N =mg 2(sin θ+μcos θ),筷子对小球的压力最大时,小球恰好不上滑,小球所受最大静摩擦力沿筷子向下,如图乙所示.有2F N ′sin θ=mg +2F f ′cos θ,F f ′=μF N ′,联立解得F N ′=mg 2(sin θ-μcos θ),综上可得,筷子对小球的压力的取值范围为mg 2(sin θ+μcos θ)≤F N ≤mg 2(sin θ-μcos θ).8.如图,倾角为α=37°的粗糙斜劈固定在水平面上,质量为5kg 的物体a 放在斜面上且与斜面间的动摩擦因数μ=0.5.一根平行于斜面的不可伸长的轻质细线一端固定在物体a 上,另一端绕过两个光滑小滑轮固定在c 处,滑轮2下吊有一物体b 且β=74°,物体a 受到斜劈的最大静摩擦力等于滑动摩擦力,g 取10m/s 2,sin 37°=0.6,cos 37°=0.8.求:保证系统静止时,b 的质量范围.答案1.6kg ≤m b ≤8kg 解析a 刚要下滑时b 的质量最小,a 受到沿斜面向上的静摩擦力作用,m a g sin α=μm a g cos α+F T.研究b的受力情况2F T cos β2=m b1g,联立解得m b1=1.6kg,a刚好上滑时,a受到沿斜面向下的静摩擦力作用,m a g sinα+μm a g cosα=F T′,研究b的受力情况2F T′cos β2=m b2g,联立解得m b2=8kg.综上可知,保证系统静止时,b的质量范围为1.6kg≤m b≤8kg.。
专题强化练(二) 动态平衡平衡中的临界、极值问题(40分钟70分)一、选择题1.(6分)(2023·宁波模拟)如图,有一段圆管,现有一只虫子沿如图所示的圆弧曲线从A点缓慢爬到B点,关于虫子爬过去的过程,下列说法正确的是()A.圆管对虫子的弹力可能不变B.圆管对虫子的摩擦力先减小后变大C.圆管对虫子的摩擦力一直减小D.圆管对虫子的作用力一定改变【解析】选B。
对虫子受力分析,有重力,圆管对其的支持力和摩擦力,设虫子在圆管上某点时过该点的切线与水平方向夹角为θ,由平衡条件,可得F N=mg cosθ,虫子从位置A向位置B缓慢爬行,θ角先减小后增大,圆管对虫子的弹力先增大后减小,故A错误;由平衡条件,有F f=mg sin θ,当虫子从位置A向位置B缓慢爬行的过程中,θ角先减小后增大,所以圆管对虫子的摩擦力先减小后变大,故B正确、C错误;圆管对虫子的作用力是支持力与摩擦力的合力,等于虫子所受重力,所以应保持不变。
故D错误。
2.(6分)(交通工具)(多选)如图为汽车的机械式手刹(驻车器)系统的结构示意图,结构对称。
当向上拉动手刹拉杆时,手刹拉索(不可伸缩)就会拉紧,拉索OD、OC分别作用于两边轮子的制动器,从而实现驻车的目的。
则以下说法不正确的是()A.当OD、OC两拉索夹角为60°时,三根拉索的拉力大小相等B.拉动手刹拉杆时,拉索AO上的拉力总比拉索OD和OC中任何一个拉力大C.若在AO上施加一恒力,OD、OC两拉索夹角越小,拉索OD、OC拉力越大D.若保持OD、OC两拉索拉力不变,OD、OC两拉索越短,拉动拉索AO越省力【解析】选A、B、C。
当OD、OC两拉索夹角为120°时,三根拉索的拉力大小才相等,A错误;拉动手刹拉杆时,当OD、OC两拉索夹角大于120°时,拉索AO上拉力比拉索OD和OC中任何一个拉力小,B错误;根据平行四边形定则可知,若在AO上施加一恒力,OD、OC两拉索夹角越小,拉索OD、OC拉力越小,C错误;若保持OD、OC两拉索拉力不变,OD、OC两拉索越短,则两力夹角越大,合力越小,即拉动拉索AO越省力,D正确。
专题2 弹力与摩擦力的临界极值问题1.临界问题:当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“刚能”“恰好”等。
常见弹力临界状态有绳子恰好绷紧,拉力F =0。
刚好离开接触面,支持力F N =0。
2.极值问题:平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。
3.平衡中涉及弹力的临界与极值问题解题方法:①物理分析方法(极限法、三角形图解法及动态圆图解法):正确进行受力分析和变化过程分析,找到平衡的临界点和极值点或者根据平衡条件,作出力的矢量图,通过对物理过程的分析,利用三角形图解法及动态圆图解法进行动态分析,确定最大值和最小值.②数学分析法(正交分解解析法):通过对问题分析,根据平衡条件列出物理量之间的函数关系(画出函数图像),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值)。
一、弹力的临界与极值问题题型一:应用物理分析法解决弹力的临界与极值问题【例1】(多选)如图所示,一根L 形轻杆OAB 用铰链固定在天花板上,且OA 与AB 相互垂直,在A 点下方用一根轻质细线悬挂重力为G 的物体.现在B 点施加拉力F ,使轻杆的OA 段由竖直向下的位置缓慢转到偏离竖直方向60°角的位置.若拉力F 始终沿AB 方向,则在变化过程中( )A .拉力F 逐渐增大B .轻杆OA 段中的作用力不断增大C .铰链对轻杆OAB 的作用力不断减小D .轻杆OA 段中的最小作用力为3G 2题型二:应用数学分析法解决涉及弹力的临界与极值问题【例2】(多选)如图所示,竖直墙壁与光滑水平地面交于B 点,质量为m 1的光滑半圆柱体紧靠竖直墙壁置于水平地面上,O 1为半圆柱体截面所在圆的圆心,质量为m 2且可视为质点的均匀小球O 2用长度等于A 、B 两点间距离的细线悬挂于竖直墙壁上的A 点,小球静置于半圆柱体上,当换用质量不变,而半径不同的光滑半圆柱体时,细线与竖直墙壁的夹角θ就会跟着发生改变。