湘教版九年级数学上册教案1.2反比例函数的图象与性质(2)
- 格式:doc
- 大小:106.50 KB
- 文档页数:5
湘教版数学九年级上册1.2《反比例函数图象与性质》说课稿2一. 教材分析湘教版数学九年级上册1.2《反比例函数图象与性质》这一节,是在学生已经掌握了函数的概念、正比例函数的性质等知识的基础上进行学习的。
本节内容主要介绍反比例函数的图象与性质,通过学习,使学生能够理解反比例函数的概念,掌握反比例函数的图象特征和性质,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数的性质有所了解,但反比例函数的概念和性质较为抽象,对学生来说有一定的难度。
因此,在教学过程中,需要关注学生的认知水平,引导学生从实际问题中发现反比例函数的规律,帮助学生理解和掌握反比例函数的性质。
三. 说教学目标1.知识与技能目标:使学生理解反比例函数的概念,掌握反比例函数的图象特征和性质,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生发现反比例函数的性质,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:反比例函数的概念,反比例函数的图象特征和性质。
2.教学难点:反比例函数性质的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、反比例函数图象软件等,直观展示反比例函数的图象和性质,提高学生的学习兴趣。
六. 说教学过程1.导入新课:以实际问题引入,让学生观察、分析问题,引导学生发现反比例函数的关系。
2.探究反比例函数的定义:引导学生通过观察、讨论,总结反比例函数的定义和特点。
3.演示反比例函数的图象:利用多媒体课件或反比例函数图象软件,展示反比例函数的图象,使学生直观地感受反比例函数的特征。
4.探究反比例函数的性质:引导学生通过观察、分析、归纳等方法,发现反比例函数的性质。
反比例函数xk y =(k <0)的图象与性质 教学目标 1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质教学重点和难点本节教学的重点是反比例函数的图象及图象的性质由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点教学过程1、情境创设可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。
转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?2、探索活动探索活动2 反比例函数xy 6-=的图象. 可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数xy 6=的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数x y 6=与x y 6-=之间的关系,画出xy 6-=的图象. 探索活动3 反比例函数x y 6-=与x y 6=的图象有什么共同特征? 引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征. 反比例函数xk y =(k ≠0)的图象是由两个分支组成的曲线。
当0>k 时,图象在一、三象限:当0<k 时,图象在二、四象限。
反比例函数x k y =(k ≠0)的图象关于直角坐标系的原点成中心对称。
3、例题教学课本安排例1,(1)巩固反比例函数的图象的性质。
(2)是为了引导学生认识到:由于在反比例函数xk y =(k ≠0)中,只要常数k 的值确定,反比例函数就确定了.因此要确定一个反比例函数,只需要一对对应值或图象上一个点的坐标即可.(3)可以先设问:能否利用图象的性质来画图?4、应用知识,体验成功课本“课内练习” 1.2.3 5、归纳小结,反思提高用描点法作图象的步骤反比例函数的图象的性质6、布置作业作业本(1)课本“作业题”。
1.2 反比例函数的图象与性质第3课时 反比例函数的图象与性质的综合应用教学目标:1、巩固反比例函数图像和性质,通过对图像的分析,进一步探究反比例函数的增减性。
2、掌握反比例函数的增减性,能运用反比例函数的性质解决一些简单的实际问题。
教学重点:通过对反比例函数图像的分析,探究反比例函数的增减性。
教学难点:由于受小学反比例关系增减性知识的负迁移,又由于反比例函数图像分成两条分支,给研究函数的增减性带来复杂性。
教学过程: 一、复习:1.反比例函数 的图象经过点(-1,2),那么这个反比例函数的解析式为 ,图象在第 象限,它的图象关于 成中心对称.2.反比例函数 的图象与正比例函数 的图象,交于点A (1,m ),则m = ,反比例函数的解析式为 ,这两个图象的另一个交点坐标是 .3、画出函数x6y 6-==和x y 的图像二、讲授新课1、引导学生观察函数x6y 6-==和x y 的表格和图像说出y 与x 之间的变化关系;(1)y 6=(2)y -=当时,在内,随的增大而.y x 0k>x yOk >0k <xyO33()x y ,A B 11()x y ,22()x y ,CD44()x y ,AB11()x y ,22()x y ,C D 33()x y ,44()x y ,减少每个象限当时,在内,随的增大而.y x 0k <增大每个象限2、做一做:1.用“>”或“<”填空:(1)已知11,y x 和22,y x 是反比例函数 xy 3= 的两对自变量与函数的对应值.若 ,则 . (2)已知11,y x 和22,y x 是反比例函数x y 3-=的两对自变 量与函数的对应值.若 ,则 . 2.已知( ),( ),( )是反比例函数 的图象上的三个点,并且 ,则 的大小关系是( ) (A ) (B ) (C ) (D ) 3.已知( ),( ),( )是反比例函数 的图象上的三个点,则 的大小关系是 . 4.已知反比例函数 .(1)当x >5时,0 y 1;(2)当x ≤5时,则y 1,或y < (3)当y >5时,x 的范围是 。
1.2 反比例函数的图象与性质第3课时 反比例函数的图象与性质的综合应用教学目标:(一)教学知识点1.进一步巩固作反比例函数的图象.2.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.(二)能力训练要求1.通过画反比例函数图象,训练学生的作图能力.2.通过从图象中获取信息.训练学生的识图能力.3.通过对图象性质的研究,训练学生的探索能力和语言组织能力.(三)情感与价值观要求让学生积极投身于数学学习活动中,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论,不仅使他们记忆犹新,还能建立自信心.由学生自己思考再经过合作交流完成的数学活动,不仅能使学生学到知识,还能使他们互相增进友谊.教学重点:通过观察图象,概括反比例函数图象的共同特征,探索反比例函数的主要性质. 教学难点:从反比例函数的图象中归纳总结反比例函数的主要性质.教学方法:教师引导学生类推归纳概括学习法.教具准备:多媒体课件教学过程:Ⅰ.创设问题情境,引入新课[师]上节课我们学习了画反比例函数的图象,并通过图象总结出当k >0时,函数图象的两个分支分别位于第一、三象限内;当k <0时,函数图象的两个分支分别位于第二、四象限内.并讨论了反比例函数y=x 4与y=-x4的图象的异同点.这是从函数的图象位于哪些象限来研究了反比例函数的.我们知道在学习正比例函数和一次函数图象时,还研究了当k >0时,y 的值随x 的增大而增大,当k <0时,y 的值随x 值的增大而减小,即函数值随自变量的变化而变化的情况,以及函数图象与x 轴,y 轴的交点坐标.本节课我们来研究一下反比例函数的有关性质. Ⅱ. 新课讲解1.做—做[师]观察反比例函数y=x 2,y=x 4,y=x6的形式,它们有什么共同点?[生]表达式中的k 都是大于零的.[师]大家的观察能力非同一般呐!下面再用你们的慧眼观察它们的图象,总结它们的共同特征.(1)函数图象分别位于哪几个象限?(2)在每一个象限内,随着x 值的增大.y 的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x 轴相交吗?可能与y 轴相交吗?为什么?[师]请大家先独立思考,再互相交流得出结论.[生](1)函数图象分别位于第一、三象限内.(2)从图象的变化趋势来看,当自变量x 逐渐增大时,函数值y 逐渐减小.(3)因为图象在逐渐接近x 轴,y 轴,所以当自变量取很小或很大的数时,图象能与x 轴y 轴相交.[师]大家同意他的观点吗?[生]不同意(3)的观点.[师]能解释一下你的观点吗?[生]从关系式y =x2中看,因为x≠0,所以图象与y 轴不可能能有交点;因为不论x 取任何实数,2是常数,y =x 2永远也不为0,所以图象与x 轴心也不可能有交点. [师]对于(1)和(3)我不需要再说什么了,因为大家都回答的非常棒,不面我再补充—下(2).观察函数y =x2的图象,在第一象限我任取两点A (x 1,y 1),B(x 2,y 2),分别向x 轴,y 轴作垂线,找到对应的x 1,x 2,y 1,y 2,因为在坐标轴上能比较出x 1与x 2,y 1与y 2的大小,所以就可判断函数值的变化随自变址的变化是如何变化的.山图可知x 1<x 2,y 2<y 1,所以在第一象限内有y 随x 的增大而减小.同理可知在其他象限内y 随x 的增大而如何变化.大家可以分组验证上图中的其他五种情况.[生]情况都一样.[师]能不能总结一下.[生]当k>0时,函数图象分别位于第一、三象限内,并且在每一个象限内,y 随x 的增大而减小.2.议一议[师]刚才我们研究了y =x 2,y =x 4,y=x6的图象的性质,下面用类推的方法来研究y =-x 2,y =-x 4,y=-x6的图象有哪些共同特征?[生](1)y=-x 2,y=-x 4,y=-x6中的k 都小于0,它们的图象都位于第二,四象限,所以当A<0时,反比例函数的图象位于第二、四象限内.(2)在图象y=-x2中,在第二象限内任取两点A(x 1,y 1),B(x 2,y 2),可知x 1>x 2,y 1>y 2,所以可以得出当自变量逐渐减小时,函数值也逐渐减小,即函数值y 随自变量x 的增大而增大.(3)这些反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.[师]通过我们刚才的讨论,可以得出如下结论:反比例函数y =xk 的图象,当k>0时,在每一象限内,y 的值随x 值的增大而减小;当k<0时,在每一象限内,y 的值随x 值的增大而增大.3.想一想(1)在一个反比例函数图象任取两点P 、Q ,过点Q 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1;过点Q 分别作x 轴y 轴的平行线,与坐标轴围成的矩形面积为S 2,S 1与S 2有什么关系?为什么?(2)将反比例函数的图象绕原点旋转180°后.能与原来的图象重合吗?[师]在下面的图象上进行探讨.[生]设P(x 1,y 1),过P 点分别作x 轴,y 轴的平行线,与两坐标轴围成的矩形面积为S 1,则S 1=|x 1|·|y 1|=|x 1y 1|.∵(x 1,y 1)在反比例函数y =xk 图象上,所以y 1=1x k ,即x 1y 1=k.∴S 1=|k |.同理可知S 2=|k |,所以S 1=S 2[师]从上面的图中可以看出,P 、Q 两点在同一支曲线上,如果P ,Q 分别在不同的曲线,情况又怎样呢?[生]S 1=|x 1y 1|=|k |,S 2=|x 2y 2|=|k |.[师]因此只要是在同一个反比例函数图象上任取两点P 、Q.不管P 、Q 是在同一支曲线上,还是在不同的曲线上.过P 、Q 分别作x.轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2,则有S 1=S 2.(2)将反比例函数的图象绕原点旋转180°后,能与原来的图象重合,这个问题在上节课中我们已做过研究.Ⅲ.课堂练习P 155 随堂练习Ⅳ.课时小结本节课学习了如下内容.1.反比例函数y =xk 的图象,当k0时,在第一、三象限内,在每一象限内,y 的值随,值的增大而减小;当k<O 时,图象在第二、四象限内,y 的值随x 值的增大而增大.2.在一个反比例函数图象上任取两点P ,Q ,分别过P ,Q 作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2,则有S 1=S 2.3.将反比例函数的图象绕原点旋转180°后,能与原来的图形重合.即反比例函数是中心对称图形.4.反比例函数的图象既不能与x 轴相交也不能与y 轴相交,但是当x 的值越来越接近于0时,y 的值将逐渐变得很大;反之,y 的值将逐渐接近于0.因此,图象的两个分支无限接近;轴和y 轴,但永远不会与x 轴和y 轴相交.Ⅴ.课后作业习题6.3Ⅵ.活动与探究反比例函数图象与三等分角历史上,曾有人把三等分角问题归结为下面的作图问题.任取一锐角∠POH ,过点P 作OH 的平行线,过点O 作直线,两线相交于点M,OM 交PH 于点Q ,并使QM=20P ,设N 为OM 的中点.∵NP=NM =OP,∴∠1=∠2=2∠3.∵∠4=∠3,∴∠1=2∠4.∴∠MOH =31∠POH. 问题在于,如何确定线段OM 两端点的位置,并且保证O ,Q ,M 在同一条直线上?事实上,用尺规作图无法解决这一问题.那么,退而求其次,能不能借助一些特殊曲线解决这一问题呢?帕普斯(Pappus ,公元300前后)给出的一种方法是:如下图,将给定的锐角∠AOB 置于直角坐标系中,角的一边OA 与y =x1的图象交于点P ,以P 为圆心;以2OP 为半径作弧交图象于点R.分别过点P 和B 作x 轴和y 轴的平行线,两线相交于点M ,连接OM 得到∠MOB.(1)为什么矩形PQRM 的顶点Q 在直线OM 上?(2)你能说明∠MOB =31∠AOB 的理由吗? (3)当给定的已知角是钝角或直角时,怎么办? 解:(1)设P 、R 两点的坐标分别为P(a 1,11a ),R(a 2, 21a )则Q(a 1,21a ),M(a 2, 11a ). 设直线OM 的关系式为y =kx.∵当x =a 2时,y=11a∴11a =ka 2,∴k=211a a .∴y=211a a x. 当x=a 1时,y=21a ∴Q(a 1,21a )在直线OM 上. (2)∵四边形PQRM 是矩形.∴PC=21PR=CM.∴∠2=2∠3. ∵PC=OP ,∴∠1=∠2,∵∠3=∠4,∴∠1=2∠4,即∠MOB=31∠AOB. (3)当给定的已知角是钝角或直角时,钝角或直角的一半是锐角,该锐角可以用此方法三等分.备课资料参考例题如图能表示函数y =k(1-x)和y =xk (k ≠0)在同一直角坐标系小的图象大致是( )分析:从对函数y =xk 的讨论入手,若k>0,双曲线分布在一、三象限,因此可考虑A , C 两个答案,这时对于一次函数来说,y 的值随x 值的增大而减小,且一次函数的图象与y轴正半轴相交,显然A,C两个答案都不对.若k<0,双曲线分布在二四象限,因此考虑B,D两个答案,对于一次函数来说,y的值随x的增大而增大,且一次函数的图象与y轴的负半轴相交,应选D.解:选D.。
《反比例函数的图象和性质》教学设计◆教材分析本节课是“反比例函数”的第二节课,是继正比例函数、一次函数,反比例函数的定义之后,二次函数之前的又一类型函数,本节课主要通过反比例函数的图象,让学生归纳出反比例函数的性质,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。
因此本节课重点是理解和领悟反比例函数的性质,所渗透的数学思想方法有:类比,转化,建模。
◆教学目标【知识与能力目标】1.体会并了解反比例函数的图象的意义;2.能描点画出反比例函数的图象;3.结合图象分析并掌握当k>0时反比例函数的性质。
【过程与方法目标】(1)通过反比例函数图象和性质的探索,培养学生的观察、猜想、分析、归纳、概括的逻辑思维能力;(2)通过探索过程,渗透类比,分类讨论的数学思想。
【情感态度价值观目标】(1)培养学生的钻研精神,同时加强同学间的合作与交流;(2)让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
【教学重点】 反比例函数的图像及当k>0时反比例函数的性质。
【教学难点】绘制反比例函数的图像。
多媒体课件。
一、导入新课1.反比例函数的定义:函数()0k y k x=≠ 叫做反比例函数。
2.反比例函数的特征:k ≠0,x ≠0,x 是-1次。
3.反比例函数的确定:待定系数法。
4.它的三种常见的表达形式:()0k y k x=≠,xy = k (k ≠ 0),y=kx -1(k ≠0) 作函数图象的一般步骤:列表,描点,连线。
二、新课学习画出反比例函数 6y x =和6y x=- 的函数图象。
◆ 课前准备◆ 教学过程◆ 教学重难点反比例函数图象画法步骤:注意:①列 x与y的对应值表时,X的值不能为零,但仍可以零的基础,左右均匀、对称地取值。
注意:②描点时自左住右用光滑曲线顺次连结,切忌用折线。
注意:③两个分支合起来才是反比例函数图象。
1. 反比例函数6yx=和6yx=-的图象在哪两个象限?它们相同吗?2. 反比例函数k y x=的图象在哪两个象限?由什么确定? 3. 反比例函数k y x=,具有怎样的对称性? 4. 反比例函数k y x=的图象的变化趋势是怎样的,它和两条坐标轴的位置关系是怎样的? 总结双曲线()0k y k x =≠的性质: 1.当k>0时,图象的两个分支分别在第一、三象限内;2.当k<0时,图象的两个分支分别在第二、四象限内;3.双曲线的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交。
湘教版数学九年级上册1.2《反比例函数的图象与性质》(第2课时)说课稿一. 教材分析湘教版数学九年级上册1.2《反比例函数的图象与性质》(第2课时)是本册教材中的重要内容,它是在学生已经掌握了函数的概念、正比例函数的基础上,进一步引导学生研究反比例函数的图象与性质,为学生进一步学习指数函数、对数函数等初等函数奠定基础。
本节课的内容包括:反比例函数的图象、反比例函数的性质、反比例函数的应用。
教材通过丰富的实例,引导学生观察、分析、归纳反比例函数的图象与性质,培养学生从实际问题中提出数学问题的能力,提高学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了函数的概念、正比例函数,对函数的基本概念和图象有了一定的了解。
但反比例函数作为一种新的函数形式,其图象与性质与正比例函数有很大的不同,需要学生在已有的知识基础上进行探究和理解。
学生在学习过程中可能存在以下问题:1. 对反比例函数的概念理解不深,容易与正比例函数混淆;2. 对反比例函数的图象与性质的理解不够直观,难以形成清晰的认识;3. 在应用反比例函数解决实际问题时,不知道如何运用所学知识。
三. 说教学目标1.知识与技能目标:让学生掌握反比例函数的图象与性质,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳,培养学生从实际问题中提出数学问题的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学的应用意识,培养学生团结协作、积极探究的精神。
四. 说教学重难点1.教学重点:反比例函数的图象与性质。
2.教学难点:反比例函数图象的理解,反比例函数在实际问题中的应用。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、反比例函数图象软件、实际问题案例等,帮助学生直观地理解反比例函数的图象与性质。
第一章 反比例函数探究内容:1.1 建立反比例函数模型(1)目标设计:1、引导学生从具体问题中探索出数量关系和变化规律,抽象出反比例函数的概念;2、理解反比例函数的概念和意义;3、培养学生自主探究知识的能力。
重点难点:对反比例函数概念的理解 探究准备:投影片等。
探究过程: 一、旧知回顾: 1、函数的概念:一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、一次函数的概念: 一般地,如果y kx b =+(k 、b 是常数,0k ≠)那么y 叫做x 的一次函数。
如:31y x =-,… 当0b =时,有y kx =(k 为常数,0k ≠)则y 叫做x 的正比例函数。
如:12y x =-,4y x =,…二、新知探究:类似地,有反比例函数: 1、概念:一般地,如果两个变量y 与x 的关系可以表示成ky x=(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。
2、强调:①自变量在分母中,指数为1,且0x ≠;②也可以写成1y kx -=的形式,此时自变量x 的指数1-; ③自变量x 的取值为0x ≠的一切实数;④由于0k ≠,0x ≠,因此函数值y 也不等于0。
例题讲评:1、下列函数中,x 均表示自变量,那么哪些是反比例函数,并指出每一个反比例函数中相应的k 值。
⑴5y x =⑵20.4y x=- ⑶2x y =- ⑷2xy =分析: ⑴5y x=是反比例函数,5k =; ⑵20.4y x =-不是反比例函数; ⑶2xy =-是正比例函数;⑷2xy =,即2y x=,是反比例函数,2k =。
2、若函数()272mm y m x +-=-是反比例函数,求出m 的值并写出解析式。
分析:由题有:20m -≠且271m m ++=-,解得3m =- ∴解析式为15y x -=-,即5y x=-3、已知反比例函数的图象经过点(-1,2),求其解析式。
湘教版九年级上册数学教案(全册)第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x-是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x. 4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题1.1”中第1、3、5题. 教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=6x与y=-6x之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y =2x k +1的图象是双曲线,那么k = .【答案】 -2 3.如果反比例函数y=3k x-的图象位于第二、四象限内,那么满足条件的正整数k 的值是 .【答案】 1,24.已知直线y =kx +b 的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】 二、四 5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数. (1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化?(3)当-3≤x≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<69.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x 的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】 y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】 D4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】 A5.已知点P(2,2)在反比例函数y=kx(k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).(1)求反比例函数的表达式;(2)求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x;(2)将B(4,b)代入反比例解析式得:b=-4;将C(a,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5, 25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y轴的对称点(5, 25)不在这个图象上;点A关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43- k 2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x .函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1= ;过点Q分别作x 轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.解:根据题意可知:S△AOB=12|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.【答案】 C2.反比例函数y=6x与y=2x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )A. 12B.2C.3D.1分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y 轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=1,∴S△AOB=S四边形OEAC-S△AOE-S△BOC=6-3-1=2.【答案】 B3.已知直线y=x+b经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C,求k、b的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10.4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2. 1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由 (1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和 (4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.(4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是 (不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D。
湘教版九年级数学上册第1章反比例函数1.2反比例函数图象与性质教学设计一. 教材分析湘教版九年级数学上册第1章反比例函数1.2节主要介绍了反比例函数的图象与性质。
本节内容是在学习了比例函数和一次函数的基础上进行的,是学生进一步认识函数图像和性质的重要环节。
本节内容通过实例引入反比例函数的概念,然后引导学生通过观察、分析、归纳反比例函数的图象与性质,培养学生数形结合的思想方法,提高学生分析问题和解决问题的能力。
二. 学情分析九年级的学生已经学习了比例函数和一次函数,对函数的概念和图像有了一定的认识。
但是,反比例函数作为一种新的函数类型,其图像和性质与比例函数和一次函数有很大的不同,学生可能存在一定的困难。
因此,在教学过程中,需要关注学生的认知基础,通过引导、启发、探究等方式,帮助学生理解和掌握反比例函数的图象与性质。
三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的图象与性质,能够运用反比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳反比例函数的图象与性质,培养学生数形结合的思想方法,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性,培养学生合作学习的精神。
四. 教学重难点1.反比例函数的概念及其图象的特点。
2.反比例函数的性质及其应用。
五. 教学方法1.引导法:通过问题引导,激发学生的思考,帮助学生理解和掌握反比例函数的图象与性质。
2.实例分析法:通过具体的实例,让学生观察和分析反比例函数的图象与性质,增强学生对知识的理解和应用能力。
3.小组合作学习法:引导学生分组讨论,培养学生的合作精神和团队意识。
六. 教学准备1.准备相关的实例和图片,用于引导学生观察和分析反比例函数的图象与性质。
2.准备反比例函数的图象和性质的PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念,激发学生的学习兴趣。
第2课时 反比例函数y =kx(k <0)的图象与性质1.了解反比例函数y =kx (k <0)的相关性质(重点,难点).2.理解双曲线的概念以及其与反比例函数的联系.(重点,难点) 3.利用双曲线的性质解决简单的数学问题.一、情境导入在一个平面直角坐标系中,根据所提供的数据描绘出相应的反比例函数图象. 观察这两个图象,试着求出它们的解析式,看看它们之间是否存在着某些关系? 二、合作探究探究点一:作反比例函数y =kx (k <0)图象的步骤画出反比例函数y =-8x的图象.解析:画函数的图象一般分为列表、描点、连线三个步骤,注意,k <0时,图象在第二、四象限.解:列表如下:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点. 连线:用光滑的曲线顺次连接各点,即可得y =-8x的图象.如图:方法总结:y =k x (k <0)图象的画法与y =kx (k >0)的画法类似,但解题时要注意图象所在的象限.探究点二:反比例函数y =kx(k <0)的图象与性质对于函数y =-2x ,下列说法正确的是( )A .它的图象分别在第一、三象限B .它的图象经过点(-1,2)C .当x >0时,y 的值随x 的值增大而减小D .当x <0时,y 的值随x 的值增大而减小解析:函数y =-2x 的图象在第二、四象限,且在每个象限内,y 的值随x 值的增大而增大,当x =-1时,y =2,所以A 、C 、D 错误,B 正确.故选B.方法总结:解决这类问题需要熟练掌握反比例函数的基本图形和相关性质.探究点三:双曲线的概念及性质如图,已知直线y =mx 与双曲线y =kx的一个交点坐标为(-1,3),则它们的另一个交点坐标是()A .(1,3)B .(3,1)C .(1,-3)D .(-1,3)解析:双曲线是轴对称图形,也是以原点为对称中心的中心对称图形,故选C.方法总结:在解与反比例函数图象有关的问题时可以运用双曲线的对称性快速求解.三、板书设计教学的过程中,引导新的问题引发学生自主解答,在解决问题的过程中,加深对知识的理解和巩固.自主探究和合作交流相互结合,循序渐进,逐步积累解决问题的基本技巧,使学生能够适应考试命题方向.。
湘教版九年级上册教学设计1.2反比例函数的图象与性质一. 教材分析湘教版九年级上册数学第二单元“反比例函数的图象与性质”,主要让学生了解反比例函数的图象特征,理解反比例函数的性质,并能运用其性质解决实际问题。
本节课是本单元的第一课时,重点介绍反比例函数的定义及其图象特征。
二. 学情分析学生已经学习了正比例函数和一次函数的图象与性质,对函数的概念有一定的理解。
但反比例函数作为一种新的函数类型,其图象与性质与正比例函数和一次函数有很大的不同,需要学生重新去适应和理解。
同时,学生对于函数图象的观察和分析能力有待提高。
三. 教学目标1.理解反比例函数的定义,掌握反比例函数的图象特征。
2.理解反比例函数的性质,并能运用其性质解决实际问题。
3.培养学生的观察能力、分析能力及数学思维能力。
四. 教学重难点1.反比例函数的定义及其图象特征。
2.反比例函数的性质及其应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,发现规律,培养学生的数学思维能力。
六. 教学准备1.PPT课件2.反比例函数图象示例3.相关练习题七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生运用已学的正比例函数和一次函数的知识去解决。
通过分析,发现这些问题无法用已学的函数解决,从而引出本节课的主题——反比例函数。
2.呈现(15分钟)(1)展示反比例函数的定义,引导学生理解反比例函数的概念。
(2)分析反比例函数的图象特征,如:坐标轴上的截距、图象形状等。
(3)引导学生观察反比例函数图象,发现其与正比例函数、一次函数图象的区别。
3.操练(15分钟)让学生独立完成一些反比例函数的图象与性质的练习题,巩固所学知识。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过PPT展示一些实际问题,让学生运用反比例函数的知识去解决。
教师引导学生分析问题,解答问题。
5.拓展(10分钟)让学生进一步探究反比例函数的性质,如:反比例函数的单调性、奇偶性等。
1.2 反比例函数的图象与性质1.2.1 反比例函数的图象与性质(一)教学目标1.体会并了解反比例函数的图象的意义 2.能描点画出反比例函数的图象3.结合图象分析并掌握当k >0时反比例函数的性质 重点、难点重点:反比例函数的图象及当k >0时反比例函数的性质 难点:绘制反比例函数的图象 教学设计 一、预习导学自主预习教材,并思考下列问题:1.画反比例函数图象的步骤是 、 、 . 2.反比例函数y=kx(k 为常数,k ≠0)的图象是 ,当k >0时,双曲线的两支分别位于第 、 象限,它们与 轴、 轴都不相交,在每个象限内,y 随x 的增大而 . 3.函数xy 20=的图象在第 象限,在每一象限内,y 随x 的增大而 . 二、探究展示 (一)合作探究 如何画反比例函数xy 6=的图象? 由组长带领本组组员共同探讨完成. 由于反比例函数y=x6的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:(1) 可以先估计.例如,位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);(2)方法与步骤——利用描点作图;列表:取自变量x 的哪些值? —— x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值.x… -6 -5 -4 -3 -2 -1.5 -1 1 1.5[ 2 34 5 6 (x)y 6=… -1 -1.2 -1.5 -2 -3 -4[-6 643 2 1.5 1.2 1…描点:依据什么(数据、方法)找点?在平面直角坐标系内,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点. 连线:怎样连线? ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来.y x6-665-6-5-51-2-2-1-15-4-4-3-343243201观察上图,图象位于哪些象限?图象与坐标轴相交吗?在每一象限内,函数值y 随自变量x 的变化如何变化?(点名回答)设计意图:学习正确的作图过程,在填表过程中感受y 随x 的变化规律,为基于图象探究函数性质打下基础. (二)展示提升1.完成教材做一做,画出反比例函数xy 3=的图象. xy 6=设计意图:提高学生利用描点法画反比例函数的基本技能,加深学生对反比例函数图象的认识,为下一步归纳反比例函数的性质做准备. 2.观察画出的x y 6=,xy 3=的图象,思考下列问题: (1)每个函数的图象分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化如何变化? 先由小组讨论交流,教师准确引导,及时点拨和追问,总结出规律: 一般的,当k 〉0时,反比例函数y=kx的图象由分别在第一、第三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.设计意图:让学生独立思考、讨论交流,经历从特殊到一般的归纳过程,积累基本活动经验. 三、知识梳理启发学生谈谈本节课的收获.1.用描点法作反比例函数图象的步骤:列表、描点、连线.2.图象和性质:反比例函数y=kx(k 为常数,k ≠0)的图象是双曲线,当k 〉0时,双曲线的两支分别位于第一、三象限,它们与x 轴、y 轴都不相交,在每个象限内,y 随x 的增大而减小. 四、当堂检测1.如右图,这是下列四个函数中哪一个函数的图象 ( ) A. x y 5= B. 32+=x y C. x y 4= D. xy 3-= 2.函数20y x=的图象在第________象限,在每一象限内,y 随x 的增大而_________. 3.在反比例函数y =xk 3-图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是________.若关于x,y 的函数xk y 1+=的图象位于第一、三象限,则k 的取值范围是_______________. 4.画出反比例函数xy 4的图象. 五、布置作业六、教学反思本节课通过用描点法画反比例函数的图象让学生理解当k>0时反比例函数y=kx的图象和性质,更直观、有效运用各种启发、激励的语言,以及小组合作交流、竞争的方式,更能激起学生求知的欲望.学生通过展示锻炼了口头表达能力,同时培养了学生分析问题和解决问题的能力,增强了小组的凝聚力.1.2 反比例函数的图象与性质(二)教学目标1. 能画出反比例函数y =kx(k 为常数,k <0)的图象.2. 根据反比例函数y =kx(k 为常数,k <0)的图象探索并理解其性质.3. 在自主探究反比例函数的性质的过程中,让学生初步感知反比例函数的图象的对称性. 重点难点重点:反比例函数y =kx (k 为常数,k <0)的图象的画法及其性质.难点:由反比例函数y =kx (k 为常数,k <0)的图象探究出其性质.教学设计 一、预习导学自主预习教材完成下列各题:1.反比例函数y =kx (k 为常数,k ≠0)的图象是由两支曲线围成的,这两支曲线称为 .2.当k ﹤0时,反比例函数y =kx的图象与 的图象关于x 轴对称.3. 当k ﹤0时,反比例函数y =kx 的图象由分别在第 象限内的两支曲线组成,它们与x轴、y 轴都 ,在每个象限内,函数值y 随自变量x 的增大而 . 二、探究展示 (一)合作探究探究1:如何画反比例函数x y 6-=的图象?xy 6-=的图象与x 6=的图象有什么关系?由组长带领组员共同探讨画反比例函数xy 6-=的图象的方法. 引导学生采用多种方式进行自主探索活动:1.可以通过探索函数x y 6-=与x y 6=之间的关系,画出x y 6-=的图象. 2.可以用画反比例函数xy 6=的图象的方式与步骤进行自主探索其图象.引导学生总结归纳:1.当k ﹤0时,反比例函数y =kx 的图象与xk y -=的图象关于x 轴对称.2.当k ﹤0时,反比例函数y =kx 的图象由分别在第二、四象限内的两支曲线组成,它们与x 轴、y轴都不相交,在每个象限内,函数值y 随自变量x 的增大而增大. 3.可用描点法画反比例函数y =kx(k ﹤0)的图象.设计意图:巩固了反比例函数图象的基本作法,也为后面观察分析归纳出反比例函数图象的性质增加感性认识.探究2:反比例函数y =kx (k 为常数,k ≠0)的图象的对称性.先让学生观察函数x y 6-=与xy 6=的图象,讨论、交流它们各自具有什么对称性,然后总结得出:反比例函数y =kx (k 为常数,k ≠0)的图象是中心对称图形,其对称中心为坐标原点,其图象还是轴对称图形,对称轴有两条,分别是一、三象限角平分线(即直线y=x )和二、四象限角平分线(即直线y=-x ).探究3:根据我们已经学过的反比例函数的性质填写下表,并说说k >0和k <0时图象和性质的区别.反比例函数 xky =)0(≠k k 的符号k >0k<0图象 (双曲线)x 、y 的 取值范围 x 的取值范围:x ≠0 y 的取值范围:y ≠0 x 的取值范围:x ≠0 y 的取值范围:y ≠0 位置 第一,三象限内第二,四象限内增减性 每一象限内,y 随x 的增大而减小每一象限内,y 随x 的增大而增大渐近性 反比例函数的图象无限接近于x,y 轴,但永远达不到x,y 轴,画图象时,要体现出这个特点对称性反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形设计意图:使学生经历由特殊到一般的过程,培养学生的抽象概括能力、渗透分类讨论思想和类比思想.(二)展示提升 1.反比例函数xy 21-=的图象在第 、 象限,在每个象限内,函数值y 随自变量x 的增大而 ,图象关于 成中心对称,关于 成轴对称.2.画出反比例函数x y 4-=的图象. 3.若反比例函数xm y 3-=的图象在第二、四象限,求m 的取值范围.设计意图:通过练习及时去巩固学生对反比例函数图象的画法及其性质的理解及是否能够正确的运用其性质解决简单问题. 三、知识梳理 本节课有什么收获?1. 用描点法画反比例函数y =kx(k <0)的图象步骤:列表,描点,连线.2. 反比例函数y =kx的图象和性质:图象与x 轴、y 轴都不相交,当k >0时,图象在第一、三象限,在每个象限内,函数值y 随自变量x 的增大而减小;当k ﹤0时,图象在第二、四象限,在每个象限内,函数值y 随自变量x 的增大而增大.3.反比例函数y =kx (k 为常数,k ≠0)的图象关于原点成中心对称,当k ﹥0时,图象关于直线y=-x 成轴对称,当k ﹤0时,图象关于直线y=x 成轴对称. 四、当堂检测1.在反比例函数x ky -=1的图象的每一支曲线上,y 随x 的增大而增大,则k 的值为 . 2.画出反比例函数xy 8-=的图象.3.已知点(2,y 1),(3,y 2)在 函数xy 2-=的图象上,试比较y 1,y 2的大小.五、作业六、教学反思在整个的设计过程中,始终体现以学生为中心的教育理念.在学生已有的基础上进行设问和引导,关注学生的认知过程,重视讨论、交流和合作,重视探究问题习惯的培养和养成.同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则.1.2 反比例函数的图象与性质(三)教学目标1.能用待定系数法求反比例函数的解析式. 2.能用反比例函数的定义和性质解决实际问题. 重点、难点重点:能用待定系数法求反比例函数的解析式.难点:根据反比例函数的图象或表达式来理解反比例函数的性质. 教学设计 一、预习导学自主学习教材,并思考下列问题:1.认真完成动脑筋,思考怎样用待定系数法求反比例函数的解析式?2.认真阅读例2,书上是运用反比例函数的什么知识解决问题的?3.例3中,用待定系数法时为什么要标明1k 、2k ? 二、探究展示 (一)合作探究如何解答教材动脑筋?由组长带领组员讨论、交流,教师适当引导,然后总结得出:由于反比例函数y=kx中只有一个待定系数k ,因此只需要图象上一点的坐标,把其值代入得到一个关于k 的一元一次方程,求出k 值即可确定函数关系式.知道反比例函数的表达式就可以知道某一点是否在这个函数图象上.由k 值的正负就可以知道函数图象分布的象限及函数值随自变量值的变化情况. (二)展示提升 1.反比例函数y=kx的图象如图,根据图象,回答下列问题: (1)k 的取值范围是k >0还是k <0?说明理由.(2)如果点A (-3,y 1),B (-2,y 2)是该函数图象上的两点,试比较y 1,y 2的大小.设计意图:读图能力训练,加深学生对反比例函数图象性质的理解.2.已知一个正比例函数与一个反比例函数的图象交于点P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.提示:先设两个函数的表达式,且两个函数表示式中的比例系数应用1k 、2k 区分. 学生分组讨论、交流,交流后小组代表展示,教师进行补充. 设计意图:揭示知识间的内在联系,有助于构建较完整的知识网络. 三、知识梳理启发学生谈谈本节课的收获.1. 用待定系数法求反比例函数的解析式.2. 用待定系数法求反比例函数解析式的步骤: (1)设出反比例函数的解析式y=kx(k ≠0) (2)把已知条件(一组自变量与函数的对应值)代入解析式,得到关于k 的一元一次方程 (3)解这个方程,求出待定系数k(4)将k 的值代入得出反比例函数的解析式 四、当堂检测1.已知反比例函数的图象经过点(a ,b ),则它的图象一定也经过( ) A.(-a ,-b ) B. (a ,-b ) C.(-a ,b ) D.(0,0)2.已知反比例函数y=kx的图象经过点M (-2,2). (1)求这个函数的表达式.(2)判断点A (-4,1),B (1,4)是否在这个函数图象上.(3)这个函数的图象位于哪些象限?函数值y 随自变量x 的增大而如何变化?3.如图,一次函数y =kx +b 的图象与反比例函数xmy 的图象交于A (-2,1)、B (1,n )两点.(1)求反比例函数和一次函数的解析式.(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围. 五、作业六、教学反思本节课通过用待定系数法求反比例函数的解析式让学生理解根据反比例函数的图象或表达式来理解反比例函数的性质,采取小组合作交流、竞争的方式,更能激起学生的求知的欲望.学生通过展示锻炼了口头表达能力,同时培养了学生分析问题和解决问题的能力,增强了小组的凝聚力.。
1.2 反比例函数的图象与性质教学设计1教学目标进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
2学情分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。
3重点难点重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
难点:探索并掌握反比例函数的主要性质。
4教学过程4.1 第一学时教学活动活动1【讲授】反比例函数图象与性质一、忆一忆师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?生:作一次函数的图象要采用以下几个步骤:(1)列表(2)描点(3)连线。
生乙:一次函数的图象是一条直线。
师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x 是什么函数?生:反比例函数。
师:你们能作出它的图象吗?生:可以。
点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。
二、作图象,试比较师:请填写电脑上的表格,并开始在坐标纸上描点,连线。
师:再按照上述方法作y=-4/x的图象。
(学生动手操作)师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。
(学生讨论交流,教师参与)师:讨论结束,下面哪个小组的同学说说你们的看法?生1:它们的图象都是由两支曲线组成的。
生2:y=4/x 的图象的两条曲线分布在一、三象限内,而y=-4/x 的图象的两支曲线分布在二、四象限内。
点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。
三、细观察,找规律师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。
湘教版九年级上册数学教案(全册)第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t 的变化,平均速度v 发生了怎样的变化? (4)平均速度v 是所用时间t 的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y 之间可以表示成y=kx(k 为常数且k ≠0)的形式,那么称y 是x 的反比例函数.其中x 是自变量,常数k 称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t ,其中自变量t 可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是hcm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x-是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x.4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=6x与y=-6x之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2x k+1的图象是双曲线,那么k=.【答案】-23.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数.(1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<69.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y 随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】 D4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】 A5.已知点P(2,2)在反比例函数y=kx(k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).(1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8. 7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25--=25,点A的坐标为(-5, 25).点A关于x轴的对称点(-5,-25)不在这个图象上;点A关于y轴的对称点(5, 25)不在这个图象上;点A关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题. 【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力. 【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知 1.正比例函数有哪些性质? 2.一次函数有哪些性质? 3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43- k 2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x .函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1= ;过点Q分别作x轴、y 轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|. 解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A.12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10.4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y=x -1.(2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A 在反比例函数图象上.把A ′点的横坐标代入一次函数解析式得,y =-2-1=-3,所以点A ′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.(4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V 的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是(不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y 与x的函数图象是( )【答案】A8.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.解:(1)y=20x(x>0);(2)图象略;。
第2课时反比例函数的图象与性质(2)
教学目标
【知识与技能】
1.会求反比例函数的解析式;
2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.
【过程与方法】
经历观察、分析、交流的过程,逐步提高运用知识的能力.
【情感态度】
提高学生的观察、分析能力和对图形的感知水平.
【教学重点】
会求反比例函数的解析式.
【教学难点】
反比例函数图象和性质的运用.
教学过程
一、情景导入,初步认知
1.反比例函数有哪些性质?
2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?
【教学说明】复习上节课的内容,同时引入新课.
二、思考探究,获取新知
1.思考:已知反比例函数y=k
x
的图象经过点P(2,4)
(1)求k的值,并写出该函数的表达式;
(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;
(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x 的增大如何变化?
分析:
(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.
(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.
(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y 随x的值的变化情况.
【归纳结论】这种求解析式的方法叫做待定系数法求解析式.
2.下图是反比例函数y=k
x
的图象,根据图象,回答下列问题:
(1)k的取值范围是k>0还是k<0?说明理由;
(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.
分析:
(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.
(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.
【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.
三、运用新知,深化理解
1.若点A(7,y1),B(5,y2)在双曲线y=-3
x
上,则y1、y2中较小的是.
【答案】y2
2.已知点A(x1,y1),B(x2,y2)是反比例函数y=k
x
(k>0)的图象上的两点,
若x1<0<x2,则有( ).
A.y1<0<y2
B.y2<0<y1
C.y1<y2<0
D.y2<y1<0
【答案】 A
3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )
A.b1<b2
B.b1=b2
C.b1>b2
D.大小不确定【答案】 D
4.函数y=-1
x
的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )
A.y1<y2
B.y1>y2
C.y1=y2
D.y1、y2的大小不确定【答案】 A
5.已知点P(2,2)在反比例函数y=k
x
(k≠0)的图象上,
(1)当x=-3时,求y的值;
(2)当1<x<3时,求y的取值范围.
6.已知y=k
x
(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).
(1)求反比例函数的表达式;
(2)求a与b的值.
解:
(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16
x
;
(2)将B(4,b)代入反比例解析式得:b=-4;将C(a,2)代入反比例
解析式得:2=-16
a
,即a=-8.
7.已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;
(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?
分析:
(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.
解:
(1)设:反比例函数的解析式为:y=k x (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1
k ,k =-2.即反比例函数的解析式为:y=-2x .
(2)点A(-5,m)在反比例函数y=-
2x
图象上,所以m=25-- =25 ,点A 的坐标为(-5, 25).点A 关于x 轴的对称点(-5,-25
)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图
象上;
【教学说明】通过练习,巩固本节课数学内容.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:教材“习题1.2”中第7题.
教学反思
教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.。