石灰石-石膏湿法脱硫工艺的基本原理
- 格式:doc
- 大小:45.50 KB
- 文档页数:13
石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。
是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。
它采用价廉易得的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。
脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。
脱硫石膏浆经脱水装置脱水后回收。
由于吸收浆液循环利用,脱硫吸收剂的利用率很高。
最初这一技术是为发电容量在100MW以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用.根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。
已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。
在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是:1、技术成熟,脱硫效率高,可达95%以上。
2、原料来源广泛、易取得、价格优惠3、大型化技术成熟,容量可大可小,应用范围广4、系统运行稳定,变负荷运行特性优良5、副产品可充分利用,是良好的建筑材料6、只有少量的废物排放,并且可实现无废物排放7、技术进步快。
石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。
基本工艺过程在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。
基本工艺过程为:(1)气态SO2与吸收浆液混合、溶解(2) SO2进行反应生成亚硫根(3)亚硫根氧化生成硫酸根(4)硫酸根与吸收剂反应生成硫酸盐(5)硫酸盐从吸收剂中分离用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气中。
石灰石石膏湿法脱硫化学反应原理
石灰石石膏湿法脱硫是一种常用的烟气脱硫技术,其原理主要包括以下几个步骤:
1. 石膏浆液的制备:将石灰石(CaCO3)与水反应生成石灰石浆液,同时加入一定量的氧化剂如空气,将部分CaCO3氧化
成氧化钙(CaO),形成钙离子(Ca2+)和氢氧根离子(OH-)。
2. 脱硫反应:将石膏浆液与含有二氧化硫(SO2)的烟气接触,二氧化硫会与钙离子和氢氧根离子发生反应,生成固态的硫酸钙(CaSO4·2H2O)。
反应方程式如下:
Ca2+ + SO2 + 2H2O → CaSO4·2H2O
3. 生成石膏:反应产生的硫酸钙会以颗粒状悬浮在石膏浆液中,形成石膏。
4. 脱水:通过脱水设备,将石膏浆液中的水分去除,使石膏凝固成固体。
整个过程中,石膏浆液充当了吸收剂的角色,能够吸收并固定烟气中的二氧化硫,从而实现脱硫的目的。
生成的石膏可以作为工业原料或用于土壤改良等方面的应用。
热电厂多是以燃烧煤作为发电的能源,煤中含有硫,燃烧出二氧化硫,会污染空气产生酸雨,所以常用的脱硫方法是石灰石—石膏湿法脱硫。
石灰石被磨碎,制成石灰石浆液,石灰石浆液与烟气中的二氧化硫反应生成石膏,这个过程就脱除了二氧化硫,接下来就为大家详细的讲解一下,希望对大家有所帮助。
1、脱硫原理。
石灰石—石膏湿法脱硫技术是将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。
经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量减小,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。
由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率高。
2、技术和经济性。
石灰石—石膏法脱硫工艺流程简单、技术先进又可靠,脱硫效率高以上,是
目前国内外烟气脱硫应用广泛的脱硫工艺。
但是系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。
3、适用范围。
单塔处理脱硫量大,适用于任何含硫量的煤种的烟气脱硫,对锅炉的适应性强,一般在大型电厂或大功率锅炉使用。
正如上文所介绍的,使用石灰石—石膏湿法脱硫技术更加适合大型电厂等废弃排放量大的惬意,而且脱硫原料石灰石的价格也很便宜。
浙江钙科机械设备有限公司,于2014年三月注册成立,注册资金4500万元。
本公司与合肥水泥设计院合作,致力于石灰生产工艺研究,以改革目前我国石灰生产工艺为研究目标,为配套企业提供石灰原料。
湿法脱硫的工作原理
湿法脱硫是指通过化学吸收来去除烟气中的SO2的过程。
在
湿法脱硫系统中,石灰石和石膏浆液作为吸收剂,在循环泵的驱
动下,从吸收塔底部进入到吸收塔上部的吸收区域,与烟气进行
充分的接触,从而使烟气中的SO2与浆液中的CaCO3发生化学反应,生成石膏。
而经过石灰石浆液吸收的SO2又被排入到石灰石
浆液循环泵入口。
在脱硫系统中,石灰石浆液循环泵起到一个增
压作用,使循环泵的转速增加。
而浆液在循环泵的驱动下,会从
入口带到出口区域,其流速会进一步增加。
在烟气进入到循环泵
之前,还需要设置一个预处理系统,以便除去进入脱硫系统的粉
尘等杂质。
经过预处理系统后,烟气中的SO2含量将进一步降低。
然后通过湿法脱硫装置中的一种特殊装置——喷淋装置(sludgeplant)进行脱硫。
喷淋装置在脱硫系统中起到两个主
要作用:第一是吸收剂喷射装置,该装置具有将脱硫剂雾化为细
小液滴并输送到烟气中去的功能;第二是吸收塔内发生化学反应
时所需要的高温环境。
—— 1 —1 —。
石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术是已经开发和推广的烟气脱硫技术中的主流技术,占国内外安装烟气脱硫装置总容量的85%以上。
特点是商业应用时间长,工艺技术成熟,配套设备完善,工作稳定,操作简单,脱硫效率可达到95%以上,可靠性高达95%以上。
吸收剂为石灰石粉,资源丰富,价格低廉,使用安全;副产品为脱硫石膏,可用作水泥添加剂、农业土壤调节剂,或进一步清洗、均化、除杂后,生产建筑用石膏板等。
石灰石——石膏湿法烟气脱硫技术广泛应用于火电厂、冶金、各种工业锅炉、窑炉、水泥工业、玻璃工业、化工工业、有色冶炼等行业大型燃烧设备烟气中SO2的排放控制。
一、工艺流程石灰石——石膏湿法烟气脱硫装置主要由烟气系统、石灰石浆液制备系统、烟气吸收及氧化系统、石膏脱水系统、烟气排放连续监测系统(CEMS)以及自动控制系统和公用工程系统等组成。
工艺流程如图示。
一定浓度的石灰石浆液连续从吸收塔顶部喷入,与经过增加风机增压后进入吸收塔的烟气发生接触。
在烟气被冷却洗涤的过程中,烟气中的SO2被浆液中的碳酸钙吸收生成亚硫酸钙而成为净化烟气,净化后的烟气经除雾器除去烟气中的小雾滴,从吸收塔上部排出,进入大气。
向吸收塔底部的溶液中鼓入空气,溶液中的亚硫酸钙被氧化成为硫酸钙结晶物——石膏。
吸收塔底部的溶液是石灰石、石膏组成的浆状混合物,其部分被强制在塔内循环,部分作为产物排出而成为脱水石膏。
二、工艺原理石灰石——石膏湿法烟气脱硫系统中主要的化学反应包括:1. SO2的吸收2.与石灰石的反应3.氧化反应4.CaSO4晶体生成总的反应方程式为:SO2(g)+ CaCO3(s)+2H2O(l)+1/2O2(g)→CaSO4·2H2O(s)+CO2(g)三、脱硫系统的主要设备1.烟气系统烟气系统由进口烟气挡板门、旁路烟气挡板门、钢制烟道、脱硫增压风机等组成。
原烟气经烟道、烟气进口挡板门进入增压风机,经增压风机升压后进入吸收塔。
石灰石-石膏湿法烟气脱硫工艺原理及特点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII石灰石-石膏湿法烟气脱硫工艺原理及特点一、工艺原理该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉壮,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆)。
在吸收塔内,烟气中的SO2与浆液中的CaCO3(碳酸钙)以及鼓入的氧化空气进行化学反应生成二水石膏,二氧化硫被脱除。
吸收塔排出的石膏浆液经脱水装置脱水后回收。
脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。
烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO3与SO2、H2O进行反应,生成CaSO3·1/2H2O和CO2↑;对落入吸收塔浆浆池的CaSO3·1/2H2O和O2、H2O再进行氧气反应,得到脱流副产品二水石膏。
化学反应方程式:2CaCO3+H2O+2SO2====2CaSO3·1/2H2O+2CO22CaSO3·1/2H2O+O2+3H2O====2CaSO4·2H2O二、FGD烟气系统的原理从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾期除去水雾后,又经GGH升温至大于75摄氏度,再进入净烟道经烟囱排放。
脱硫系统在引风机出口与烟囱之间的烟道上设置旁路挡板门,当FGD装置运行时,烟道旁路挡板门关闭,FGD装置进出口挡板门打开,烟气通过增压风机的吸力作用引入FGD系统。
在FGD装置故障和停运时,旁路挡板门打开,FGD装置进出口挡板门关闭,烟气由旁路挡板经烟道直接进入烟囱,排向大气,从而保证锅炉机组的安全稳定运行。
FGD装置的原烟气挡板、净烟气挡板及旁路挡板一般采用双百叶挡板并设置密封空气系统。
旁路挡板具有快开功能,快开时间要小于10s,挡板的调整时间在正常情况下为75s,在事故情况下约为3~10s。
石灰石-石膏湿法烟气脱硫工艺的化学原理一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。
1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度,-,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。
二、脱硫系统整个化学反应的过程简述:1、 SO在气流中的扩散,22、扩散通过气膜3、 SO被水吸收,由气态转入溶液态,生成水化合物24、 SO水化合物和离子在液膜中扩散25、石灰石的颗粒表面溶解,由固相转入液相6、中和(SO水化合物与溶解的石灰石粉发生反应)27、氧化反应8、结晶分离,沉淀析出石膏,三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。
四、二氧化硫的物理、化学性质:①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。
密度比2空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。
SO为酸性氧化物,具有酸性氧化物的通性、2还原性、氧化性、漂白性。
还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。
②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。
SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性,五、石灰石湿-石膏法脱硫化学反应的主要动力过程:1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降2、吸收剂溶解和中和反应:固体CaCO 的溶解和进入液相中的CaCO的分解,33+浓度(PH固体石灰石的溶解速度,反应活性以及液相中的H值)影响中和反应2+2+的形CaCa的氧化反应,以及其它一些化合物也会影响中和反应速度。
石灰石石膏湿法脱硫的工艺【石灰石石膏湿法脱硫的工艺】导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧化硫。
本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相关问题。
一、工艺原理1. 石灰石石膏湿法脱硫原理:石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。
主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO22. 脱硫反应的特点:该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆液浓度下进行。
反应速率受碱性、反应温度、质量浓度等因素的影响。
二、工艺步骤1. 石灰石石膏湿法脱硫的基本步骤:(1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其活性和反应速率。
(2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。
为了提高脱硫效果,还可加入一定量的添加剂。
(3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。
(4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。
2. 工艺改进:为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面的改进。
例如引入喷雾器、增加反应塔数目、采用高效填料等,以增加烟气与石灰石浆液的接触面积,加强反应效果。
三、工艺优势1. 脱硫效率高:石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质石膏产物,脱硫效率可达到90%以上。
2. 石膏产物可回收利用:脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的循环利用。
3. 工艺成熟可靠:石灰石石膏湿法脱硫工艺经过多年的实践应用,技术成熟可靠,广泛应用于燃煤发电厂和工业锅炉等领域。
四、问题与挑战1. 石膏处理与排放:脱硫过程中生成的硬石膏需要进行后续的脱水、干燥等处理,同时还需要解决石膏产物的长期存储和排放问题。
石灰石-石膏法湿法烟气脱硫工艺内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。
循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除S02 S03 HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O ,并消耗作为吸收剂的石灰石。
循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。
每个泵通常与其各自的喷淋层相连接,即通常采用单元制。
在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。
经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。
同时按特定程序不时地用工艺水对除雾器进行冲洗。
进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。
在吸收塔出口,烟气一般被冷却到46—55 C左右,且为水蒸气所饱和。
通过GGH将烟气加热到80C以上,以提高烟气的抬升高度和扩散能力。
最后,洁净的烟气通过烟道进入烟囱排向大气。
石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HS0-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中H S0-3氧化成SO2-4:③吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;④在吸收塔内,溶液中的SO2-4、Ca2+及水反应生成石膏(CaS04- 2H20。
化学反应式分别如下:①S02 + H23 H2S0S H++ HS0-3②H+ + HS0-3+ 1/202 T 2H++ SO2-4③CaC03 + 2H++ H23 Ca2++ 2H2O^ C02f④Ca2+ + SO2-4+ 2H2S CaS04- 2H2O由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HS0-3或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaS04达到一定过饱和度后,结晶形成石膏-CaS04 - 2H20石膏可根据需要进行综合利用或作抛弃处理。
阐述了石灰石-石膏湿法脱硫工艺原理及存在的技术问题和处理方法, 并对影响脱硫效率的主要因素进行了探讨。
当前脱硫技术在新建、扩建、或改建的大型燃煤工矿企业,特别是燃煤电厂正得到广泛的推广应用,而石灰石-石膏湿法脱硫是技术最成熟、适合我国国情且国内应用最多的高效脱硫工艺,但在实际应用中如果不能针对具体情况正确处理结垢、堵塞、腐蚀等的技术问题,将达不到预期的脱硫效果。
本文就该法的工艺原理、实践中存在的技术问题、处理方法及影响脱硫效率的主要因素做如下简要探讨。
1. 石灰石-石膏湿法脱硫工艺及脱硫原理从电除尘器出来的烟气通过增压风机 BUF 进入换热器 GGH ,烟气被冷却后进入吸收塔 Abs ,并与石灰石浆液相混合。
浆液中的部分水份蒸发掉,烟气进一步冷却。
烟气经循环石灰石稀浆的洗涤,可将烟气中 95%以上的硫脱除。
同时还能将烟气中近 100%的氯化氢除去。
在吸收器的顶部,烟道气穿过除雾器 Me ,除去悬浮水滴。
离开吸收塔以后,在进入烟囱之前,烟气再次穿过换热器,进行升温。
吸收塔出口温度一般为 50-70℃, 这主要取决于燃烧的燃料类型。
烟囱的最低气体温度常常按国家排放标准规定下来。
在我国, 有 GGH 的脱硫, 烟囱的最低气温一般是 80℃, 无GGH 的脱硫,其温度在 50℃左右。
大部分脱硫烟道都配备有旁路挡板(正常情况下处于关闭状态。
在紧急情况下或启动时, 旁路挡板打开, 以使烟道气绕过二氧化硫脱除装置,直接排入烟囱。
石灰石—石膏稀浆从吸收塔沉淀槽中泵入安装在塔顶部的喷嘴集管中。
在石灰石—石膏稀浆沿喷雾塔下落过程中它与上升的烟气接触。
烟气中的 SO2溶入水溶液中, 并被其中的碱性物质中和,从而使烟气中的硫脱除。
石灰石中的碳酸钙与二氧化硫和氧(空气中的氧发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。
石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后再从当地运走。
2. 脱硫系统的结垢、堵塞与解决办法2. 1结垢、堵塞机理1 石膏终产物浓度超过了浆液的吸收极限,石膏就会以晶体的形式开始沉积,当相对饱和浓度达到一定值时,石膏晶体将在悬浮液中已有的石膏晶体表面进行生长, 当饱和度达到更高值时,就会形成晶核,同时,晶体也会在其它各种物体表面上生长,导致吸收塔内壁结垢。
石灰石-石膏湿法脱硫工艺的基本原理一、石灰石-石膏湿法脱硫工艺的基本原理石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。
脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。
由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。
石灰石——石膏湿法烟气脱硫工艺的化学原理:烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子;烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+;在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏(CaSO4?2H2O)。
由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。
二、工艺流程及系统湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。
该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成:(1)吸收塔系统(2)烟气系统(包括烟气再热系统和增压风机)(3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统)(4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统(6)排放系统(7)废水处理系统1、吸收塔系统吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。
吸收塔塔体材料为内衬玻璃鳞片的碳钢板。
吸收塔烟气入口为内衬耐热玻璃鳞片的碳钢板。
吸收塔内上流区烟气流速为4.2m/s,下流区烟气流速为10m/s。
在上流区配有3组喷淋层,安装的三重螺旋喷嘴使气液效率接触,并达到高的SO2吸收性能。
每个吸收塔配置3台循环泵。
另有1台叶轮作为仓库备用。
脱硫后的烟气流向装在吸收塔出口处的除雾器。
在这个过程中,烟气与吸收塔喷嘴喷出的再循环浆液进行有效的接触。
吸收了SO2的再循环浆液落入吸收塔反应池。
吸收塔反应池装有6台搅拌机。
氧化风机用于将氧化空气鼓入反应池中与浆液反应。
氧化系统采用喷管式系统,氧化空气被注入到搅拌机桨叶的压力侧。
一部分HSO3,在吸收塔喷淋区被烟气中的氧气氧化,剩余部分的HSO3,在反应池中被氧化空气完全氧化。
吸收剂(石灰石)浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH值。
中和后的浆液在吸收塔内循环。
吸收塔排放泵连续地把吸收剂浆液从吸收塔打到石膏脱水系统。
循环浆液浓度大约25wt,。
排浆流速由控制阀控制。
脱硫后的烟气通过除雾器来减少携带的水滴,除雾器出口的水滴携带量不大于75mg/Nm3。
两级除雾器安装在吸收塔的出口烟道上。
除雾器由阻燃聚丙烯材料制作,型式为z型,两级除雾器均用工艺水冲洗。
吸收塔入口烟道侧板和底板处装有工艺水冲洗系统,冲洗自动定期进行。
冲洗的目的是为了避免喷嘴喷出的石膏浆液带入入口烟道后干燥粘结。
在吸收塔入口烟道装有事故冷却系统,事故冷却水由工艺水泵提供。
当吸收塔入口烟道由于吸收塔上游设备意外事故而温升过高或所有的吸收塔循环泵切除时本系统启动。
2、烟道系统增压风机增压风机(BUF)布置在气气换热器上游、运行在干工况下(A位)。
其型式为轴流式,带液压动叶可调控制器。
增压风机包括电机、控制油系统、润滑油系统和密封空气装置。
可变的叶片间距控其制流量及压力。
从主烟道引入的FGD系统入口烟道压力为200Pa,FGD系统停运时仍为200Pa,在FGD系统运行时其入口烟道压力为700Pa,因此增压风机的压头考虑了FGD系统烟道的压降和运行时进出口500Pa的压差的要求。
烟气再热系统每台机组配置一台单立轴、回转再生式气气换热器(GGH)。
在MCR工况下,GGH 能够将净烟气加热至80?C以上(烟囱入口处),而不需要补充其他热源。
在MCR工况下,GGH最大泄漏量少于1%烟气量。
为了清洁和保证GGH的烟气压降满足要求,系统配备了压缩空气吹扫系统。
GGH的在线冲洗水泵在GGH压降高于正常值投运,GGH的离线冲洗水泵在FGD定期检修时投运。
3、石膏脱水系统石膏浆液由吸收塔排放泵从吸收塔输送到石膏脱水系统。
石膏浆液浓度大约为25wt,。
石膏脱水系统为两炉(2X600MW)公用,包括以下设备:l 石膏旋流站l 带冲洗系统的真空皮带机l 滤水回收箱l 真空泵l 滤布冲洗水箱l 滤布冲洗水泵l 带搅拌器的滤水箱l 滤水泵l 石膏饼冲洗水箱l 石膏饼冲洗水泵l 带搅拌器的缓冲箱l 废水旋流站l 废水箱l 废水泵l 石膏仓石膏仓卸料装置3、石膏脱水系统(1)石膏旋流站石膏浆液输送到安装在石膏脱水车间顶部的石膏旋流站。
浓缩到浓度大约55,的底流浆液自流到真空皮带脱水机,上溢浆液经缓冲箱自流到废水旋流站。
废水旋流站的溢流通过废水泵送至废水处理系统,底流至滤水箱。
(2)真空皮带脱水机真空皮带脱水机和真空系统为并列系统,每套系统的容量为两台机组MCR工况下75,的容量。
石膏旋流站底流浆液自流输送到真空皮带脱水机,由真空系统脱水到大于含90,固形物和小于10,水份。
当脱水时,石膏经冲洗降低其中的Cl,浓度。
滤液经滤水回收箱进入滤水箱。
通过皮带脱水机的翻卸,脱水石膏落入石膏仓,然后由石膏卸料装置卸至汽车运输(螺旋卸料装置排空平底仓)。
工业水作为密封水供给真空泵,然后收集到滤布冲洗水箱,用于冲洗滤布。
另外还供至石膏饼冲洗水箱,滤布冲洗后的水也收集在石膏饼冲洗水箱用于石膏饼的冲洗。
来自缓冲箱和滤布冲洗水箱的溢流以及废水旋流站的底流自流到滤水箱,然后由滤水泵输送到湿式球磨机系统和吸收塔。
4、石灰石制备系统石灰石制备系统为两台炉(2×600MW)共用,由下列子系统组成: (1)石灰石接收存储系统: 石灰石接收存储系统由下列设备组成: ?石灰石接收料斗石灰石卸料振动给料机#1石灰石卸料皮带输送机石灰石斗式提升机#2石灰石卸料皮带输送机石灰石布袋除尘器石灰石仓石灰石仓布袋除尘器石灰石称重式皮带给料机金属分离器(2)石灰石研磨系统: 石灰石研磨系统由下列设备组成: ?湿式球磨机磨机浆液箱磨机浆液箱搅拌器磨机浆液泵石灰石浆液旋流站4、石灰石制备系统配置两套并列的石灰石研磨制浆系统。
每套的容量相当于两台锅炉(2×600MW)在BMCR运行工况时满负荷石灰石耗量的75,。
磨制后的石灰石粒度为90,通过250目筛。
石灰石在湿式球磨机内磨碎后自流到磨机浆液箱,然后由磨机浆液泵输送到石灰石浆液旋流站。
含有大颗粒物料的石灰石浆液从旋流站底流浆液再循环回到湿式球磨机入口,上溢浆液排到石灰石浆液箱,制成的浆液浓度约为30,。
(3)石灰石浆液供给系统提供一只石灰石浆液箱和四台石灰石浆液泵。
每只吸收塔配有一条石灰石浆液输送管,石灰石浆液通过管道输送到吸收塔。
每条输送管上分支出一条再循环管回到石灰石浆液箱,以防止浆液在管道内沉淀。
5、公用系统公用系统包括工艺水系统、工业水系统、冷却水系统和压缩空气系统。
6、排放系统排放系统设有1只事故浆液箱、2个吸收塔排水坑(每台机组1个)、1个石灰石制备系统排水坑和1个石膏脱水系统排水坑。
当需要排空吸收塔进行检修时,塔内的浆液主要由吸收塔排放泵排至事故浆液箱直至泵入口低液位跳闸,其余浆液依靠重力自流入吸收塔排水坑,再由吸收塔排水坑泵打入事故浆液箱。
由每个箱体和泵内排出的疏水也通过沟道分别集中到吸收塔排水坑、石灰石制备系统排水坑和石膏脱水系统排水坑。
三、主要设备介绍(一)、吸收塔湿法脱硫工艺的吸收塔结构型式经过近30年的发展和改进,已日趋成熟稳定,目前在世界上应用比较广泛和成熟的主要有以下三种:喷淋塔:这是目前国内外应用业绩最多的一种塔型,运行稳定可靠、负荷适应能力强。
国内已投运的德国政府贷款的国华北京热电厂、重庆电厂、浙江半山电厂均采用的德国斯坦米勒公司的喷淋塔技术。
北京龙源环保公司借助这三个项目率先引进了斯坦米勒公司的脱硫技术;国内的其他脱硫工程公司相继引进了国外其他脱硫公司的类似技术或与国外公司合作开展投标工作。
国外各家公司的喷淋塔在外形上和内部结构上大同小异,无实质性差异,只是在内部结构上考虑如何使烟气均流、增加气、液接触面积、提高脱硫效率上各有千秋。
例如,美国巴威公司在塔内增加了一层合金托盘以使烟气均流,增加气、液接触面积,降低液气比。
德国比肖夫公司在吸收塔浆池内采用扰动泵搅拌强制氧化技术,有别于大多数公司采用叶轮式搅拌器。
? 喷淋塔:以最常用的逆流式吸收塔为例,吸收塔内可大致分为四个工作区域:(1)急速冷却区。
该工作区域位于吸收塔烟气进口区域,布置在进口上方的急速冷却喷嘴出的浆液使烟气迅速冷却并达到饱和状态,为进一步的吸收反应创造条件。
(2)SO2吸收区。
处于饱和状态的烟气,在吸收塔的上部空间区域,在吸收浆液的喷淋下发生SO2的吸收过程。
为了获得理想的吸收效果,喷嘴通常设计成交叉喷淋系统,布置成能使喷雾完全覆盖吸收塔的整个横断面,喷淋区的设计应使得烟气分布和浆液分布十分均匀,使流体处于高度湍流状态,增强烟气和浆液的均匀接触,增大气液传质面积。
均匀的浆液喷淋可以通过喷嘴的合理设计来达到,但由于入口处的烟气流速不可能很均匀,而且,由于浆液喷淋造成的烟气阻力,尚不足以使烟气分布自动趋于均匀,所以,喷淋塔的设计还应考虑在喷淋吸收区的下部增设合理的烟气流动均布装置,比如,多孔板或栅板等。
由于吸收浆液与烟气是逆流,故存在较大的浓度梯度,即沿烟气流动的方向,SO2的含量下降,而吸收浆液的有效吸收成分的浓度增加,从而可以得到更高的脱硫效率。
(3)液滴分离区。
烟气向上穿过喷淋塔,不可避免地要携带液滴,为了防止携带的浆液在下游沉积结垢和造成腐蚀,须设置液滴分离区,即脱硫后烟气的除湿或除雾,一般是采用除雾器。
(4)再循环浆液存储区(浆池)。
脱硫吸收浆液在浆池内收集下来,经循环浆泵多次循环使用,脱硫后的反应生成物也均在浆池中生成。
为了平衡整个脱硫系统内的Cl,离子的浓度和物质的平衡,必须连续不断地从浆池中排出多余的石膏浆液。
吸收塔内的脱硫负荷可以通过控制循环浆泵的运行数目来灵活调节。