数列通项公式常用求法及构造法(新)
- 格式:doc
- 大小:443.50 KB
- 文档页数:9
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消n a。
【注意】漏检验n的值(如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。
(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=L,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈L,求数列{}na的通项公式.(二).累加、累乘型如1()n na a f n--=,1()nnaf na-=导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法)【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅L L即1()(1)(2)n a f n f n f a =⋅-⋅⋅L ,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a .(2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n p a c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。
这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。
下面我们逐个讲解这些重要的方法。
递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。
这种方法有两种类型。
第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。
第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。
其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。
只要适合an=an-1+f(n)的形式,都可以使用累加法。
基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。
+f(n)。
因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。
它的基本书写步骤格式是:an=a1*f(2)*f(3)*。
*f(n)。
以上是数列通项公式的三种求法。
2.改写每段话:首先,我们来看等式左右两边的乘积。
左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
在数列问题中,求数列的通项公式问题比较常见,但有些求数列的通项公式的问题较为复杂,利用等差、等比数列公式很难直接求得结果,需要采用一些方法,如累加法、累乘法和构造法,才能使问题得解.下面我们来探讨一下累加法、累乘法和构造法在解题中的应用.一、累加法有些数列的递推式可以转化为a n +1=a n +f (n )或a n +1-a n =f ()n 的形式,我们就可以采用累加法来求解,将n =1,2,3,…,n 时f (n )的式子表示出来,然后将左边与左边的式子相加,右边与右边的式子相加,通过正负抵消求出a n ,便可得到数列的通项公式.累加法也称为逐差相加法,这种方法是比较简单、比较基础的,操作起来也比较容易.例1.设数列{}a n 满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=a n +f (n ),可运用累加法来求解,逐一列出各项,并将其累加,便可求出数列的通项公式.解:由题意知a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n (n ≥2),将以上各式进行相加可得a n =a 1+2+3+…+n ,又a 1=1,所以a n =1+2+3+…+n =n 2+n 2(n ≥2),当n =1时也满足上式,所以数列{}a n 的通项公式为a n =n 2+n 2(n ∈N *).在运用累加法求和时,很多同学们经常忽略了n =1的情况,因此在求出了a n 之后,必须要检验a 1是否满足所求的通项公式.二、累乘法当遇到形如a n +1a n=f ()n 或a n +1=f ()n a n 的递推式,我们可以采用累乘法来求解.首先列出n =1,2,3,…,n 时f (n )的表达式,然后将每项的左边与左边,右边与右边相乘,通过约分就可以求出a n .需要注意的是,在使用这种方法求数列的通项公式时,不要把a n 与f ()n 、f ()n -1、f ()n +1的对应项弄混.例2.设数列{}a n 满足a 1=1,且a n =n -1n a n -1(n ≥2),则数列{}a n 的通项公式为_____.分析:题目中给出的递推公式为a n =n -1n an -1,即a n a n -1=n -1,形如a n +1a n =f ()n ,运用累乘法求解比较简便.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=2a 1.将上述n -1个式子相乘后可得a n =a 1⋅12⋅23⋅34⋅…⋅n -1n =a1n =1n,当n =1时,a 1=1,满足上式,∴a n =1n(n ∈N *).三、构造法对于一些形如a n +1=pa n +q (p ≠0、1,q ≠0)的递推式,我们一般采用构造法来求数列的通项公式.可首先设a n +c =k (a n -1+c ),然后利用待定系数法求出相关k ,c 的值,这样便构造出等比数列{}a n +c ,运用等比数列的通项公式求得{}a n +c 的通项公式,进而得到{}a n 的通项公式.例3.已知数列{}a n 满足a 1=1,且a n +1=3a n +2,则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=pa n +q ,结合已知条件可构造出新的等比数列,然后利用等比数列的通项公式来求解.解:∵a n +1=3a n +2,∴a n +1+1=3a n +2+1,即a n +1+1=3a n +3=3(a n +1),∴a n +1+1a n +1=3,∴数列{}a n +1为q =3的等比数列,又a 1+1=2,∴a n +1+1=2∙3n -1,∴a n =2∙3n -1-1(n ∈N *).以上三种方法都是求数列通项公式的常用方法,同学们要扎实掌握.求数列的通项公式问题并没有同学们想象中的那么难,只要同学们能够熟练掌握常用的解题方法和技巧,学会举一反三,就能在掌握精髓的基础之上破解此类问题.(作者单位:安徽省宣城中学)方法集锦47Copyright©博看网 . All Rights Reserved.。
求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
数列通项公式常用求法及构造法数列通项公式是指将数列中的每一项用一个公式来表示的方法,可以根据数列的规律和性质来确定。
通项公式的确定可以有常用求法和构造法两种方法。
常用求法包括找规律、列方程和用递推式三种方法。
1.找规律法:通过观察数列中的数字之间的规律性质,总结出一般规律,并将其转化为代数表达式。
这种方法适用于数列有简单规律的情况。
例一:已知数列的前四项依次为1、3、6、10,求数列的通项公式。
观察可得:数列的第n项是由前一项加上n-1得到的,即第n项为n-1加上前一项。
因此,可以得出通项公式:a_n=a_(n-1)+(n-1)。
2.列方程法:根据已知的前n项的数值,列出方程,然后解方程得到通项公式。
例二:数列的前四项依次为1、4、9、16,求数列的通项公式。
将数列的第n项用a_n表示,则有:a_1=1a_2=4a_3=9a_4=16根据观察可得:数列的通项公式应该是平方函数,即a_n=n^2、通过验证可以发现,对于任意正整数n,都满足该公式。
3.用递推式法:通过已知的前n项与通项之间的关系,构造递推关系式,然后解递推关系式得到通项公式。
例三:数列的前四项依次为1、2、4、8,求数列的通项公式。
将数列的第n项用a_n表示,则有:a_1=1a_2=2a_3=4a_4=8观察可得:数列的通项公式应该是指数函数,即a_n=2^(n-1)。
通过验证可以发现,对于任意正整数n,都满足该公式。
构造法是另一种确定数列通项公式的方法,其思路是通过构造一个满足数列性质的函数,并验证其是否满足数列的每一项。
例四:数列的前四项依次为1、3、6、10,求数列的通项公式。
观察可得:数列的前差为1、2、3,即数列的二次差为1、1、根据已知数列的前四项可构造一个二次函数:a_n = an^2 + bn + c。
代入a_1=1、a_2=3、a_3=6,得到以下方程组:a_1=a+b+c=1a_2=4a+2b+c=3a_3=9a+3b+c=6解方程组可得到a=1,b=0,c=0。
方法集锦由递推式求数列的通项公式问题在数列问题中比较常见,此类问题的命题方式多种多样,很多同学在解题时往往找不到正确的解题方法,导致无法得出正确的答案.事实上,对于较为复杂的递推式,我们一般采用构造法来求数列的通项公式,下面介绍两个构造数列的技巧,以帮助同学们破解此类难题.一、借助待定系数构造新数列当遇到形如a n+1=pa n+q的递推式时,我们常常需引入待定系数,借助待定系数来构造新数列.在求数列的通项公式时,需先引入待定系数λ,设数列的递推式为a n+1+λ=p()a n+λ,然后将其与已知递推式进行比较,建立关于系数λ的关系式,求得λ的值,便可构造出等比数列{}an+λ,再根据等比数列的通项公式即可求数列的通项公式.例题:已知数列{}a n满足a n+1=2a n+4∙3n-1,a1=1,求数列{}a n的通项公式.解:设a n+1+λ3n=2()an+λ3n-1,由an+1=2a n+4∙3n-1可得λ=-4,令bn=a n-4∙3n-1,则b1=-5,q=2,∴数列{}b n是首项为-5,公比q=2的等比数列,即bn=-5∙2n-1,∴数列{}a n的通项公式为a n=4∙3n-1-5∙2n-1.在引入待定系数后,便可构造出等比数列{}b n,再根据等比数列的通项公式就能快速求出数列的通项公式.二、通过取倒数构造新数列对于an+1=pa n+q n的递推式,我们一般通过取倒数来构造新的等差、等比数列,以便根据等差、等比数列的通项公式来求得原数列的通项公式.在变形递推式时,可在递推式的两边同除以p n+1或q n+1,得到an+1p n+1=a nq n+1pæèçöø÷pqn或an+1q n+1=p q∙a nq n+1q,然后设b n=a np n,就能得到新数列bn+1-b n=1pæèçöø÷pqn或b n+1=p q b n+1q,便可利用等比数列的通项公式、累加法、借助待定系数来求出数列的通项公式.以上述例题为例.解法一:在an+1=2a n+4∙3n-1的两边同时除以2n+1,可得a n+12n+1=a n2n+43∙æèöø32n,令bn=an2n,则b n+1-b n=43∙æèöø32n()n≥2,而()bn+1-b n+()b n-b n-1+⋯+()b2-b1=b n+1-b1,则bn=43∙æèöø32n+43∙æèöø32n-1+⋯+43∙æèöø32=3n-12n-2-3,所以数列{}a n的通项公式为a n=4∙3n-1-5∙2n-1.我们先在递推式的左右两边同除以2n+1,这样便构造出新数列{}b n,然后运用累加法,将新数列的第1,2,3,⋯,n项相加,从而构造出等比数列,再根据等比数列的通项公式就可以求得数列{}b n和{}a n的通项公式.解法二:在an+1=2a n+4∙3n-1的两边同时除以3n+1,可得a n+13n+1=23∙a n3n+49,令b n=a n3n,∵bn+1=23b n+49,b n=23b n-1+49,∴bn+1-b n=23()bn-b n-1()n≥2,而()bn+1-b n+()b n-b n-1+⋯+()b2-b1=b n+1-b1,∴bn+1=2-2n3n,b n=2-2n-13n-1,∴数列{}a n的通项公式为a n=4∙3n-1-5∙2n-1.我们在递推式的两边同时除以3n+1,从而构造出新数列,再运用累加法即可求得数列的通项公式.通过上述分析同学们应该发现,对于较为复杂的递推式,采用构造法来求数列的通项公式往往更有效.因此,同学们要善于观察递推式,将其进行合理变形,如取倒数、引入待定系数,以便构造出新数列,借助新数列来求得原数列的通项公式.(作者单位:江苏省大丰高级中学)47。
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再.得,2),,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例3在数列{a n }中,a 1=2,a n =a n-12(n ≥2),求数列{a n }通项公式。
解析:∵ a 1=2,a n =a n-12(n ≥2)>0,两边同时取对数得,lg a n =2lg a n-1∴1lg lg -n na a =2, 根据等比数列的定义知,数列{lg a n }是首相为lg2,公比为×∴a 1,a 3,a 5……与a 2,a 4 ,a 6 ……是首相分别为a 1,a 2 ,公比都是4的等比数列,又∵a 1=1,a n+1a n =4n ,∴a 2=4 ∴a n ={nn n n 22144-三、等差等比混合构造法数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得 例6.设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以,11+⋅n n a a 得1131=⋅+.=( =1)31(4347---n练习1、在数列{a n }中,a 1=1,a n+1=3a n +2n (n ∈N *),求数列{a n }通项公式。
解:由a n+1=3a n +2n (n ∈N *)得,a n+1+2n+1=3(a n +2n )(n ∈N *),设b n = a n +2n 则b n+1=3b n ,∴nn b b 1+=3,根据等比数列的定义知, 数列{b n }是首相b 1=3,公比为q=3的等比数列, 根据等比数列的通项公式得b n =3n ,即a n +2n =3n ,∴数列通项公式为a n =3n -2n 注意:2n+1-2n =2n2、在数列}{n a 中,11=a ,321+-=+n n n a a ,求数列}{n a 的通项公式。
解:、由321+-=+n n n a a 得,3)2()2(11=+-+++n n n n a a ,根据等差数列的定义知,数列}2{n n a +是首项为3,公差为3的等差数列,所以 n n)1个-1,解:由n n n a a a +=++1223得,3312n n n a a a +=++设)(112n n n n ka a h ka a -=-+++ 比较系数得3132=-=+kh h k ,,解得31,1-==h k 或1,31=-=h k 若取31,1-==h k ,则有)(31112n n n n a a a a --=-+++∴}{1n n a a -+是以31-为公比,以11212=-=-a a 为首项的等比数列∴11)31(-+-=-n n n a a由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---=11)31()31()31()31(232++-+-++-+--- n n=1311)31(11++---n =11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n6. 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422=+成立,求{}n a 的通项an.解:a 22 ∴n a 2(+n a ∴a n 7. 设{∵n a ∴a n -=a a n 8. 解:a ∴a n ∴1+a n9.设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a n b , 则12-=n n b b{}n b 是以2为公比的等比数列,11log 121=+=b .11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n, ∴1212--=n n a总结而运用待定系数法变换递推式中的常数就是一种重要的转化方法。
递推式一般为:()n f pa a n n +=+1;n n n q pa a +=+1(1)通过分解常数,可转化为特殊数列{a n +k }的形式求解。
一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=1-p q,从而得等比数列{a n +k }。
(2)通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解。
这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,。
3、构造法构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式.(1)构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. (2)构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. (3)构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简 (4)构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.补充一般方法:一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12=n a .21123a a -=⨯,以上式子累加,利用 111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+,3121n a n ∴=-+三、累乘法对形如1()n n a f n a +=的数列的通项,可用累乘法,即令n=2,3,…n —1得到n —1个式子累乘求得通项。
例3.已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-=,求通项公式n a .解:由n n a n n S )12(-=得11(1)(23)n n S n n a --=--两式相减得:1(21)(23),n n n a n a -+=-,211,,5a a =个等式相乘得:5)(27)313)75n n -⋅-⋅(2=.n 的关系,求数列⎩⎨⎧=a n }n a 的解:21--n n……,.2212-=a a11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证1a 1=也满足上式,所以212[2(1)]3n n n a --=+-点评:利用公式⎩⎨⎧≥-==-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并. 五、“归纳—猜想—证明”法直接求解或变形都比较困难时,先求出数列的前面几项,猜测出通项,然后用数学归纳法证明的方法就是“归纳—猜想—证明”法.例5.若数列{}n a 满足:,232,1111-+⨯+==n n n a a a 计算a 2,a 3,a 4的值,由此归纳出a n 的公式,并证明你的结论.解:∵a 2=2 a 1+3×2°=2×1+3×2°,a 3=2(2×1+3×2°)+3×21=22×1+2×3×21, a 4=2(22×1+2×3×21)+3×22=23×1+3×3×22; 猜想a n =2n -1+(n -1)×3×2n -2=2n -2(3n -1); 用数学归纳法证明:1°当n=1时,a 1=2-1×=1,结论正确; 2°假设n=k 时,a k =2k -2(3k -1)正确, ∴当n=k+1时,111123)13(2232---+⨯+-=⨯+=k k k k k k a a=)23(21+-k k ],1)1(3[21)1(-+=-+k k 结论正确; 由1°、2°知对n ∈N*有).13(22-=-n a n n 点评:利用“归纳—猜想—证明”法时要小心猜测,切莫猜错,否则前功尽弃;用数学归纳法证明时要注意格式完整,一定要使用归纳假设.。