甘青宁2019届高三3月联考数学(理)试题(解析版)
- 格式:pdf
- 大小:832.23 KB
- 文档页数:15
高三数学考试(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选:B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.2.设集合,,则集合可以为()A. B. C. D.【答案】C【解析】【分析】先求A,由交集对照选项即可求解【详解】由题,因为,对照选项可知C成立故选:C【点睛】本题考查了集合的交集的运算,准确计算是关键,是基础题.3.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下:由此表估计这100名小学生身高的中位数为(结果保留4位有效数字)A. 119.3B. 119.7C. 123.3D. 126.7【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.将函数的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图像,则的最小正周期是()A. B. C. D.【答案】B【解析】【分析】先由伸缩变换确定g(x),再求周期公式计算即可【详解】由题,∴T==故选:B【点睛】本题考查三角函数伸缩变换,准确记忆变换原则是关键,是基础题.5.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求【详解】由题2b=16.4,2a=20.5,则则离心率e=故选:B【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题6.若函数有最大值,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解【详解】由题,,故单调递减,故,因为函数存在最大值,所以解故选:B【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.汉朝时,张衡得出圆周率的平方除以等于.如图,网格纸上的小正方形的边长为,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. B.C. D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.设满足约束条件则的最大值与最小值的比值为()A. -1B.C. -2D.【答案】C【解析】【分析】画出可行域,求得目标函数最大最小值则比值可求【详解】由题不等式所表示的平面区域如图阴影所示:化直线l;为y=-x+z,当直线l平移到过A点时,z最大,联立得A(2,5),此时z=7; 当直线l平移到过B点时,z最小,联立得B(, 此时z=-,故最大值与最小值的比值为-2 故选:C【点睛】本题考查线性规划,准确作图与计算是关键,是基础题.9.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.10.在正方体中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】D【解析】【分析】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,在A中利用余弦定理即可求解.【详解】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,设正方体的边长为4,则∠A故选:D【点睛】本题考查异面直线所成的角,作平行线找角是基本思路,准确计算是关键,是基础题.11.设为等差数列的前项和,若,,则的最小值为()A. -343B. -324C. -320D. -243【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可【详解】∵解得∴设当0<x<7时,当x>7时,,故的最小值为最小值为f(7)=-343故选:A【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.12.已知分别是双曲线:的左、右顶点,为上一点,且在第一象限.记直线,的斜率分别为,,当取得最小值时,的重心坐标为()A. B. C. D.【答案】B【解析】【分析】设P(x,y)证明为定值,运用基本不等式求得取得最小值时P坐标即可求解【详解】设P(x,y),则=则当且仅当取等,此时P(3,4),则重心坐标为,即故选:B【点睛】本题考查双曲线的几何性质,综合问题,明确为定值是关键,注意计算的准确,是中档题.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的展开式的第2项为__________.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.在平行四边形中,,,,则点的坐标为__________.【答案】【解析】【分析】先求再求进而求D即可【详解】由题,故D(6,1)故答案为【点睛】本题考查向量的坐标运算,准确计算是关键,是基础题15.若函数,则__________.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.16.过点引曲线:的两条切线,这两条切线与轴分别交于两点,若,则__________.【答案】【解析】【分析】由两切线的斜率互为相反数,设切点,求导列关于t的方程求出t值即可求解【详解】设切点坐标为即,解得t=0或t=两切线的斜率互为相反数,即2a+6,解得故答案为【点睛】本题考查导数的几何意义,转化两切线的斜率互为相反数是突破点,熟练掌握切线的求法,准确计算是关键,是中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分17.在中,,.(1)求;(2)若,求的周长.【答案】(1);(2).【解析】【分析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,求购买总价的数学期望.【答案】(1)0.76;(2)120640元.【解析】【分析】(1)先求甲单位优惠比例低于乙单位优惠比例的概率,再由对立事件得概率即可求解;(2)先写出在折扣优惠中每箱零件的价格为的取值,再列分布列求解即可【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为,所以甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为元,则或188.的分布列为则.从而购买总价的数学期望为元.【点睛】本题考查离散型随机变量的分布列,对立事件的概率,是基础题.19.已知是抛物线:上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段的垂直平分线在轴上的截距.【答案】(1)详见解析;(2)4.【解析】【分析】(1)先求出p,再由焦半径公式求出,,即可证明;(2)与联立由韦达定理代入,求得,再写出的垂直平分线的方程即可求得截距【详解】(1)证明:∵在抛物线:上,∴,∴.∴,,,∵,∴,,依次成等比数列.(2)与联立,得,则,解得.由韦达定理,得,,则,即.从而,线段的中点坐标为,的垂直平分线的方程为,令,得,故所求截距为4.【点睛】本题考查抛物线的简单几何性质,直线与抛物线的位置关系,准确计算是关键,是中档题.20.如图,在多面体中,四边形为正方形,,,.(1)证明:平面平面.(2)若平面,二面角为,三棱锥的外接球的球心为,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.21.已知函数的导函数满足对恒成立.(1)判断函数在上的单调性,并说明理由;(2)若,求的取值范围.【答案】(1)在上单调递增;(2).【解析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若与相交于两点,,求;(2)圆的圆心在极轴上且圆经过极点,若被圆截得的弦长为1,求圆的半径.【答案】(1)6;(2)13.【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.设函数.(1)求不等式的解集;(2)证明:.【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。
高三数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】由题可知,分别求得集合,,再根据集合的交集的运算,即可求解,得到答案。
【详解】由题可知,集合,,则,故选C。
【点睛】本题主要考查了集合的交集运算问题,其中解答中正确求解集合,再根据集合的交集的运算是解答的关键,着重考查了推理与计算能力,属于基础题。
2.已知,则A. -2B. 0C. 1D. 2【答案】B【解析】【分析】根据复数的运算和复数相等的条件,即可求解得值,进而得到答案。
【详解】由题可得,则,,故,故选B。
【点睛】本题主要考查了复数的运算和复数相等应用,其中解答中熟记复数的四则运算和复数相等的条件是解答本题的关键,着重考查了推理与计算能力,属于基础题。
3.函数的一个单调递增区间为A. B. C. D.【答案】A【解析】【分析】根据三角函数的恒等变换,化简,再根三角函数的性质,即可求解。
【详解】由题可知.由,,解得,,当时,可得,即函数的单调递增区间为,故选A。
【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中根据三角恒等变换的公式正确化简三角函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题。
4.自古以“米以食为天”,餐饮业作为我国第三产业中的一个支柱产业,一直在社会发展与人民生活中发挥着重要作用.某机构统计了2010~2016年餐饮收入的情况,得到下面的条形图,则下面结论中不正确...的是A. 2010~2016年全国餐饮收入逐年增加B. 2016年全国餐饮收入比2010年翻了一番以上C. 2010~2016年全国餐饮收入同比增量最多的是2015年D. 2010~2016年全国餐饮收入同比增量超过3000亿元的年份有3个【答案】D【解析】【分析】由题意,根据给定的条形图中的数据,逐项判定,即可得到答案。
专题14 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(l n2)8f =,则a =______________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.【母题来源二】【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围相应地化简解析式,判断()f x 与()f x 的关系,得出结论,也可以利用图象作判断. ②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 2.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x x x a a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 3.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 4.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.5.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 6.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 7.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 8.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 9.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 10.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 12.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .【答案】D【分析】根据奇函数的定义逐项检验即可.【解析】A 选项中 ,故不是奇函数,B 选项中 ,故不是奇函数,C 选项中 ,故不是奇函数,D 选项中,是奇函数,故选D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23- C .23D .1【答案】B【分析】首先根据奇函数的定义,求得参数0a =,从而得到2(1)(1)3f a f -=-=-,求得结果. 【解析】由()()f x f x -=-可得22(2)22a x x x x--+=+,∴0a =,∴2(1)(1)3f a f -=-=-, 故选B .【名师点睛】该题考查函数的奇偶性及函数求值等基础知识,属于基础题目,考查考生的运算求解能力. 3.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-【答案】B【分析】根据奇函数的性质 求出 ,再根据奇函数的定义求出3(log 5)f -.【解析】当 时3()x m f x =+(m 为常数),则03(0)0m f =+=,则 , , 函数()f x 是定义在R 上的奇函数,∴335log 35((log 5)()log )314f f -=-=--=-.故选B .【名师点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有 .4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-【答案】A【分析】3()1f x x =+,可得()()2f x f x -+=,结合1lglg22=-,从而求得结果. 【解析】∵3()1f x x =+,∴()()2f x f x -+=,∵1lglg22=-,∴1(lg 2)(lg )22f f +=, 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m = A .4- B .3- C .2-D .1-【答案】C【分析】先由2()e e 21xxxx f x -=-++得到()()1f x f x -+=,进而可求出结果.【解析】因为2()e e 21x xxx f x -=-++,所以21()e e e e 2121x x xx x x xf x -----=-+=-+++, 因此()()1f x f x -+=; 又(lg )3f m =,所以(lg )1(lg 1(lg )132)f mf m f m =-=-=-=-. 故选C .【名师点睛】本题主要考查函数奇偶性的性质,熟记函数奇偶性即可,属于常考题型. 6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .2【答案】A【解析】由题意可得: . 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.7.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x =C .||2x y =D .cos y x =【答案】B【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B .【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211()log 2144f m m -=+=-+=-, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.9.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -= A .2- B .1- C .2D .1【答案】A【分析】利用函数()f x 是奇函数,得到(3)(3)f f -=-,再根据对数的运算性质,即可求解.【解析】由题意,函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()log (1)f x x =+,则22(3)(3)log (31)log 42f f -=-=-+=-=-,故选A .【名师点睛】本题主要考查了函数的奇偶性的应用,以及对数的运算的性质的应用,其中解答中熟记函数的奇偶性,以及熟练应用对数的性质运算是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.10.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .【答案】A【分析】根据题意和函数的奇偶性的性质通过化简、变形,求出函数的周期,利用函数的周期性和已知的解析式求出 的值.【解析】因为 是奇函数, 是偶函数,所以 ,则 ,即 , 所以 , 则奇函数 是以4为周期的周期函数, 又当 时, ,所以 , 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有函数的周期性,函数的奇偶性的定义,正确转化题的条件是解题的关键.11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =A .1B .2C .1-D .2-【答案】A【分析】根据题意,对33())22(f x f x +=-变形可得()(3)f x f x =-,则函数()f x 是周期为3的周期函数,据此可得(2017)(1)f f =,(2019)(0)f f =,结合函数的解析式以及奇偶性求出(0)f 与(1)f 的值,相加即可得答案.【解析】根据题意,函数()f x 满足任意的x ∈R 都有33())22(f x f x +=-, 则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,所以(2017)(16723)(1)f f f =+⨯=,(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =, 当3(,0)2x ∈-时,()f x =12log (1)x -,则12(1)log [1(1)]1f -=--=-,则(1)(1)1f f =--=,故(2017)(2019)(0)(1)1f f f f +=+=, 故选A .12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为 A .2B .1C .-1D .-2【答案】A【分析】根据函数的奇偶性的特征,首先得到 ,进而根据奇函数可得 ,根据 可得 ,即可得到结论.【解析】∵ 为偶函数, 是奇函数,∴设 , 则 ,即 ,∵ 是奇函数,∴ ,即 , , 则 , ,∴ , 故选A .【名师点睛】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴以及周期性是解决本题的关键,属于中档题.13.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-【分析】根题设条件,分别求得,当0x >和0x <时,()0f x <的解集,由此可求解不等式(1)0f x -<的解集,得到答案.【解析】由题意,当0x >时,令()0f x >,即2log (1)0x -<,解得12x <<, 又由函数()y f x =是奇函数,函数()f x 的图象关于原点对称, 则当0x <时,令()0f x >,可得2x <-,又由不等式(1)0f x -<,可得112x <-<或12x -<-,解得23x <<或1x <-, 即不等式(1)0f x -<的解集为(,1)(2,3)-∞-,故选A .【名师点睛】本题主要考查了函数的基本性质的综合应用,其中解答中熟记对数函数的图象与性质,以及数列应用函数的奇偶性的转化是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-【答案】C【分析】根据(5)(3)f x f x +=-,可得(8)()f x f x +=,即()f x 的周期为8,再根据[0,4)x ∈时,2()log (2)f x x =+及()f x 为R 上的偶函数即可求出(766)(2)2f f ==.【解析】由(5)(3)f x f x +=-,可得(8)()f x f x +=,所以()f x 是周期为8的周期函数, 当[0,4)x ∈时,2()log (2)f x x =+,所以(96(7682)6)(2)2f f f ⨯-===, 又()f x 是定义在R 上的偶函数,所以2(2)(2)log 42f f -===. 故选C .15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .【分析】由当 时, ,可得,根据奇偶性求出 即可. 【解析】定义域为R 的奇函数 ,当 时, ,则, 则 ..., 又当 时, , — , 故. 故选B .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--【答案】B【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(2,7],再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-.【解析】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤<时,()f x 在[7,0)-上单调递增, 且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<, 所以不等式()0f x >的解集为(2,0)(2,7]-.故选B .【名师点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________. 【答案】18-【分析】先求(4)f ,再利用函数的奇偶性求4()f -.【解析】由题得22(4)log 4418f =+=,所以(4)(4)18f f -=-=-.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.【分析】由对称性及奇偶性求得函数的周期求解即可【解析】由题()()(4)f x f x f x =-=-,则函数的周期4T =,则()1f =(1)(1)(3)f f f =-==19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________. 【答案】8-【分析】先求(3)f -,再根据奇函数性质得(3)f . 【解析】因为31(3)()82f --==,函数()f x 是奇函数,所以(3)(3)8f f =--=-.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________. 【答案】0.25-【分析】根据函数的奇偶性和周期性,求出( 2.5)(0.5)f f -=-,求出函数值即可. 【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴( 2.5)( 2.52)(0.5)(0.5)f f f f -=-+=-=-,∵当[0,1]x ∈时,()(1)f x x x =-,∴(0.5)0.5(10.5)0.25f =⨯-=,∴( 2.5)0.25f -=-. 21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.【答案】3【分析】先由函数关于(2,0)对称,求出(1)f ,然后由奇函数可求出(1)f -. 【解析】函数()f x 的图像关于点(2,0)对称,所以(1)(3)3f f =-=-, 又函数()f x 为奇函数,所以(1)(1)3f f =-=-.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.【答案】 【分析】利用解析式求出1()2f ,根据奇函数定义可求得结果.【解析】由题意知1212()233f ===, ()f x为奇函数,11()()22f f ∴-=-=.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 【答案】2lg - 【分析】先求出1()100f 的值,设为a ,判断a 是否大于零,如果大于零,直接求出()f a 的值,如果不大于零,那么根据奇函数的性质()()f a f a =--,进行求解. 【解析】10,100>∴1()100f =21lg()lg102100-==-, 20-<∵,函数()f x 是奇函数,(2)(2)lg 2f f ∴-=-=-,所以1(())100f f 的值为lg2-.24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.【答案】2-【解析】函数 为偶函数,则 , 即 恒成立, .则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________. 【答案】4-【分析】根据函数的奇偶性,先求b 的值,再代入1x =,求得(1)(1)4f g -=,进而求解(1)(1)f g -+-的值.【解析】由()f x 为定义在R 上的奇函数可知(0)0f =,因为(0)0g =,所以0(0)(0)20f g b -=+=,解得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1[(1)(1)](4)1)f g f g f g =-+=---+=--.【名师点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1x f x a =--是奇函数,则常数 等于______________. 【答案】【分析】由奇函数满足 ,代入函数求值即可. 【解析】 对一切 且 恒成立.恒成立,恒成立., .27.【吉林省长春市实验中学2019届高三期末考试】已知函数 是定义在 上的周期为 的奇函数,当时, ,则______________. 【答案】【分析】根据 是周期为4的奇函数即可得到 =f (﹣8 )=f ( )=﹣f (),利用当0<x <2时,=4x,求出,再求出 ,即可求得答案.【解析】∵ 是定义在R 上周期为4的奇函数,∴=f(﹣8)=f()=﹣f(),∵当x∈(0,2)时,,∴=﹣2,∵是定义在R上周期为4的奇函数,∴==,同时=﹣,∴=0,∴﹣2.【名师点睛】考查周期函数的定义,奇函数的定义,关键是将自变量的值转化到函数解析式所在区间上,属于中档题.28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:①;②,,;③;④.其中是偶函数的有______________.(填序号)【答案】①【分析】先判断函数的定义域是否关于原点对称可知②,,为非奇非偶函数;再利用偶函数的定义,分别检验①③④是否符合,从而得到结果.【解析】①,为偶函数;②定义域,关于原点不对称,为非奇非偶函数;③,为奇函数;④,为非奇非偶函数;故答案为①.【名师点睛】该题考查的是有关偶函数的选择问题,涉及到的知识点有函数奇偶性的定义,注意判断函数奇偶性的步骤,首先确定函数的定义域是否关于原点对称,再者就是判断与的关系.29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知,.若偶函数满足(其中,为常数),且最小值为1,则______________.【答案】【分析】利用函数是偶函数,确定,利用基本不等式求最值,确定的值,即可得到结论.【解析】由题意,,,为偶函数,,,,,, ,.30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________. 【答案】78-【分析】先由题意,()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,利用函数的奇偶性推出()f x 的周期4T =,可得291()()22f f =-,然后带入求得结果. 【解析】因为(1)f x -为奇函数,所以(1)(1),(2)()f x f x f x f x --=--∴--=-, 又()f x 是定义域为(,)-∞+∞的偶函数,所以()()f x f x -=,即(2)(),(2)()f x f x f x f x --=--∴-=-,所以()f x 的周期4T =,因为295551()(12)()(2)()22222f f f f f =+==--=-,2117()1()228f =-=, 所以297()28f =-.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________. 【答案】 , ,【分析】利用偶函数关于 轴对称, 在 , 上单调递增,将不等式 转化为 ,即可解得 的解集. 【解析】 函数 是定义域为 的偶函数,可转化为 , 又 在 , 上单调递增,,两边平方解得 , , , 故 的解集为 , , .32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.【答案】0【分析】根据函数(1)f x +为偶函数,函数(2)f x +为奇函数可得()(2)f x f x -=+和()(4)f x f x --=+,可得(4)()f x f x +=,则函数()f x 是周期为4的周期函数,结合函数的对称性可得(1)(3)0f f +=且(2)(0)(4)0f f f ===,从而可得结果.【解析】根据题意,(1)f x +为偶函数,则函数()f x 的图象关于直线1x =对称, 则有()(2)f x f x -=+,若函数(2)f x +为奇函数,则函数()f x 的图象关于点(2,0)对称, 则有()(4)f x f x --=+,则有(4)(2)f x f x +=-+, 设2t x =+,则(2)()f t f t +=-, 变形可得(4)(2)()f t f t f t +=-+=, 则函数()f x 是周期为4的周期函数, 又由函数()f x 的图象关于点(2,0)对称, 则(1)(3)0f f +=且(2)0f =, 则有(2)(0)0f f =-=, 可得(4)0f =,则20191(1)(2)(019))(2i f i f f f ==+++∑[12(3)4][(2013)(2014()()(2015)(2016]))()f f f f f f f f =+++++++++[(2017)(2018)(201()9)]12((0)3)f f f f f f ++=++=,故答案为0.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数 与 都是定义在 上的奇函数,当 时, ,则的值为______________. 【答案】2【分析】根据题意,由 是定义在R 上的奇函数可得 ,结合函数为奇函数,分析可得 ,则函数是周期为2的周期函数,据此可得,结合函数的解析式可得的值,结合函数的奇偶性与周期性可得 的值,相加即可得答案. 【解析】根据题意 是定义在R 上的奇函数,则 的图象关于点(﹣1,0)对称, 则有 ,又由 是R 上的奇函数,则 ,且 ,则有,即,则函数是周期为2的周期函数,则,又由=log2=﹣2,则=2,,故=2+0=2.。
绝密★启用前【校级联考】甘肃宁夏青海三省3月联考2019届高三数学考试试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.下列格式的运算结果为实数的是( ) A .−i (1+i ) B .i (1−i ) C .(1+i )−(1−i )D .(1+i )(1−i )2.设集合A ={x|x 2>4},A ∩B ={x|x <−2},则集合B 可以为( ) A .{x|x <3} B .{x|−3<x <1} C .{x|x >−3}D .{x|x <1}3.在平行四边形ABCD 中,A (1.2),B (−2,0),AC ⃑⃑⃑⃑⃑ =(2,−3),则点D 的坐标为( ) A .(6,1)B .(−6,−1)C .(0,−3)D .(0,3)4.若函数f(x)=1+x 3,则f(lg2)+f(lg 12)=( ) A .2B .4C .-2D .-45.从某小学随机抽取100名同学,将他们的身高(单位:厘米)分布情况汇总如下:有此表估计这100名小学生身高的中位数为(结果保留4位有效数字)( ) A .119.3B .119.7C .123.3D .126.7装…………○…线…………○……※※要※※在※※装※※订装…………○…线…………○……A .25B .35C .2√35D .2√557.设x,y 满足约束条件{y +2≥0,x −2≤0,2x −y +1≥0, 则z =x +y 的最大值为( )A .7B .5C .0D .−728.在ΔABC 中,D 为AC 边上一点,若BD =3,CD =4,AD =5,AB =7,则BC =( ) A .2√2B .√13C .2√3D .√379.汉朝时,张衡得出圆周率的平方除以16等于58.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为A .32B .40C .32√103D .40√10310.若直线y =kx −2与曲线y =1+3lnx 相切,则k =( ) A .3B .13C .2D .1211.已知函数f (x )=2cos 2(2x +π6)+√3sin (4x +π3),则下列判断错误的是( ) A .f (x )为偶函数 B .f (x )的图像关于直线x =π4对称 C .f (x )的值域为 [−1,3]D .f (x )的图像关于点(−π8,0)对称12.在棱长为2的正方体ABCD −A 1B 1C 1D 1中,F 为棱B 1C 1上一点,且F 到直线A 1B 与CC 1的距离相等,四面体A 1BB 1F 的每个顶点都在球O 的表面上,则球O 的表面积为( ) A .8π B .41π4C .9πD .33π4……○…………装…※※请※※不※※要※※……○…………装…第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.函数f(x)={2x +1,x ≥1,3x −1,x <1的值域为__________.14.小张要从5种水果中任选2种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________. 15.若tan(α+2β)=2,tanβ=−3,则tan(α+β)=__________. 16.已知A ,B 分别是双曲线C :x 2m −y 22=1的左、右顶点,P(3,4)为C 上一点,则ΔPAB 的外接圆的标准方程为__________. 三、解答题17.设S n 为等差数列{a n }的前n 项和,已知a 7=5,S 5=−55. (1)求S n ; (2)设b n =S n n,求数列{1b n b n+1}的前19项和T 19.18.如图,在三棱柱ABC −A 1B 1C 1中,AA 1⊥平面ABC ,D 为BC 边上一点,BD =√3,AA 1=AB =2AD =2.(1)证明:平面ADB 1⊥平面BB 1C 1C .(2)若BD =CD ,试问:A 1C 是否与平面ADB 1平行?若平行,求三棱锥A −A 1B 1D 的体积;若不平行,请说明理由.19.某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2,⋅⋅⋅,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.…………线…………○………………线…………○……(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明. (2)建立y 关于x 的回归方程,并据此预计该校学生升入中学的第一年(年纪代码为7)给父母洗脚的百分比.附注:参考数据:∑(x i −x )6i=12=17.5, ∑(x i −x )(y i −y )ni=1=35,√133000≈365参考公式:相关系数r =∑(x −x )(y −y )ni=1√∑(x i −x )2∑(y i −y )ni=12i=1若r >0.95,则y 与x 的线性相关程度相当高,可用线性回归模型拟合y 与x 的关系.回归方程y ̂=b ̂x +a ̂中斜率与截距的最小二乘估计公式分别为:b̂=∑(x i −x )(y i −y )ni=1∑(x i −x )2n i=1,a ̂=y −b̂x . 20.已知B(1,2)是抛物线M :y 2=2px(p >0)上一点,F 为M 的焦点.(1)若A(12,a),C(53,b)是M 上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y =kx −3(k ≠0)与M 交于P(x 1,y 1),Q(x 2,y 2)两点,且y 1+y 2+y 1y 2=−4,求线段PQ 的垂直平分线在x 轴上的截距. 21.已知函数f (x )=(x −a −1)e x −12x 2+ax .(1)讨论f (x )的单调性.(2)若∃x 0∈[1,2],f (x )<0,求a 的取值范围. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为{x =−2+12t,y =√32t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=√10. (1)若l 与C 相交于A,B 两点,P (−2,0),求|PA |•|PB |;(2)圆M 的圆心在极轴上,且圆M 经过极点,若l 被圆M 截得的弦长为1,求圆M 的半径 23.设函数f(x)=|x −1|+|x +3|.(2)证明:4−x2≤f(x)≤2|x|+4.参考答案1.D 【解析】 【分析】利用复数运算化简每个选项即可求解 【详解】对A,−i (1+i )=1−i; 对B,i (1−i )=1+i; 对C, (1+i )−(1−i )=2i; 对D,(1+i )(1−i )=2 故选:D 【点睛】本题考查复数的运算,熟记运算法则是关键,是基础题 2.D 【解析】 【分析】先求得集合A,再依次验证选项即可. 【详解】因为A ={x|x <−2或x >2},可以依次验证选项,得到当B ={x|x <1}时,A ∩B ={x|x <−2}. 故答案为:D. 【点睛】这个题目考查了集合的交集运算,属于基础题目. 3.A 【解析】 【分析】先求AB ⃑⃑⃑⃑⃑ ,再求AD ⃑⃑⃑⃑⃑ =AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ,即可求D 坐标 【详解】AB ⃑⃑⃑⃑⃑ =(−3,−2),∴AD ⃑⃑⃑⃑⃑ =AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ =(5,−1),则D(6,1) 故选:A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题4.A【解析】【分析】f(x)=1+x3,可得f(−x)+f(x)=2,结合lg12=−lg2,从而求得结果. 【详解】∵f(x)=1+x3,∴f(−x)+f(x)=2,∵lg12=−lg2,∴f(lg2)+f(lg12)=2,故选A.【点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在(100,110],(110,120],(120,130]的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则(x−120)×0.310=0.1,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.6.B【解析】【分析】分析图知2a,2b,则e可求.【详解】由题2b=16.4,2a=20.5,则ba =45,则离心率e=√1−(45)2=35.故选:B.【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题.7.A【解析】【分析】作出约束条件对应的可行域,利用线性规划的知识,通过平移即可求得z的最大值.【详解】如图,作出约束条件表示的可行域,由图可知,当直线z=x+y经过点A(2,5)时,z取得最大值7,故选A.【点睛】该题考查的是有关线性规划的问题,注意目标函数的形式,属于简单题目.8.B【解析】【分析】先在三角形ABD中用余弦定理计算出cosA的值,然后在三角形ABC中用余弦定理求得BC的长.【详解】在三角形ABD中,由余弦定理得cosA=25+49−92×5×7=6570=1314.在三角形ABC中,由余弦定理得BC=√49+81−2×7×9×1314=√13.故选B.【点睛】本小题主要考查利用余弦定理计算角的余弦值和边长,属于基础题.9.C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为12π×22×4+13×12π×22×4=323π,利用张衡的结论可得π216=58,∴π=√10,V=32√103故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题10.A【分析】设切点为(x 0,kx 0−2),对y =1+3lnx 求导,得到y ′=3x ,从而得到切线的斜率k =3x 0,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果. 【详解】设切点为(x 0,kx 0−2), ∵y ′=3x ,∴{3x 0=k①,kx 0−2=1+3lnx 0②,由①得kx 0=3, 代入②得1+3lnx 0=1, 则x 0=1,k =3, 故选A. 【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目. 11.D 【解析】 【分析】化简f (x )=1+2cos4x 后,根据函数的性质可得. 【详解】f (x )=1+cos (4x +π3)+√3sin (4x +π3)=1+2sin (4x +π3+π6)=1+2cos4x , f (x )为偶函数,A 正确; 4x =kπ,得x =kπ4,当k=1时,B 正确;因为2cos4x ∈[−2,2],∴f (x )的值域为 [−1,3],C 正确; 故D 错误. 故选:D . 【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,准确计算是关键,是基础题【解析】【分析】由题,先确定F的位置,由B1B,B1A1,B1F互相垂直,构造以B1B,B1A1,B1F为棱的长方体,求其外接球半径即可求得球的表面积【详解】过B1做B1N⊥A1B,∵B1C1⊥面AA1B1B,∴B1F⊥A1B,∴A1B⊥面B1NF,∴A1B⊥FN∴FN为F到直线A1B的距离,则|NF|=|C1F|,设|B1F|=x,∴√x2+(√2)2=2−x,解得x=12,∵B1B,B1A1,B1F互相垂直, 以B1B,B1A1,B1F为棱的长方体球心即为O,则2R=√4+4+14=√33 2,∴球O的表面积为4πR2=33π4故选:D【点睛】本题考查椎体的外接球,明确点F的位置是突破点,构造长方体是关键,是中档题13.(−∞,2)∪[3,+∞)【解析】【分析】将函数f(x)按照自变量x的范围分两种情形分析,根据一次函数的单调性可以求得函数f(x)在(−∞,1)上的值域为(−∞,2),结合指数函数的单调性可以求得f(x)在[1,+∞)上的值域为[3,+∞),两者取并集求得结果.【详解】因为f(x)在(−∞,1)上的值域为(−∞,2),在[1,+∞)上的值域为[3,+∞),故f(x)的值域为(−∞,2)∪[3,+∞),故答案是:(−∞,2)∪[3,+∞).【点睛】该题考查的是有关分段函数的值域的求解问题,注意分段来处理即可,属于简单题目.14.35(或0.6)【解析】确定基本事件个数即可求解【详解】由题从5种水果中任选2种的事件总数为C52=10,小张送的水果既有热带水果又有温带水果的基本事件总数为C21C31=6,∴小张送的水果既有热带水果又有温带水果的概率为610=35故答案为3515.-1【解析】【分析】根据α+β=(α+2β)−β,利用两角差的正切公式计算即可得结果.【详解】tan(α+β)=tan[(α+2β)−β]=2−(−3)1+2×(−3)=−1.【点睛】该题考查的是有关角的正切值的求解,涉及到的知识点有两角差的正切公式,属于简单题目. 16.x2+(y-3)2=10【解析】【分析】由点P(3,4)为C上,求m,由外心设外心坐标M(0,t),M在PB的中垂线上求t即可【详解】∵P(3,4)为C上一点,9m −162=1,解得m=1,则B(1,0),∴k PB=42=2,PB中垂线方程为y=−12(x−2)+2,令x=0,则y=3,设外接圆心M(0,t),则M(0,3),r=|MB|=√1+32,∴ △PAB外接圆的标准方程为x2+(y-3)2=10故答案为x2+(y-3)2=10【点睛】本题考查圆的标准方程,双曲型方程,熟记外心的基本性质,准确计算是关键,是基础题17.(1)S n=2n2−21n;(2)T19=−119.【解析】【分析】(1)首先根据题意,列出关于a1和d的方程组,求解之后利用等差数列的求和公式求得结果;(2)求得b n的通项公式,之后应用裂项相消法求和得结果.【详解】(1)∵{a1+6d=55(a1+2d)=−55,∴{a1=−19d=4,∴S n=−19n+n(n−1)2×4=2n2−21n.(2)设b n=S nn=2n−21,则1b n b n+1=12(12n−21−12n−19),故T19=12(1−19−1−17+1−17−1−15+⋯+117−119)=12(−119−119)=−119.【点睛】该题考查的是有关数列的问题,涉及到的知识点有数列的通项公式和求和公式,以及裂项相消法求和,属于中档题目.18.(1)详见解析;(2)两者平行,且V A−A1B1D =√33.【解析】【分析】(1)利用AA1⊥平面ABC,证得BB1⊥平面ABC,得到BB1⊥AD,利用余弦定理证得AD⊥BC,由此证得AD⊥平面BB1C1C,从而证得平面ADB1⊥平面BB1C1C.(2)取B1C1的中点E,连接DE,CE,A1E,通过证明四边形ADEA1为平行四边形,证得A1E//AD,同理证得CE//B1D,所以平面ADB1//平面A1CE,由此证得A1C//平面ADB1.利用V A−A1B1D =V B1−AA1D=V B−AA1D求得三棱锥的体积.【详解】(1)证明:因为AA1⊥平面ABC,所以BB1⊥平面ABC,因为AD⊂平面ABC,所以AD⊥BB1.在△ABD中,由余弦定理可得,BD2=AB2+AD2−2AB·ADcos60°=3,则AB2=AD2+BD2,所以AD⊥BC,又BC∩BB1=B,所以AD⊥平面BB1C1C,因为AD⊂平面ADB1,所以平面ADB1⊥平面BB1C1C.(2)解:A1C与平面ADB1平行.证明如下:取B1C1的中点E,连接DE,CE,A1E,因为BD=CD,所以DE∥AA1,且DE=AA1,所以四边形ADEA1为平行四边形,则A1E∥AD.同理可证CE∥B1D.因为A1E∩CE=E,所以平面ADB1∥平面A1CE,又A1C⊂平面A1CE,所以A1C∥平面ADB1.因为AA1∥BB1,所以V B1−AA1D =V B−AA1D,又BD=√3,且易证BD⊥平面AA1D,所以V A−A1B1D =V B1−AA1D=V B−AA1D=13×√3×12×2×1=√33.【点睛】本小题主要考查面面垂直的证明,考查线面垂直的证明以及三棱锥体积的求法,属于中档题. 19.(1)详见解析;(2)见解析.【解析】【分析】(1)计算y =16,得∑(y i −y)6i=12=76,代入r 计算公式求值即可判断y 与x 的线性相关程度;(2)由公式计算b =3517.5=2,求x ,带入回归直线求得a ̂,进而求得回归方程,将x=7代入直线,即可确定百分比 【详解】(1)因为y =16×(11+13+16+15+20+21)=16所以∑(y i −y)6i=12=76, 所以r =√17.5×76=√1330,因为√133000≈365,所以√1330≈36.5, 所以r ≈3536.5≈0.96.由于y 与x 的相关系数约为0.96>0.95,说明y 与x 的线性相关程度相当高,从而可用线性回归模型拟合y 与x 的关系. (2)b =3517.5=2因为x =16×(1+2+3+4+5+6)=3.5,所以a ̂=y ̅−b ̂x ̅=9所以回归方程为y ̂=2x +9.将x =7,代入回归方程可得y ̂=23,所以预计该校学生升入中学的第一年给父母洗脚的百分比为23%. 【点睛】本题考查相关系数r,回归直线方程,熟练运用公式计算是关键,是基础题 20.(1)详见解析;(2)4. 【解析】 【分析】(1)先求出p,再由焦半径公式求出|FA |,|FB |,|FC |即可证明;(2)y =kx −3与y 2=4x 联立由韦达定理代入y 1+y 2+y 1y 2,求得k =2,再写出PQ 的垂直平分线的方程即可求得截距 【详解】(1)证明:∵B(1,2)在抛物线M :y 2=2px(p >0)上,∴4=2p ,∴p =2. ∴|PA|=12+P2=32,|FB|=2,|FC|=53+P2=83,∵32×83=22,∴|FA|,|FB|,|FC|依次成等比数列.(2)y =kx −3与y 2=4x 联立,得ky 2−4y −12=0, 则Δ=16+48k >0,解得k >−13. 由韦达定理,得y 1+y 2=4k ,y 1y 2=−12k , 则y 1+y 2+y 1y 2=−8k =−4,即k =2>−13. 从而y 1+y 2=2,线段PQ 的中点坐标为(2,1), PQ 的垂直平分线的方程为y −1=−12(x −2),令y =0,得x =4,故所求截距为4. 【点睛】本题考查抛物线的简单几何性质,直线与抛物线的位置关系,准确计算是关键,是中档题. 21.(1)f(x)在(−∞,0)上单调递增,在(0,a)上单调递减,在(a,+∞)上单调递增;(2)(12(1−e),+∞). 【解析】 【分析】(1)f′(x)=(x −a)e x −x +a =(x −a )(e x −1),讨论当a <0,a =0,a >0时导数符号变化情况求得单调性(2)由(1)的讨论知:a ≤0时,f(x)min =f (1)<0,解12(1−e)<a ≤0;0<a ≤1时,f(x)min =f(1)<0,解0<a ≤1符合;当1<a <2时,f(x)min =f(a)=−e a +12a 2,构造函数g(x)=−e x +12x 2,x ∈(1,2),求导判单调性解a 的不等式;a ≥2时,f(x)min =f (2)<0,解a 范围,则问题得解 【详解】(1)f′(x)=(x −a)e x −x +a =(x −a)(e x −1)当a <0时,x ∈(−∞,a)∪(0,+∞),f′(x)>0;x ∈(a,0),f′(x)<0. 所以f(x)在(−∞,a)上单调递增,在(a,0)上单调递减,在(0,+∞)上单调递增. 当a =0时,f′(x)≥0对x ∈R 恒成立,所以f(x)在R 上单调递增. 当a >0时,x ∈(−∞,0)∪(a,+∞),f′(x)>0;x ∈(0,a),f′(x)<0. 所以f(x)在(−∞,0)上单调递增,在(0,a)上单调递减,在(a,+∞)上单调递增.(2)①当a ≤0时,由(1)知f(x)在(0,+∞)上单调递增,则f(x)在[1,2]上单调递增, 所以f(x)min =f(1)=−ae −12+a =(1−e)a −12<0,解得12(1−e)<a ≤0.②当a >0时,由(1)知f(x)在(0,a)上单调递减,在(a,+∞)上单调递增. 当0<a ≤1时,f(x)在[1,2]上单调递增.所以f(x)min =f(1)=−ae −12+a =(1−e)a −12<0对a ∈(0,1]恒成立,则0<a ≤1符合题意;当1<a <2时,f(x)在[1,a)上单调递减,在(a,2]上单调递增. 所以f(x)min =f(a)=−e a +12a 2.设函数g(x)=−e x +12x 2,x ∈(1,2),易得知x ∈(1,2)时,12x 2∈(12,2) ,−e x ∈(−e 2,−e),所以g(x)<0,故f(x)min =f(a)=−e a +12a 2<0对a ∈(1,2)恒成立,即1<a <2符合题意.当a ≥2时,f(x)在[1,2]上单调递减.所以f(x)min =f(2)=(1−a)e 2−2+2a =(1−a)(e 2−2)<0对a ∈[2,+∞)恒成立,则a ≥2符合题意.综上所述:a 的取值范围为(12(1−e),+∞). 【点睛】本题考查函数与导数的综合问题,导数与函数单调性与最值,不等式有解问题,分类讨论思想,明确分类标准,不重不漏是关键,是中档题 22.(1)6;(2)13. 【解析】 【分析】(1)将{x =−2+12t,y =√32t 代入x 2+y 2=10,利用t 的几何意义及韦达定理即可求解;(2)化直线l 和圆为普通方程,利用圆的弦长公式求得半径 【详解】(1)由ρ=√10,得x 2+y 2=10,将{x =−2+12t,y =√32t 代入x 2+y 2=10,得t 2−2t −6=0, 则t 1t 2=−6,故|PA|⋅|PB|=|t 1t 2|=6.(2)直线l 的普通方程为√3x −y +2√3=0, 设圆M 的方程为(x −a)2+y 2=a 2(a >0). 圆心(a,0)到直线l 的距离为d =|√3a+2√3|2,因为2√a 2−d 2=1,所以d 2=a 2−14=3(a+2)24,解得a =13(a =−1<0舍去), 则圆M 的半径为13. 【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.(1)(−92,−72)∪(32,52);(2)详见解析.【解析】 【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明f(x)<2|x|+4再由绝对值不等式证明f(x)≥4即可 【详解】(1)∵|f(x)−6|<1,∴−1<f(x)−6<1,即5<f(x)<7, 当−3≤x ≤1时,f(x)=4显然不合;当x <−3时,5<−2x −2<7,解得−92<x <−72;当x >1时,5<2x +2<7,解得32<x <52.综上,不等式|f(x)−6|<1的解集为(−92,−72)∪(32,52).(2)证明:当−3≤x ≤1时,f(x)=4≤2|x|+4;当x <−3时,f(x)−(2|x|+4)=−2x −2−(−2x +4)=−6<0, 则f(x)<2|x|+4;当x >1时,f(x)−(2|x|+4)=2x +2−(2x +4)=−2<0,则f(x)<2|x|+4.∵f(x)=|x−1|+|x+3|≥|x−1−(x+3)|=4,∴f(x)≥4.∵4−x2≤4,∴f(x)≥4−x2.故4−x2≤f(x)≤2|x|+4.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。
2019届高三3月份校级一模考试试题数学理试题Word版含答案一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数(),2z a i a R z a =+∈=若,则的值为 A .1 BC .1±D .2.己知集合{}{}2=230,2A x x x B x x A B --≤=<⋂=,则A .(1,3)B .(]1,3C .[-1,2)D .(-1,2)3.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则sin θ=A .5-B .5C .5-D .5 4.已知0,1a b c >>>,则下列各式成立的是 A .sin sin a b > B .abcc > C .ccab <D .11c c b a--<5.数列{}na 是等差数列,11a=,公差d ∈[1,2],且4101615a a a λ++=,则实数λ的最大值为A .72B .5319C .2319-D .12- 6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是注:90后指1990年及以后出生,80后指1980—1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多7.设()b<”的,1,a b∈+∞,则“a b>”是“log1aA.充分且不必要条件B.必要且不充分条件C.充分且必要条件D.既不充分也不必要条件8.甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行志愿服务活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法A .32e e + B .22e e + C .32e e - D .22e e -二、填空题:本大题共4小题,每小题5分,共20分。
你永远是最棒的2019 年第一次全国大联考【新课标Ⅲ卷】理科数学·全解全析1.A 【解析】易得 A = {x | x 2≤ 4} = {x | -2 ≤ x ≤ 2}, B = {x |x ≤ 0} = {x | 0 ≤ x < 2} ,所以 x - 2A B = [0,2) ,故选 A .12 3 2019 2 ⨯ (2 2019-1) = 2 2020- 2 .故选 D. 5.D 【解析】由图知输出的结果 S = 2 + 2 + 2+ + 2 = 2 -16.D 【解析】由已知 T = 2π = π ,解得 ω = 2,故 f ( x ) = sin(4 x π ,若 x ∈( π , π ) ,则 2 π 2 π 5π2ω345π4 x - ∈ ( , ) ,由正弦函数的图象可知函数 f ( x ) 在 ( π , π ) 上有增有减;若 x = π ,则 4x - π = ,3 3 3 π4 2 2 π 3 3 此时函数 f ( x ) 取不到最大值或者最小值,故 x = 不是函数 f ( x ) 图象的对称轴;若 x = ,则 2 π π 3 4x - = π ,此时函数 f ( x )=0 ,故 f ( x ) 的图象关于点 ( , 0) 对称.逐一观察各选项可知,答案为 D.3 37.A 【解析】由题意, (x -1n的通项为 T = ( -1) r C r x n - 3r ,当 n =3 r 即 2n = 3r 时,所得项为常数 2r +1 n2项,其中 r = m -1,所以 m , n 应满足 2n = 3(m -1) ,故选 A.你永远是最棒的 8.C 【解析】易得圆锥的母线长为13 cm ,当蚂蚁距离圆锥顶点不超过 5 cm 时,蚂蚁应爬行在底面半径为25cm ,母线长为 5 cm 的小圆锥侧面上,由几何概型可知,蚂蚁距离圆锥顶点超过 5 cm 的概率为 1325 ⨯ 5π⨯ 1441 - 13 = ,故选 C . π⨯ 5 ⨯13 1699.B 【解析】由 a + a + a = 42 , a + a = 28 ,可得 S = 70 ,由已知得 tS = 52-12 ⨯ 5 ,得 t = - 1 ,13 5 245521故 - S = n 2-12n ,即 S = -2n 2 + 24n = -2(n - 6)2+ 72 ,所以当 n = 6 时, S 取得最大值.故选 B.2 nnn11.B 【解析】设抛物线 C 的焦点为 F ,则 F (a4 ,0) ,可得直线 l : y = 4x - a 过焦点 F ,设直线 l 交抛物线 C于点 A (x 1 , y 1 ), B (x 2 , y 2 ) ,由抛物线定义可知 | AB |= x 1 + x 2 + a2 ,联立直线 l 与抛物线 C 的方程,消去y 得16 x 2 - 9ax + a 2= 0 ,所以 x 1 + x 2 = 169 a ,则 | AB |= 169a + a 2 = 17 ,解得 a =16 ,则抛物线C 的方程为 y 2 = 16x . 设与抛物线 C 相切且平行于直线 l 的直线方程为 y = 4x + b ,联立方程⎧ 2= 16x,消去 y 得16x2+ (8b -16)x + b 2= 0 ,则 ∆ = (8b - 16) 2 - 4 ⨯ 16b 2 = 0 ,解得 b =1,故⎨y⎩y = 4x + b所求直线方程为 4x - y +1 = 0 .故选 B.. 【解析】由题意,得 f '1 - m 1 mx 2+ x + 1 - m ( mx - m + 1)( x +1) ( x > 0 ),令12C x 2 + x = x 2=( x ) = m +x 2 mx - m + 1 = 0 ,由 m > 0 ,得 x = m -1 .当 0 < m ≤1 时, m -1 ≤ 0 ,此时函数 f (x ) 在 (0,+∞) 上单m m 调递增,且 x → 0 时, mx → 0 , - 1- m → -∞ , ln x → -∞ ,故 f (x ) → -∞ ,不合题意,舍去;m -1 x m -1 m -1当 m >1时, > 0 ,此时函数 f (x ) 在 (0, ) 上单调递减,在 ( ,+∞) 上单调递增,所以 m m m你永远是最棒的f (x )min = f ( m-1) = m -1 + m + ln m -1mm= 2m -1 + ln m -1,要使函数 f (x ) > 0 恒成立,只需m 2m -1 + ln m -1 > 0 ,即 m -1 e 2 m -1> 1 .故选 C. m m13.254 π【解析】由题意作出区域 Ω ,如图中阴影部分所示,2 - 13 3易知 tan ∠MON = 2 =,故 sin ∠MON = ,又 MN = 3,设 △OMN 的外接圆的半径为 R ,1 +2 ⨯ 12则由正弦定理得 MN = 2R ,即 R = 5 ,故所求外接圆的面积为 π⨯ ( 5 )2 = 25π .sin ∠MON 2 2 415.(1, 2 33 ) 【解析】由题意设双曲线 C 的半焦距为 c ,则右焦点 F 2 (c ,0) 到渐近线 y = ± ba x 的距离均为| bc | = b ,圆 F 的半径为 c ,要使圆 F 与双曲线 C 的两渐近线有公共点,需满足 c > b ,即a +b 22 22c 242) .c 2> 4(c 2- a 2) ,解得 < ,又双曲线的离心率 e >1 ,故双曲线 C 的离心率的取值范围为 (1, 3a 2 3 316. 193π【解析】作出图形如图(1)所示,由图可知在四面体 A - CDM 中, MA ⊥ AD , MA ⊥AC ,AC AD = A ,故 MA ⊥ 平面 ACD ,将图形旋转得到如图(2)所示的三棱锥 M - ACD ,其中△ACD自信是迈向成功的第一步你永远是最棒的为等边三角形,过△ACD 的中心 O1作平面 ACD 的垂线 l1,过线段 MC 的中点 O2作平面 MAC 的垂线 l2,易得直线 l1与 l2相交,记 l1l 2= O ,则 O 即为三棱锥 M - ACD 外接球的球心.设外接球的半径为 R,连接OC、O C,可得O C=2,OO=1,在Rt△OO C中,OC2= OO 2+ O C 2=19= R2,1131211112故外接球的表面积 S =4πR2=19π,故答案为19π.33图(1)图(2)17.(本小题满分 12 分)(2)由(1)可知,b=2a+ c,2a + c222a 2+ c 2- b2a+ c- ()2a2+ 3c2- 22a c在△ABC 中,由余弦定理,知cos B ==2=≥2ac2ac8ac你永远是最棒的2 6 a c - 2 2 a c = 6 - 2 (当且仅当 2 a 2 = 3c 2 时,等号成立),(8 分)8ac41 - (- ) = + ,(10 分)6 2 6 2 ∴ sin B = 1 - cos 2B ≤ 4 4则 BC 边上的高 h = c ⋅sin B ≤ 4 ⨯+ =6 2+,624∴ BC 边上的高的取值范围为 (0, 6 + 2 ] .(12 分)18.(本小题满分 12 分)∴ PA ⊥ PB ,(4 分)∵ AD ⊥ 平面 PAB ,∴ AD ⊥ PB ,又 PA AD = A ,∴ PB ⊥ 平面 PAD , 又 PB ⊂ 平面 PBC ,∴平面 PAD ⊥ 平面 PBC .(6 分)(2)由 PA = PB ,可得 PE ⊥ AB ,故以 E 为原点, EP , EB , EC 所在直线分别为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图,同(1),设 AD = 1 ,则 P (1,0,0) ,A (0,-1,0) ,D (0,-1,1) ,C (0,0,1) ,则 PD = ( - 1, -1,1) ,AD = (0, 0,1) ,CD = (0, -1, 0) ,(8 分)∴平面 PCD 的一个法向量为 n 2 = (1, 0,1) ,(10 分)∴ cosn , n = n 1 ⋅n 2 =1 = 1 ,12| n 1 || n 2 | 2 ⨯ 2 2π故平面 PAD 与平面 PCD 所成锐二面角的大小为 3 .(12 分)19.(本小题满分 12 分)【解析】(1)由统计表可得 x 1 =15 ⨯ (74.31 + 41.08 + 38.37 + 30.55 + 26.46) =42.154 , x 2 =15 ⨯ (41.82 + 39.08 + 23.43 + 18.99 + 18.36) = 28.336 .可知 x 1 > x 2 .(4 分)(2)由定义,知男性中只有肺癌属于高发率癌种,女性中乳腺癌、肺癌为高发病率癌种,(6 分)设 X 、 Y 分别为男、女性前 5 类癌种中抽到的高发病率癌种的类数,则X 的可能取值有 0,1,P ( X = 0) = C 42= 3, P ( X = 1) = C 11C 14= 2.C 52 5 C 525故 X 的分布列为(8 分)故 E ( X ) = 0 ⨯ 53 +1⨯ 52 = 52.Y 的可能取值有 0,1,2P (Y = 0) = C 32 = 3 , P (Y = 1) = C 12 C 13 = 3, P (Y = 2) = C 22 = 1 .C 52 10 C 52 5 C 52 10故 Y 的分布列为(10 分)故 E (Y ) = 0 ⨯ 103+ 1 ⨯ 53 + 2 ⨯ 101 = 54.可得 E ( X ) < E (Y ) ,故男性前 5 类癌种中含有高发病率癌种的类数的均值较小.(12 分)20.(本小题满分 12 分)(2)显然过点 F 2 的直线 l 不与 x 轴重合,可设直线 l 的方程为 x = ty +1,且 A (x 1 , y 1 ) , B (x 2 , y 2 ) ,⎧ 2⎪ x + y 2 = 1,消去 x 2 2+ 2ty -1 = 0 ,联立方程 ⎨ 2得 (t + 2) y⎪⎩x = ty +1根据根与系数的关系,得 y + y2 = - 2t , y y 2= -1 ,(6 分)1t 2 + 2 1t 2 + 2⎧y = y 1y 2联立直线 m 与直线 PB⎪y 2(x -x 0 ),消去 y,整理得 y1=(x - x 0 ) ,的方程⎨y =ty +1 - x⎪x 2 - x 0 2 0⎩解得 x = ty 1 y 2 + y 1 - x 0 y 1+ x ,将 y y 2 =-1, y = - y 2t 代入, 01t 2+ 2 12t 2+ 2y 2-3t- y+ x( y+2t)t 2+2t 2+2得 x =202+ x0y2-3t+2t⋅ x- y+ x y t(2x-3)-y+ x yt 2+2t 2+2t 2+2=0202+ x =0202+ x,(10 分)y20y2若存在点 P(x0,0)满足直线 PB 与直线 m 的交点恒在一条定直线上,3t(2 x0- 3) -y2+x0y2可令 x0=,则 x =t 2+2+ x0= 2 ,与t无关,2y2故在 x 轴上存在点P,使直线PB与直线 m 的交点恒在一条定直线上,此时点P的坐标为(32,0),定直线的方程为 x =2.(12分)令2x2+ (b+ 4)x+ (2b-1) = 0 (*),则∆ = (b+ 4) 2- 8(2b- 1) = (b- 4) 2+ 8 > 0 ,∴方程(*)有两个不相等的实根,且x=- (b+ 4) - (b- 4)+ 8, x=- (b+ 4) + (b- 4)+ 8,1424若 x 1> -1,整理得b+ (b- 4) 2+ 8 < 0 ,又b≥ 1,∴b+ (b- 4) 2+ 8 < 0 不成立,故x1≤ -1;你永远是最棒的若 x> -1,解不等式- (b+ 4) + (b- 4)2+ 8> -1,得b< 3 ,24当1 ≤b< 3 时,函数g(x)在[-1,x2]上单调递减,在 (x2 ,+∞) 上单调递增,(9分)∵g(-1)=1- b ≤0, g (1)=1+ b -ln 3≥2-ln 3>0,∴当 b =1时,函数g(x)有2个零点,当1 <b< 3 时,函数g(x)有1个零点,(10分)- (b+ 4)若 x2≤ -1,解不等式+ (b- 4)2+ 8≤ -1,得 b ≥3,此时g'(x)≥0,故函数4上单调递增,∴ g ( x )≥ g (-1)= 1 -b,∵1 -b< 0 ,∴函数g ( x) 有1个零点.综上,若 b ≥1,函数g(x)至少有1个零点.(12分)(2)(法一)由(1)知曲线C是以(3,1) 为圆心,2为半径的圆,当曲线 C 上至少有3个点到直线 l 的距离为1时,此时圆心到直线 l 的距离不大于1,(5分)设直线 l 的直角坐标方程为y=kx,即kx-y=0,其中 k =tanα,∴圆心 (|3k -1 |≤ 1,解得 0 ≤k≤,即 0 ≤ tan α ≤到直线l的距离为dk +1∵α ∈ [0, π) ,∴α ∈[0,π] .(10分)3g( x) 在[-1,+∞)3 ,(8分)你永远是最棒的(法二)由题意及(1)知曲线 C 是以 (3,1) 为圆心,2 为半径的圆,直线 l 与圆 C 相交于原点,当曲线 C 上至少有 3 个点到直线 l 的距离为 1 时,直线 l 与圆 C 相交的弦长不小于 2 3 ,将 θ = α 代入曲线 C 的极坐标方程 ρ = 4 sin(θ + π3) ,得 4 sin(α + π3 ) ≥ 2 3 ,即 sin(α + π3 ) ≥ 23 ,(8 分)又 α ∈ [0, π) ,∴α + π3 ∈[ π3 , 43π) ,故α + π3 ∈[ π3 , 23π] ,即α 的取值范围是[0, π3 ] .(10 分)∴ | 3x + 2a | +ax + | x -1|≤ 0 ,即为 3x + 2a + ax - x +1 ≤ 0 ,化简得 (2 + a )x + 2a +1 ≤ 0 ,(8 分)∵ x ∈ (- 2a,1) 时, f (x )+ | x -1 |≤ 0 恒成立,3⎧ 2a⎪(2 + a )(- ) + 2a +1 ≤ 03⎪ 3∴ ⎨(2 + a ) ⨯1+ 2a +1 ≤ 0 ,解得 - < a ≤ -1 .2⎪ 2a⎪< 1 ⎩- 3故实数 a 的取值范围为 ( - 32 , -1] .(10 分)自信是迈向成功的第一步。
2019-2020年高三3月高考模拟理科数学含答案本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页. 考试时间120分钟.满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知全集,集合,,则A.B.C.D.2.已知复数(是虚数单位),它的实部和虚部的和是A.4 B.6 C.2 D.33.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数和中位数进行比较,下面结论正确的是A.B.C.D.4.已知实数满足,则目标函数的最小值为A.B.5 C.6 D.75.“”是“函数在区间上为增函数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的图象是A. B. C. D.7.阅读右边的程序框图,运行相应的程序,输出的结果为A.B.C.D.8.二项式的展开式中常数项是A.28 B.-7 C.7 D.-289.已知直线与圆相交于两点,且则的值是A.B.C.D.010.右图是函数在区间上的图象.为了得到这个函数的图象,只需将的图象上所有的点A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变11.一个几何体的三视图如右图所示,则它的体积为A.B.C.D.12.设235111111,,a dxb dxc dxx x x===⎰⎰⎰,则下列关系式成立的是A.B.C.D.第7题图第11题图第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.若点在直线上,其中则的最小值为.14.已知抛物线的焦点恰好是双曲线的右顶点,且渐近线方程为,则双曲线方程为.(),,nf x=三、解答题:本大题共6小题,共74分.17.(本题满分12分)已知,,且.(1)将表示为的函数,并求的单调增区间;(2)已知分别为的三个内角对应的边长,若,且,,求的面积.18.(本题满分12分)已知四棱锥的底面是等腰梯形,且,2,2PO ABCD PO AB CD⊥===底面分别是的中点.(1)求证:;(2)求二面角的余弦值.EA19.(本题满分12分)数列的前项和为,,,等差数列满足.(1)分别求数列,的通项公式;(2)设,求证.20.(本题满分12分)某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。
高三数学考试(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选:B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.2.设集合,,则集合可以为()A. B. C. D.【答案】C【解析】【分析】先求A,由交集对照选项即可求解【详解】由题,因为,对照选项可知C成立故选:C【点睛】本题考查了集合的交集的运算,准确计算是关键,是基础题.3.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下:由此表估计这100名小学生身高的中位数为(结果保留4位有效数字)A. 119.3B. 119.7C. 123.3D. 126.7【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.将函数的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图像,则的最小正周期是()A. B. C. D.【答案】B【解析】【分析】先由伸缩变换确定g(x),再求周期公式计算即可【详解】由题,∴T==故选:B【点睛】本题考查三角函数伸缩变换,准确记忆变换原则是关键,是基础题.5.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求【详解】由题2b=16.4,2a=20.5,则则离心率e=故选:B【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题6.若函数有最大值,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解【详解】由题,,故单调递减,故,因为函数存在最大值,所以解故选:B【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.汉朝时,张衡得出圆周率的平方除以等于.如图,网格纸上的小正方形的边长为,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. B.C. D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.设满足约束条件则的最大值与最小值的比值为()A. -1B.C. -2D.【答案】C【解析】【分析】画出可行域,求得目标函数最大最小值则比值可求【详解】由题不等式所表示的平面区域如图阴影所示:化直线l;为y=-x+z,当直线l平移到过A点时,z最大,联立得A(2,5),此时z=7; 当直线l平移到过B点时,z最小,联立得B(, 此时z=-,故最大值与最小值的比值为-2故选:C【点睛】本题考查线性规划,准确作图与计算是关键,是基础题.9.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.10.在正方体中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】D【解析】【分析】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,在A中利用余弦定理即可求解.【详解】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,设正方体的边长为4,则∠A故选:D【点睛】本题考查异面直线所成的角,作平行线找角是基本思路,准确计算是关键,是基础题.11.设为等差数列的前项和,若,,则的最小值为()A. -343B. -324C. -320D. -243【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可【详解】∵解得∴设当0<x<7时,当x>7时,,故的最小值为最小值为f(7)=-343故选:A【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.12.已知分别是双曲线:的左、右顶点,为上一点,且在第一象限.记直线,的斜率分别为,,当取得最小值时,的重心坐标为()A. B. C. D.【答案】B【解析】【分析】设P(x,y)证明为定值,运用基本不等式求得取得最小值时P坐标即可求解【详解】设P(x,y),则=则当且仅当取等,此时P(3,4),则重心坐标为,即故选:B【点睛】本题考查双曲线的几何性质,综合问题,明确为定值是关键,注意计算的准确,是中档题.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的展开式的第2项为__________.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.在平行四边形中,,,,则点的坐标为__________.【答案】【解析】【分析】先求再求进而求D即可【详解】由题,故D(6,1)故答案为【点睛】本题考查向量的坐标运算,准确计算是关键,是基础题15.若函数,则__________.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.16.过点引曲线:的两条切线,这两条切线与轴分别交于两点,若,则__________.【答案】【解析】【分析】由两切线的斜率互为相反数,设切点,求导列关于t的方程求出t值即可求解【详解】设切点坐标为即,解得t=0或t=两切线的斜率互为相反数,即2a+6,解得故答案为【点睛】本题考查导数的几何意义,转化两切线的斜率互为相反数是突破点,熟练掌握切线的求法,准确计算是关键,是中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分17.在中,,.(1)求;(2)若,求的周长.【答案】(1);(2).【解析】【分析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,求购买总价的数学期望.【答案】(1)0.76;(2)120640元.【解析】【分析】(1)先求甲单位优惠比例低于乙单位优惠比例的概率,再由对立事件得概率即可求解;(2)先写出在折扣优惠中每箱零件的价格为的取值,再列分布列求解即可【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为,所以甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为元,则或188.的分布列为则.从而购买总价的数学期望为元.【点睛】本题考查离散型随机变量的分布列,对立事件的概率,是基础题.19.已知是抛物线:上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段的垂直平分线在轴上的截距.【答案】(1)详见解析;(2)4.【解析】【分析】(1)先求出p,再由焦半径公式求出,,即可证明;(2)与联立由韦达定理代入,求得,再写出的垂直平分线的方程即可求得截距【详解】(1)证明:∵在抛物线:上,∴,∴.∴,,,∵,∴,,依次成等比数列.(2)与联立,得,则,解得.由韦达定理,得,,则,即.从而,线段的中点坐标为,的垂直平分线的方程为,令,得,故所求截距为4.【点睛】本题考查抛物线的简单几何性质,直线与抛物线的位置关系,准确计算是关键,是中档题.20.如图,在多面体中,四边形为正方形,,,.(1)证明:平面平面.(2)若平面,二面角为,三棱锥的外接球的球心为,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.21.已知函数的导函数满足对恒成立.(1)判断函数在上的单调性,并说明理由;(2)若,求的取值范围.【答案】(1)在上单调递增;(2).【解析】【分析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若与相交于两点,,求;(2)圆的圆心在极轴上且圆经过极点,若被圆截得的弦长为1,求圆的半径.【答案】(1)6;(2)13.【解析】【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.设函数.(1)求不等式的解集;(2)证明:.【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;当时,,解得.综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。
2019年高三3月模拟数学(理)试题含解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设i是虚数单位,复数的虚部为()A.-i B.-l C.i D.12.已知集合M={},集合N={},(e为自然对数的底数) 则=()A.{} B.{} C.{} D.【答案】【解析】试题分析:由已知,{|10}{|1}=->=<,,M x x x x所以,,选.考点:集合的运算,函数的定义域、值域.3.一个空间几何体的三视图如下左图所示,则该几何体的表面积为()A.48 B.48+8 C.32+8 D.804.某程序的框图如上右图所示,执行该程序,若输入的p为l6,则输出的n的值为()A.3 B.4 C.5 D.65.以q为公比的等比数列{}中,,则“”是“”的() A.必要而不充分条件 B.充分而不必要条件C.充分必要条件 D.既不充分也不必要条件6.已知不重合的直线m、l和平面,且,.给出下列命题:①若,则;②若,则;③若,则;④若,则,其中正确命题的个数是()A.1 B.2 C.3 D.4【答案】【解析】试题分析:因为,,所以,,又,所以, .①正确;因为,,所以或,又,所以或相交或互为异面直线. ②不正确;因为,,所以,又,所以,故③不正确,④正确.选.考点:平行关系,垂直关系.7.已知圆及以下三个函数:①;②;③.其中图象能等分圆面积的函数个数为() A.3 B.2 C.1 D.08.双曲线的中心在原点,焦点在x轴上,若的一个焦点与抛物线:的焦点重合,且抛物线的准线交双曲线所得的弦长为4,则双曲线的实轴长为()A.6 B.2 C. D.【答案】【解析】试题分析:设双曲线的方程为.由已知,抛物线的焦点为,准线方程为,即双曲线中,;将代人双曲线方程,解得,又抛物线的准线交双曲线所得的弦长为,所以与联立得,,解得,,故双曲线的实轴长为,选.考点:抛物线的几何性质,双曲线的几何性质.9.下列四个图象可能是函数图象的是()10.已知函数,且22(23)(41)0f y y f x x -++-+≤,则当时,的取值范围是( ) A .[,] B .[0,] C .[,] D .[0,] 【答案】 【解析】试题分析:因为,()sin()()f x x x f x -=-+-=-,且, 所以函数为奇函数,且在是增函数.所以,由22(23)(41)0f y y f x x -++-+≤得2222(23)(41),2341f y y f x x y y x x -+≤-+--+≤-+-.即22424)0,x y x y +--+≤,其表示圆及其内部. 表示满足的点与定点连续的斜率.结合图形分析可知,直线的斜率最小,切线的斜率22122tan 33tan tan 211tan 41()3PAX BAX PAX PAX ⨯∠∠=∠===-∠-最大. 故选.考点:函数的奇偶性,简单线性规划,直线的斜率,直线与圆的位置关系.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若实数x ,y 满足10,2,3,x y x y +-≥⎧⎪≤⎨⎪≤⎩,则的最小值是 . 【答案】 【解析】试题分析:画出可行域及直线,如图所示. 平移直线,当其经过点时,.考点:简单线性规划的应用12.已知,则= .13.设,则二项式的展开式中含有的项是 . 【答案】 【解析】试题分析:因为,00sin cos |2a xdx x ππ==-=⎰,所以的展开式的通项636166(2)()(1)2rr r r r r r r x x T C xC ---+==-, 令得,所以二项式的展开式中含有的项是5121126(1)2192T C x x +-⋅=-=,故答案为.考点:定积分计算,二项式展开式的通项公式.14.有6人入住宾馆中的6个房间,其中的房号301与302对门,303与304对门,305与306对门,若每人随机地拿了这6个房间中的一把钥匙,则其中的甲、乙两人恰好对门的概率为 .15.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在平面向量集D={a |a }上也可以定义一个称为“序”的关系,记为“”.定义如下:对于任意两个向量111)222(()a x y a x y ==,,,, ,当且仅当“”或“且”.按上述定义的关系“”,给出如下四个命题: ①若12 (10)(01)0(00)e e =,,=,,=,,则 ②,,则;③若,则对于任意, ; ④对于任意向量,若,则. 其中真命题的序号为 . 【答案】①②③ 【解析】试题分析:由已知,若12 (10)(01)0(00)e e =,,=,,=,,则,故①正确;(4)设111222(()a x y a x y ==,),,,, 由得“”或由,得“”或“且.若1212"x 0y 0""x x y y "=且>且>且<,则, 所以不成立.④不正确.综上所述,①②③正确. 考点:新定义问题,平面向量的坐标运算.三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)已知m =,n =,满足. (1)将y 表示为x 的函数,并求的最小正周期;(2)已知a ,b ,c 分别为ABC 的三个内角A ,B ,C 对应的边长,的最大值是,且a =2,求b +c 的取值范围.(2)由题意得,所以,因为,所以. ……… 8分由正弦定理得,,433sin 33b c B C +=+43432sin()4sin()36B B B ππ=-=+, ……………………… 10分 ,,,所以的取值范围为. ……………………………………… 12分考点:平面向量的坐标运算,和差倍半的三角函数,正弦定理的应用,三角函数的性质.17.(本小题满分12分)已知数列{a n }前n 项和为S n ,首项为a 1,且,a n ,S n 成等差数列. (1)求数列{a n }的通项公式;(2)数列{b n }满足221223(log )(log )n n n b a a ++=⨯,求证:.当时,,,两式相减得:1122n n n n n a S S a a --=-=-,, ………… 4分所以数列是首项为,公比为2的等比数列, .…………………………………………………… 6分18.(本题满分12分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大。