【VIP专享】浙江省温州市2013-2014学年高一数学上学期期末教学质量检测试题
- 格式:pdf
- 大小:2.99 MB
- 文档页数:6
浙江省温州市十校联合体2014届高三数学上学期期末考试试题 理新人教A 版参考公式:球的外表积公式 柱体体积公式24R S π=V sh = 球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高343V R π=台体的体积公式121()3V h S S =锥体体积公式 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高Sh V 31=如果事件A 、B 互斥, 其中S 表示锥体的底面积,h 表示锥体的高 那么P 〔A+B 〕=P 〔A 〕+P 〔B 〕第1卷〔共50分〕一、选择题〔本大题共10小题,每一小题5分,共50分。
在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
〕1. i 为虚数单位,假设11a ii i+=-,如此a 的值为〔 ▲ 〕 A. iB. i -C. 2i -D. 2i2.全集U =R ,集合}2{2x x y x A -==,}R ,2{∈==x y y B x ,如此=B A C R)(〔 ▲ 〕A .{}2x x > B .{}01x x <≤C .{12}x x <≤D .{}0x x <3.“πϕ=〞是“曲线)2sin(ϕ+=x y 过坐标原点〞的〔 ▲ 〕A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.,m n 是两条不同直线,,,αβγ是三个不同平面,如此如下正确的答案是〔 ▲ 〕A .假设αα//,//n m ,如此n m //B .假设,αγβγ⊥⊥,如此α∥βC .假设βα//,//m m ,如此βα//D .假设,m n αα⊥⊥,如此∥n 5.锐角α满足cos 2cos()4παα=-,如此sin 2α等于〔 ▲ 〕A .12B .12-C .22D .26.某程序框图如下,当E =0.96时,如此输出的=k 〔 ▲ 〕 A. 20 B. 22 C. 24 D. 257.称(,)||d a b a b =-为两个向量,a b 间的“距离〞. 假设向量,a b 满足: ①||1b =; ②a b ≠; ③对任意的t R ∈,恒有(,)(,)d a tb d a b ≥,如此〔 ▲ 〕A .b a⊥ B .)(b a b -⊥ C .)(b a a -⊥ D .)()(b a b a -⊥+8.抛物线1C :y x 22=的焦点为F ,以F 为圆心的圆2C 交1C 于,A B ,交1C 的准线于,C D ,假设四边形ABCD 是矩形,如此圆2C 的方程为〔 ▲ 〕A. 221()32x y +-= B. 221()42x y +-=C . 22(1)12x y +-=D .22(1)16x y +-=9.函数321,,112()111,0,362x x x f x x x ⎧⎛⎤∈ ⎪⎥+⎪⎝⎦=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩,函数()()sin 2206x g x a a a π=-+>,假设存在[]12,0,1x x ∈,使得()12()f x g x =成立,如此实数a 的取值范围是〔 ▲ 〕A .]43,21[ B .]23,43[C .]34,32[D .]34,21[ 10.直线1x y a b+=〔a b ,是非零常数〕与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有〔 ▲ 〕 A .52条B .60条C .66条D .78条第2卷〔共100分〕二、填空题〔本大题共7小题,每一小题4分,共28分〕11.在83)(xax -的二项展开式中,常数项为28,如此实数a 的值是▲;12.某几何体的三视图(单位:cm)如图,如此这个几何体的体积 为▲cm 3;13.过双曲线2222 1 (,0)x y a b a b -=>的左焦点F 作圆222a y x =+的两条切线,记切点分别为B A 、,双曲线的左顶点为C ,假设120=∠ACB ,如此双曲线的离心率e =▲; 14.在锐角ABC ∆中,BC=1,B=2A ,如此AACcos 的值等于▲;边长AC 的取值范围为▲; 15.一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为ξ,如此ξ的数学期望是▲;16.在平面区域上恒有22ax by -≤,如此动点(,)P a b 所形成平面区域的面积为▲; 17.ABC ∆中,AB AC ⊥,||2AB AC -=,点M 是线段BC 〔含端点〕上的一点,且()1AM AB AC ⋅+=,如此||AM 的取值范围是▲;三、解答题〔本大题共5小题,共72分〕 18.〔此题总分为14分〕在锐角△ABC 中,角C B 、、A 的对边分别为c b a ,,, B c a C b cos )2(cos ⋅-=⋅. 〔Ⅰ〕求角B 的大小; 〔Ⅱ〕求C A sin sin +的取值范围.19.〔此题总分为14分〕二次函数2()f x ax bx =+的图像过点(4,0)n -,且'(0)2f n =,n N *∈ ,数列{}n a 满足)1(1/1nn a f a =+,且14a =, 〔Ⅰ〕求数列{}n a 的通项公式〔Ⅱ〕记n b ={}n b 的前n 项和n T 。
2021学年第|一学期十校联合体高一期末数学试卷说明:本卷总分值共120分,考试时间100分钟 .本次考试不得使用计算器 .一.选择题:(本大题共10小题 ,每题4分 ,共40分.在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的.)1、设集合{}012345U =,,,,, ,集合{}035M =,, ,{}145N =,, ,那么()U M C N ⋂等于 ( ▲ )A .{}0,1,3,4,5B .{}0,2,3,5C .{}0,3D .{}52、函数2()f x x =的定义域为 ( ▲ ) A .(0,2]B .(0,2)C .(0,1)(1,2)⋃D . (0,1)(1,2]⋃3、用二分法研究函数13)(3-+=x x x f 的零点时 ,第|一次经计算0)5.0(0)0(><f f , ,可得其中 一个零点∈0x ,第二次应计算 .以上横线上应填的内容为 ( ▲ ) A . ( ,1 ) ,)75.0(fB . (0 , ) ,)125.0(fC . (0 , ) ,)25.0(fD . (0 ,1 ) ,)25.0(f4、向量(1,1),(1,1),(1,2)a b c ==-=-- ,那么c = ( ▲ ) A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+5、sin570°的值是 ( ▲ ) A .21 B .-21C . 23D . -236、假设角α的终边落在直线x -y =0上 ,那么ααααcos cos 1sin 1sin 22-+-的值等于 ( ▲ ) A 2 B 2- C 2-或2 D 07、一质点受到平面上的三个力123,,F F F (单位:牛顿 )的作用而处于平衡状态.12,F F 成120 角 ,且12,F F 的大小分别为1和2 ,那么有 ( ▲ )A .13,F F 成90角B .13,F F 成150角C .23,F F 成90角D .23,F F 成60角 8、设函数 ,那么满足 的x 的取值范围是 ( ▲ ) ⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x 2)(≤x fA .[ -1 ,2]B .[0 , + )C .[1 , + )D .[0 ,2]9、函数b x A x f +ϕ+ω=)sin()(图象如右图 ,那么)(x f 的解析式与++=)1()0(f f S )(f )(f 20122+⋯+的值分别为 ( ▲ )A . 12sin 21)(+π=x x f , 2013=S B . 12sin 21)(+π=x x f ,212013=SC .12sin 21)(+π=x x f , 2012=SD .12sin 21)(+π=x x f , 212012=S10、在股票买卖过程中 ,经常用到两种曲线 ,一种是即时价格曲线y =f (x ) ,一种是平均价格曲线y =g (x )(如f (2)=3表示开始交易后第2小时的即时价格为3元;g (2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中 ,实线表示y =f (x ) ,虚线表示y =g (x ) ,其中可能正确的选项是 ( ▲ ).A .B .C .D二.填空题:(本大题共7小题 ,每题4分 ,共28分.)11、设)x (f 是定义在R 上的奇函数 ,当0≤x 时 ,x x )x (f -=22 ,那么)(f 1 = ▲ .12、函数x tan y =在),(π20内的零点是 ▲ .13、函数3x x y +=的值域是 ▲ .14、△ABC 中 ,5,4,3===CA BC AB ,那么CB CA ⋅= ▲ .15、假设 , 那么a,b,c 的大小关系是 ▲ .16、下面有五个命题:,sin log a 72π=,log b 311π=312=c ∞∞x x x x y y y y①终边在y 轴上的角的集合是{β|β =Z k ,k ∈+22ππ}.②设一扇形的弧长为4cm ,面积为4cm 2 ,那么这个扇形的圆心角的弧度数是2. ③函数x cos x sin y 44-=的最|小正周期是2π. ④的图象为了得到x sin y 23= ,只需把函数.)x sin(y 6323ππ的图象向右平移+=⑤函数上,在⎪⎭⎫⎢⎣⎡----=2πππ)x tan(y 是增函数. 所有正确命题的序号是 ▲ . (把你认为正确命题的序号都填上 )17、 定义在R 上的奇函数)(x f 满足:对于任意).x (f )x (f ,R x -=∈2有假设,tan 21=α )cos sin (f αα10-则的值为 ▲ .三.解答题 (本大题共5小题 ,总分值52分.解题应写出文字说明 ,证明过程或演算步骤 ),19、 (本小题总分值10分 )(1 )求值: (2 )化简:20、 (本小题总分值10分 ) 函数)x sin()x (f 6221πω++= (其中01ω<< ) , 假设直线3x π=是函数)x (f 图象的一条对称轴.(1 )求ω及最|小正周期; (2 )求函数()f x ,[]ππ,x -∈的单调减区间.3tan()cos(2)sin()2.cos()sin()ππαπαααππα---+----3556331103252718lg )log (log log log ++⋅++-21、 (本小题总分值10分 )向量3(sin ,),(cos ,1).2a xb x ==- (1 )当//a b 时 ,求 x cos x sin x cos 222- 的值; (2 )求函数)b a ()b a (x sin )x (f-⋅++=2在,02π⎡⎤-⎢⎥⎣⎦上的最|小值 ,及取得最|小值时x 的值.22、 (本小题总分值12分 )函数212(),03()11,02x x f x x x x ⎧-≤⎪⎪=⎨⎪-+>⎪⎩.(1 )写出该函数的单调区间;(2 )假设函数()()g x f x m =-恰有3个不同零点 ,求实数m 的取值范围;(3) 假设12)(2+-≤bn n x f 对所有[1,1],[1,1]x b ∈-∈-恒成立 ,求实数n 的取值范围.2021学年第|一学期十校联合体高一期末联考数学试卷答案一、选择题 (本大题共10小题 ,每题4分 ,总分值40分 .在每题给出的四个选项中 ,11、3- ; 12、π; 13、[)+∞,0 ; 14、 16 ; 15、c b a <<; 16 、②④; 17、0.三、解答题 (本大题共5小题 ,总分值52分 .解容许写出文字说明、证明过程或演算步骤 )18.解:(1)易得),(B 2321-……… 2分 那么=∠COA sin 23,=∠COA cos 21- ,=∠COA tan 3-. ……… 5分(2) ),(B 2321-,),(C 01 ∴ 3= …… 8分 四边形OBAC 是菱形 ,∴BC OA ⋅ =0 …… 10分19. 解: (1 )原式36log 5log 3log )2(5633313+⋅++=-- ……… 2分31321++-=……… 6分 (2 )原式 =αααααsin cos )cos (cos tan ⋅--⋅⋅- ……… 9分 = -1 ……… 10分20. (1)解:由题可知:)z k (k ∈+=+⋅2632ππππω23=故有k 2321+=ω 又2110=∴<<ωω (3)分ππ2621=++=∴T )x sin()x (f 周期 ……… 5分(2)≤+≤+622πππx k ππk 223+ ∴≤≤+x k ππ23ππk 234+ ……… 7分 ⎥⎦⎤⎢⎣⎡++=ππππk ,k A 23423设,[]ππ,B -=⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡--=⋂ππππ,,B A 332则 ……… 9分 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--ππππ,,)x (f 332和的单调减区间为故 .……… 10分 21.(1)解: ||a b ,∴3cos sin 02x x += ,∴ 3tan 2x =- ……… 2分.1320tan 1tan 22cos sin cos sin 2cos 22sin cos 222222=+-=+-=-x x x x x x x x x .……… 4分(2) .……… 6分)z k (k ,k X sin y ,x X ∈⎥⎦⎤⎢⎣⎡+++=+=πππππ22322216的单调减区间为则设41222222++=-+=x sin x sinb a x sin )x (f 0102≤≤-∴≤≤-x sin x π41222++=∴x sin x sin )x (f =412122-+)x (sin . ……… 8分 []0121,-∈-.)x (f ,x ,x sin min 41621-=-=-=∴π即时当 ……… 10分22.(1)解: (1 )函数()f x 的图象如右图;函数()f x 的单调递减区间是(0,1) 单调增区间是(,0)-∞及(1,)+∞ …………3分(2 )作出直线y m = ,函数()()g x f x m =-恰有3个不同零点等价于函数y m = 与函数)(x f 的图象恰有三个不同公共点 .由函数212(),03()11,02x x f x x x x ⎧-≤⎪⎪=⎨⎪-+>⎪⎩ 又f(0) =1 f(1) = 12∴1(,1)2m ∈ …………6分(2)解:∵f(x)是增函数 ,且f (x)≤n 2-2bn +1对所有x ∈[-1,1]恒成立 ∴[f(x)]max ≤n 2-2bn +1 [f(x)]max =f(1) =1 ∴n 2-2bn +1≥1即n 2-2bn ≥0在b ∈[-1,1]恒成立∴y = -2nb +n 2在b ∈[-1,1]恒大于等于0 ……………9分∴⎪⎩⎪⎨⎧≥+⨯-≥+-⨯-0120)1(222n n n n ,∴⎩⎨⎧≥≤-≤≥2020n n n n 或或 ∴n 的取值范围是)2[}0{]2-(∞+-∞,,……12分。
浙江省温州市十校联合体2014届高三数学上学期期末考试试题 文新人教A 版一、选择题〔本大题共10小题,每一小题5分,共50分。
在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
〕 1、全集U=R ,集合A =2{0}x xx+≤,如此集合A C U 等于 〔 ▲ 〕 A .{20}x x x <->或 B .{20}x x x ≤->或 C .{20}x x x <-≥或D .{20}x x x ≤-≥或 2、复数)2(12i i iiz ---+=在复平面对应的点在 〔 ▲ 〕A .第一象限B . 第二象限C .第三象限D .第四象限3、∈b a ,R ,如此“b a =〞是“ab ba =+2〞的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、关于直线a 、b 、l 与平面α、β,如下命题中正确的答案是 〔 ▲ 〕 A .假设a ∥α,b ∥β,如此a ∥b B .假设a ∥α,b ⊥a ,如此b ⊥αC .假设a ⊂α, b ⊂α,且l ⊥a ,l ⊥b ,如此l ⊥αD .假设a ⊥α,a ∥β,如此α⊥β5、假设7sin cos (0)13αααπ+=<<,如此tan α= 〔 ▲ 〕 A .13- B .125 C .125- D .13 6、对任意的实数k ,直线1-=kx y 与圆02222=--+x y x 的位置关系是 〔 ▲ 〕A .相离B .相切C .相交D .以上三个选项均有可能 7、正数,a b 的等比中项是2,且11,+m b n a a b=+=,如此m n +的最小值是〔 ▲ 〕 A .3 B .4 C .5 D .68、偶函数)(x f 在R 上的任一取值都有导数,如此且),2()2(,1)1('-=+=x f x f f 如此曲线)(x f y =在5-=x 处的切线的斜率为 〔 ▲ 〕 A. -1 B.-2 C.1 D. 29、函数2()(12)3,f x ax a x a =+-+-如此使函数()f x 至少有一个整数零点的所有正整数a 的值之和等于 〔 ▲ 〕 A .1 B .4C .6D .910、椭圆22a x +22by =1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,假设AF ⊥BF ,设∠ABF =α,且α∈[12π,4π],如此该椭圆离心率的取值范围为〔 ▲ 〕 A . [22,36] B . [22,23] C .[36,1) D .[22,1 )二、填空题〔本大题共7小题,每一小题4分,共28分〕11、函数23 (0)()log (0)x x f x x x ⎧≤=⎨>⎩,如此1[()]2f f =▲.12、如图是一个组合几何体的三视图,如此该几何体的体积是▲.13、假设各项均为正数的等比数列{}n a 满足23123a a a =-,如此公比q =▲.14、某程序框图如下列图,如此该程序运行后输出的S 值为▲.15、假设实数x,y 满足不等式组⎪⎩⎪⎨⎧≤++≤≤-0202k y x x y x 〔其中k 为常数〕, 假设y x z 3+=的最大值为5,如此k 的值等于▲.16、记一个两位数的个位数字与十位数字的和为A.假设A 是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为▲。
2015-2016学年浙江省温州市高一(上)期末数学试卷一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣23.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x34.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.69.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减12.已知sinα=3cosα,则sinα•cosα的值为()A.B.C.D.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e) B.f(e)<f()<f() C.f(e)<f()<f()D.f()<f()<f(e)14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B.C.﹣D.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= .20.函数f(x)=2的单调递增区间为.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.2015-2016学年浙江省温州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】利用诱导公式把要求的式子化为﹣cos60°,从而求得结果.【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣2【考点】元素与集合关系的判断.【专题】集合思想;定义法;集合.【分析】根据元素和集合的关系,解不等式组即可得到结论.【解答】解:∵1∉A,2∈A,∴,解得﹣4<a≤﹣2,故选:D.【点评】本题主要考查元素和集合关系的应用,根据条件解不等式是解决本题的关键,比较基础.3.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x3【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】利用幂函数的形式设出f(x),将点的坐标代入求出函数的解析式.【解答】解:∵f(x)是幂函数设f(x)=xα∴图象经过点(,3),∴3=,∴α=﹣1∴f(x)=x﹣1故选:A.【点评】本题考查利用待定系数法求知函数模型的解析式.4.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂性质、运算法则求解.【解答】解:在A中,﹣=﹣≠(﹣x),故A错误;在B中,x=≠﹣,故B错误;在C中,(﹣x)=x,故C正确;在D中,x=±x≠,故D错误.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意根式与分数指数幂性质的合理运用.6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+【考点】函数的值域.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】前三项都可由解析式看出值域:y=2x+1>0,y=,y=,从而判断出这三项不正确,对于D,先得到,两个不等式相加便可得到,这样便可得出该函数的值域,即得出D正确.【解答】解:A.2x+1>0,∴y=2x+1的值域为(0,+∞),∴该选项错误;B.,∴的值域为[0,+∞),∴该选项错误;C.|x|>0;∴;∴;∴的值域为(1,+∞),∴该选项错误;D.x﹣1≥0;∴;∴;即y≥1;∴的值域为[1,+∞),∴该选项正确.故选:D.【点评】考查函数值域的概念,指数函数的值域,以及反比例函数的值域,一次函数的值域,根据不等式的性质求值域的方法.7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x【考点】判断两个函数是否为同一函数.【专题】对应思想;定义法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,y==2x(x≠0)与y=2x(x∈R)的定义域不同,∴不是同一函数;对于B,y==2|x|(x∈R)与y=2x(x∈R)的解析式不同,∴不是同一函数;对于C,y==2x(x≥0)与y=x(x∈R)的定义域不同,∴C是同一函数;对于D,y=log24x=log222x=2x(x∈R)与y=2x(x∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.6【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的表达式求出f(﹣1)和f(0)的值,求和即可.【解答】解:∴函数f(x)=,∴f(﹣1)=1+2=3,f(0)=1,∴f(﹣1)+f(0)=3+1=4,故选:B.【点评】本题考察了求函数值问题,考察分段函数,是一道基础题.9.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理;二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】由题意,函数f(x)=x﹣2+lnx在定义域上单调递增,再求端点函数值即可【解答】解:函数f(x)=x﹣2+lnx在定义域上单调递增,f(1)=1﹣2<0,f(2)=2+ln2﹣2>0,故函数f(x)=x﹣2+lnx的零点所在区间是(1,2);故选B.【点评】本题考查了函数的零点的判断,属于基础题.10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】先由函数f(x)的图象判断a,b的范围,再根据指数函数的图象和性质即可得到答案.【解答】解:由函数的图象可知,﹣1<b<0,a>1,则g(x)=a x+b为增函数,当x=0时,y=1+b>0,且过定点(0,1+b),故选:C【点评】本题考查了指数函数和二次函数的图象和性质,属于基础题.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】函数思想;综合法;函数的性质及应用.【分析】可先得出f(x)的定义域为R,求f(﹣x)=﹣f(x),从而得出f(x)为奇函数,根据指数函数的单调性便可看出x增大时,f(x)增大,从而得到f(x)在R上单调递增,这样便可找出正确选项.【解答】解:f(x)的定义域为R;f(﹣x)=e﹣x﹣e x=﹣f(x);∴f(x)为奇函数;x增加时,e﹣x减小,﹣e﹣x增加,且e x增加,∴f(x)增加;∴f(x)在R上单调递增.故选A.【点评】考查奇函数的定义,判断一个函数为奇函数的方法和过程,以及增函数的定义,指数函数的单调性.12.已知sinα=3cosα,则sinα•cosα的值为()A.B.C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用本题主要考查同角三角函数的基本关系,求得要求式子的值.【解答】解:∵sinα=3cosα,∴tanα=3,则sinα•cosα===,故选:B.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e) B.f(e)<f()<f() C.f(e)<f()<f()D.f()<f()<f(e)【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件及增函数的定义容易判断出f(x)在R上单调递增,从而比较这三个数的大小便可得出对应的函数值的大小,从而找出正确选项.【解答】解:∵;∴对任意的x1,x2∈R,x1<x2时,会得到f(x1)<f(x2);∴f(x)在R上为增函数;又;∴.故选:A.【点评】考查增函数的定义,根据增函数的定义比较函数值大小的方法,清楚这三个数的大小关系.14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B.C.﹣D.【考点】运用诱导公式化简求值.【专题】计算题;转化思想;三角函数的求值.【分析】利用角的范围可确定三角函数值的符号,利用诱导公式即可求值.【解答】解:∵<α<π,<α+<,sin(α+)=>0,∴<α+<π,可得:<+α<,∴cos(+α)=cos[(α+)+]=﹣sin(α+)=﹣.故选:C.【点评】本题主要考查了诱导公式的应用,属于基础题.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大【考点】扇形面积公式.【专题】计算题;转化思想;数形结合法;三角函数的求值.【分析】由已知利用弧长公式,扇形面积公式求出值比较大小即可.【解答】解:∵△AOB为顶角为120°、腰长为2的等腰三角形,∴A=B=30°=,AM=AN=1,AD=2,∴方案一中扇形的周长=2=4+,方案二中扇形的周长=1+1+1×=2+,方案一中扇形的面积=2×=,方案二中扇形的周长==,故选:A.【点评】本题主要考查了弧长公式,扇形面积公式的应用,考查了计算能力,属于基础题.16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】设降价百分率为x%,由题意知5000(1﹣x%)2=2560,由此能够求出这种手机平均每次降价的百分率.【解答】解:设降价百分率为x%,∴5000(1﹣x%)3=2560,解得x=20.故选:D.【点评】本题考查数列的性质和应用,解题时要注意挖掘隐含条件,寻找数量关系,建立方程.17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]【考点】函数恒成立问题.【专题】函数思想;转化思想;函数的性质及应用.【分析】根据函数f(x)的解析式判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系将不等式进行转化,利用参数分离法转化为求函数的最值即可.【解答】解:f(x)=x|x|=,则函数f(x)在定义域为增函数,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则函数f(x)为奇函数,则若对任意的x≤1有f(x+m)+f(x)<0恒成立,等价为若对任意的x≤1有f(x+m)<﹣f(x)=f(﹣x),即x+m<﹣x恒成立,即m<﹣2x恒成立,∵x≤1,∴﹣2x≥﹣2,则m<﹣2,故选:C【点评】本题主要考查不等式恒成立问题,根据条件判断函数的奇偶性和单调性是解决本题的关键.利用参数分离法是解决不等式恒成立问题的常用方法.18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x【考点】函数的对应法则;函数的概念及其构成要素.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】在A、B中,分别取x=±1,由函数性质能排除选项A和B;令|x+1|=t,t≥0,则x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除选项C.【解答】解:在A中,取x=1,则f(1)=1,取x=﹣1,则f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,则f(1)=3,取x=﹣1,则f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,则x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故选:D.【点评】本题考查抽象函数的性质,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= 2 .【考点】对数的运算性质.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据换底公式计算即可.【解答】解:(log23)•(log34)=•=2,故答案为:2.【点评】本题考查了换底公式,属于基础题.20.函数f(x)=2的单调递增区间为[0,+∞).【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得,本题即求函数t=x2﹣1的增区间,再利用二次函数的性质可得结论.【解答】解:函数f(x)=2的单调递增区间,即函数t=x2﹣1的增区间,再利用二次函数的性质可得函数t=x2﹣1的增区间为[0,+∞),故答案为:[0,+∞).【点评】本题主要考查指数函数、二次函数的性质,复合函数的单调性,属于中档题.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.【考点】函数的最值及其几何意义.【专题】计算题;分类讨论;分析法;函数的性质及应用.【分析】讨论当|x+1|≥x+2,|x+1|<x+2时,求出f(x)的解析式,由单调性可得最小值.【解答】解:当|x+1|≥x+2,即x+1≥x+2或x+1≤﹣x﹣2,解得x≤﹣时,f(x)=|x+1|,递减,则f(x)的最小值为f(﹣)=|﹣+1|=;当|x+1|<x+2,可得x>﹣时,f(x)=x+2,递增,即有f(x)>,综上可得f(x)的最小值为.故答案为:.【点评】本题考查函数的最值的求法,考查绝对值不等式的解法,注意运用分类讨论的思想方法,以及函数的单调性,属于中档题.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是[﹣1,2﹣]∪[,3] .【考点】对数函数的图象与性质.【专题】函数思想;分类法;函数的性质及应用.【分析】分别求出f(x1)和g(x2)的值域,令f(x1)的值域为g(x2)的值域的子集列出不等式解出a.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].【点评】本题考查了二次函数的值域,对数函数的单调性与值域,集合间的关系,分类讨论思想,属于中档题.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)先求出A=(),由a=2便可求出B=[﹣2,2],然后进行并集、交集的运算即可;(Ⅱ)根据条件便有B⊆C R A,可求出,可讨论B是否为空集:B=∅时会得到a<0;而B≠∅时得到a≥0,且B={x|﹣a≤x≤a},这样便可得到,这两种情况下得到的a的范围求并集便可得出a的取值范围.【解答】解:(Ⅰ)A=;a=2时,B=[﹣2,2];∴A∪B=[﹣2,+∞),;(Ⅱ)∵(C R A)∪B=C R A;∴B⊆C R A;;①当B=∅时,a<0;②当B≠∅时,B={x|﹣a≤x≤a}(a≥0);∴,且a≥0;∴;综上得,a的取值范围为.【点评】考查函数定义域的概念及求法,对数的真数大于0,绝对值不等式的解法,交集、并集的运算,以及子集、补集的概念,不要漏了B=∅的情况.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.【考点】三角函数中的恒等变换应用;三角函数的化简求值.【专题】函数思想;综合法;三角函数的求值.【分析】(Ⅰ)由三角形内角和以及诱导公式化简可得原式=cosA;(Ⅱ)由sinA+cosA=和sin2A+cos2A=1,联立可解得sinA=,cosA=﹣,可得(i)△ABC 是钝角三角形;(ii) tanA==﹣【解答】解:(Ⅰ)由题意化简可得:==cosA;(Ⅱ)∵sinA+cosA=,又sin2A+cos2A=1,结合sinA应为正数,联立可解得sinA=,cosA=﹣,∴A为钝角,故可得(i)△ABC是钝角三角形;(ii) tanA==﹣【点评】本题考查三角函数恒等变换,涉及三角函数化简求值和同角三角函数基本关系,属基础题.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.【考点】抽象函数及其应用.【专题】综合题;新定义;分类讨论;分析法;函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)由对称性可得f(1+x)+f(1﹣x)=2b,化简整理,即可得到b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,对k讨论,当k=0,k>0,k<0,结合对称性和单调性,要使g(x)≤3,只需g(x)max≤3,运用单调性求得最大值,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=的图象关于点(1,b)成中心对称,可得f(1+x)+f(1﹣x)=2b,即有+=4=2b,解得b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,当k=0时,g(x)=2(0≤x≤1),又g(x)关于(1,2)对称,可得g(x)=2(0≤x≤2),显然g(x)≤3恒成立;当k>0时,g(x)=2k(x﹣1)+1在[0,1]递增,又g(x)关于点(1,2)对称,可得g(x)在[0,2]递增,g(x)≤3,只需g(x)max=g(2)≤3,又g(2)+g(0)=4,则g(0)≥1即21﹣k≥1,即有0≤k≤1;当k<0时,g(x)=2k(x﹣1)+1在[0,1]递减,又g(x)关于(1,2)对称,可得g(x)在[0,2]递减,要使g(x)≤3,只需g(x)max=g(0)≤3,即21﹣k≤3,解得1﹣log23≤k<0.综上可得,1﹣log23≤k≤1.【点评】本题考查函数的对称性和运用,同时考查函数的单调性的运用,以及不等式恒成立问题的解法,考查运算能力,属于中档题.。
温州普通高中2014学年第一学期期末教学质量检测高一数学试卷说明:全卷满分150分,考试时间120分钟,交卷时只需交答题卷,考试时不能使用计算器.参考:用最小二乘法求线性回归方程系数公式x b y a xn xy x n yx b ni ini i i -=-⋅-=∑∑==,1221一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四处备选项中,只有一项是符合题目要求的. 1、程序框图符号“”可用于( )A 、输出a=10B 、赋值a=10C 、判断a=10D 、输入a=102、已知甲、乙两名同学在五次数学测验中的得分如下:甲:85,91,90,89,95;乙:95,80,98,82,95。
则甲、乙两名同学数学学习成绩( ) A 、甲比乙稳定 B 、甲、乙稳定程度相同 C 、乙比甲稳定 D 、无法确定3、(2011•陕西)如图框图,当x 1=6,x 2=9,p=8.5时,x 3等于( ) A .7 B .8 C .10 D .114、 在调查分析某班级数学成绩与 物理成绩的相关关系时,对数据进行 统计分析得到散点图(如右图所示),用回归直线ˆybx a =+近似刻画 其关系,根据图形,b 的数值最有 可能是( )A 、 0B 、 1.55C 、 0.85D 、 —0.245、观察下列程序框图(如图),输出的结果是( )(可能用的公式12+22+…+n 2= 1n(1)(21)6n n ++ ()n N ∈第5题第4题0 10 20 30 40 50 60 70 80 90 100 020 40 60 80100数学成绩物理成绩系列1第3题A .328350B .338350C .348551D .3185496、为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) 输入 xIF x<0 THENy=(x+1)*(x+1) ELSEy=(x-1)*(x-1)END IF输出 y ENDA 、 3或-3B 、 -5C 、5或-3D 、 5或-57、200辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过70km/h 的汽车数量为 A 、2辆 B 、10辆 C 、20辆 D 、70辆8、随机抽取某班n 个学生,得知其数学成绩分别为a 1,a 2,…a n ,则右边的程序框图输出的s 表示样本的数字特征是( )时速30 80 7060 50 40 组距频率0.039 0.028 0.018 0.0100.005 第7题第8题A.中位数B.平均数C.方差D.标准差9、如图所示的算法流程图中(注:“1A=”A=”也可写成“:1或“1A”, 均表示赋值语句),第3个输出的数是()←A、1B、32C、2D、52第9题10、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, ......,270;使用系统抽样时,将学生统一随机编号1,2, (270)并将整个编号依次分为10段如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A 、 ②、③都不能为系统抽样B 、 ②、④都不能为分层抽样C 、 ①、④都可能为系统抽样D 、 ①、③都可能为分层抽样二、填空题:本大题共8小题,每小题3分,共24分.把答案填在题中相应的横线上.11、228与1995的最大公约数是 。
2013.1一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若{}21A x x ==,{}2230B x x x =--=,则A B =( ▲ )A .{}3B .{}1C .∅D .{}1-2.函数()()lg 1fx x =-的定义域是( ▲ )A .(]11-,B .()1,1-C .[)1,1-D .[)∞+,1 3.若tan 2θ=,则22sin sin cos 2cos θθθθ+-=( ▲ )A .35 B .45 CD .344.已知向量()1,3a =,()2,b k =-,若a 与2a b +垂直,则k 的值为( ▲ )A .1B .1-C .21-D .21 5.若()x x g 21-=,()21log 1f g x x =⎡⎤⎣⎦+,则()1f -=( ▲ )A .1-B .0C .1D .2 6.已知函数()sin cos f x x a x =+图象的一条对称轴是53x π=,则函数()sin cos g x a x x =+ 的最大值是( ▲ )A.3 B.3 C .43D.3 7.已知函数()()2log 41x x a f x a a =-+,且01a <<,则使()0f x <的x 的取值范围是( ▲ )A .(),0-∞B .()0,+∞C .(),2log 2a -∞D .()2log 2,a +∞8. ABC ∆内接于以O 为圆心,1为半径的圆,且2340OA OB OC ++=,则OC AB ⋅的值为( ▲ )A .316-B .116- C .116 D .3169.函数xexy cos =的图像大致是( ▲ )10.已知()f x 是定义在R 上的且以2为周期的偶函数,当0x ≤≤时,,如果A B C D直线y x a =+与曲线()y f x =恰有两个不同的交点,则实数a 的值为( ▲ ) A .2()k k Z ∈ B .122()4k k k Z +∈或C .0D .122()4k k k Z -∈或二、填空题(本大题共5小题,每小题4分,共20分) 11.已知tan 24πθ⎛⎫+= ⎪⎝⎭,则sin 2θ= ▲ . 12.如图,设,P Q 为ABC ∆内的两点,且2134AP AB AC =+,AQ =35AB +13AC ,则 ABP ∆的面积与ABQ ∆的面积之比为 ▲ .13.已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭单调递减,则ω的取值范围 是 ▲ .14.关于x 的方程()43210xxm +-+=有两个不等实根,则m 的取值范围为 ▲ . 15.已知存在正整数k ,使得对任意实数x ,式子sin sin cos cos cos 2kkkkx x kx x x ⋅+⋅-的值为同一常数,则满足条件的正整数k = ▲ .温州中学2012-2013学年高一第一学期期末考试 数学答题卷 2013.1一、选择题(本大题共10小题,每小题4分,共40分。
2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。
2023-2024学年浙江省温州市高一(上)期末数学试卷(A 卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2<9},B ={x |x ≤2},则A ∩B =( ) A .(﹣3,3)B .(﹣3,2]C .(2,3)D .(﹣∞,2]2.“a ≥﹣3”是“a ≥﹣2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设h (x )=2x +log 2(x +1)﹣2,某同学用二分法求方程h (x )=0的近似解(精确度为0.5),列出了对应值表如下:依据此表格中的数据,得到的方程近似解x 0可能是( ) A .x 0=﹣0.125B .x 0=0.375C .x 0=0.525D .x 0=1.54.一个周长是4,面积为1的扇形的半径为( ) A .1B .2C .12D .√25.已知函数f (x )={−x +3a ,x ≥0,x 2,x <0,在定义域R 上是减函数,则a 的值可以是( )A .3B .2C .1D .﹣16.如图所示函数的图象,则下列函数的解析式最有可能是( )A .f(x)=x 2+1x 2B .f (x )=x +sin xC .f (x )=sin x ﹣x cos xD .f(x)=(x −1x)ln|x|7.已知,m ,n ∈R +,满足m 2n +2mn 2﹣4m ﹣n =0,则m +2n 的最小值为( ) A .2√2+1B .√15C .3√62D .4√2+98.设a =4lg 3,b =312,c =log 23,则( ) A .a >b >cB .a >c >bC .b >c >aD .c >a >b二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目 9.下列四个命题中是真命题的有( ) A .∀x ∈R ,2x >0 B .∃x ∈R ,x 2+x +1≤0C .命题“∀x ∈R ,sin x <2x ”的否定是“∃x ∈R ,sin x ≥2x ”D .命题“∃x ∈R ,sin 2x 2+cos 2x 2=12”是真命题10.已知函数f (x )=ax 2+bx +a (a >0),若f (2)=﹣a ,则以下说法正确的是( ) A .b =﹣3aB .函数f (x )一定有两个零点C .设x 1,x 2是函数f (x )两个零点,则x 1+x 2=3x 1x 2D .f(1)+1f(1)≥−2 11.已知函数f(x)=12cos2x −√32sin2x ,则( )A .f (x )的最小正周期为πB .f (x )的图象关于直线x =7π12对称 C .f(x −5π12)是奇函数D .f (x )的单调递减区间为[kπ−π6,kπ+π3](k ∈Z)12.已知函数f (x )满足:∀m ,n ∈R ,f (m +n )+f (m ﹣n )=2f (m )cos n ,f (0)=1,f(π2)=√3,则( )A .f (x )为奇函数B .f(−π3−x)+f(x)=0C .方程f(x)−12x =0有三个实根D .f (x )在(﹣1,0)上单调递增三、填空题:本题共4小题,每小题5分,共20分. 13.sin225°= .14.已知函数f(x)=√x ,则f (f (16))= .15.若函数f (x )=tan ωx 在(﹣π,π)上是增函数,则ω的最大值是 .16.函数f (x )=x 4﹣24x +16,g (x )=6x 3+ax 2,方程f (x )=g (x )恰有三个根x 1,x 2,x 3,其中x 1<x 2<x 3,则 (x 1+1x 1)(x 2+x 3)的值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x 2﹣2x ﹣8≤0},B ={x |(x ﹣m 2)(x ﹣m +1)≤0}. (1)当m =1时,求集合∁R B ;(2)当B ⊆A 时,求实数m 的取值范围. 18.(12分)已知函数f (x )=2x ﹣2﹣x .(1)判断函数f(x)的奇偶性并证明;(2)若f(m﹣2)+f(m)=0,求实数m的值.19.(12分)已知m=432⋅8−23,n=32lg2+lg5√5.(1)求m,n的值;(2)已知角θ的终边过点P(m,n),求cos mθ的值.20.(12分)已知函数f(x)=lnx﹣ln(x﹣1).(1)讨论函数f(x)的单调性;(2)若函数g(x)=ln(﹣x+t)与函数f(x)的图像存在两个不同的交点,求实数t的取值范围.21.(12分)下表是A地一天从2~18时的部分时刻与温度变化的关系的预报,现选用一个函数y=f(x)来近似描述温度与时刻的关系.(1)写出函数y=f(x)的解析式;(2)若另一个B地区这一天的气温变化曲线也近似满足函数y=f(x)且气温变化也是从10℃到30℃,只不过最高气温都比A地区早2个小时,求同一时刻,A地与B地的温差的最大值.22.(12分)已知函数f(x)=e x−ax(a>0).(1)若f(x)在(1,2)有零点,求实数a的取值范围;(2)记f(x)的零点为x1,g(x)=lnx−1e−ax的零点为x2,求证:x1+x2>2√ae.2023-2024学年浙江省温州市高一(上)期末数学试卷(A卷)参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2<9},B={x|x≤2},则A∩B=()A.(﹣3,3)B.(﹣3,2]C.(2,3)D.(﹣∞,2]解:因为A={x|x2<9}={x|﹣3<x<3},B={x|x≤2},则A∩B={x|﹣3<x≤2}.故选:B.2.“a≥﹣3”是“a≥﹣2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a≥﹣3时,a≥﹣2不一定成立,当a≥﹣2时,a≥﹣3时一定成立,故a≥﹣3是a≥﹣2的必要不充分条件.故选:B.3.设h(x)=2x+log2(x+1)﹣2,某同学用二分法求方程h(x)=0的近似解(精确度为0.5),列出了对应值表如下:依据此表格中的数据,得到的方程近似解x0可能是()A.x0=﹣0.125B.x0=0.375C.x0=0.525D.x0=1.5解:由表格数据可知,h(0.4375)<0,h(0.75)>0,又因为函数h(x)在[0.4375,0.75]上连续,且函数h(x)在(﹣1,+∞)上单调递增,所以函数h(x)在区间[0.4375,0.75]上存在一个零点,又因为0.75﹣0.4375=0.3125<0.5,即方程h(x)=0的近似解(精确度为0.5)可以是区间[0.4375,0.75]内的任意一个数,观察四个选项可知,C选项正确.故选:C.4.一个周长是4,面积为1的扇形的半径为()A.1B.2C.12D.√2解:设扇形弧长为l,半径为r,由于扇形周长为4,则有l +2r =4,扇形面积为1,则12lr =1,则可得r =1,l =2.故选:A .5.已知函数f (x )={−x +3a ,x ≥0,x 2,x <0,在定义域R 上是减函数,则a 的值可以是( )A .3B .2C .1D .﹣1解:因为函数f (x )={−x +3a ,x ≥0,x 2,x <0,在定义域R 上是减函数,所以3a ≤0,即a ≤0.故选:D .6.如图所示函数的图象,则下列函数的解析式最有可能是( )A .f(x)=x 2+1x 2B .f (x )=x +sin xC .f (x )=sin x ﹣x cos xD .f(x)=(x −1x)ln|x|解:由函数的图象可知函数是奇函数,所以A 不正确; f (x )=x +sin x 中,x →+∞时,f (x )→+∞,所以B 不正确; f(x)=(x −1x)ln|x|中,x →+∞时,f (x )→+∞,所以D 不正确.故选:C .7.已知,m ,n ∈R +,满足m 2n +2mn 2﹣4m ﹣n =0,则m +2n 的最小值为( ) A .2√2+1B .√15C .3√62D .4√2+9解:因为m 2n +2mn 2﹣4m ﹣n =0①,令m +2n =t >0,则m =t ﹣2n ,代入①式整理后得2tn 2﹣(t 2+7)n +4t =0,该方程有正实数根, 令f (n )=2tn 2﹣(t 2+7)n +4t ,结合t >0,只需Δ=(t 2+7)2﹣32t 2≥0,即t 2−4√2t +7≥0,解得t ≤2√2−1(舍)或t ≥2√2+1, 所以t 的最小值为2√2+1. 故选:A . 8.设a =4lg 3,b =312,c =log 23,则()A .a >b >cB .a >c >bC .b >c >aD .c >a >b解:由题意,a =4lg 3,b =312,c =log 23,a 表示x =lg 3时函数y =4x 的点A 的纵坐标,b 表示x =3时函数y =√x 的点B 的纵坐标,c 表示x =3时函数y =log 2x 的点C 的纵坐标, 作出三个函数的图象如图所示,由图可知,a >b >c . 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目 9.下列四个命题中是真命题的有( ) A .∀x ∈R ,2x >0 B .∃x ∈R ,x 2+x +1≤0C .命题“∀x ∈R ,sin x <2x ”的否定是“∃x ∈R ,sin x ≥2x ”D .命题“∃x ∈R ,sin 2x 2+cos 2x 2=12”是真命题解:根据指数函数的性质可知,∀x ∈R ,2x >0一定成立,A 正确; 因为x 2+x +1=(x +12)2+34≥34恒成立,故B 为假命题;根据含有量词的命题的否定可知,命题“∀x ∈R ,sin x <2x ”的否定是“∃x ∈R ,sin x ≥2x ”,C 正确; 根据同角平方关系可知,sin 2x 2+cos 2x2=1恒成立,D 为假命题.故选:AC .10.已知函数f (x )=ax 2+bx +a (a >0),若f (2)=﹣a ,则以下说法正确的是( ) A .b =﹣3aB .函数f (x )一定有两个零点C .设x 1,x 2是函数f (x )两个零点,则x 1+x 2=3x 1x 2D .f(1)+1f(1)≥−2 解:因为f (2)=4a +2b +a =﹣a ,故b =﹣3a ,A 正确; 所以f (x )=ax 2+bx +a =ax 2﹣3ax +a =a (x 2﹣3x +1), 因为Δ=5a 2>0,即函数f (x )有两个零点,B 正确; 由题意得,x 1+x 2=3,x 1x 2=1,C 显然正确; f (1)+1f(1)=−a +1−a =−(a +1a )≤﹣2,当且仅当a =1a,即a =1时取等号,C 错误. 故选:ABC .11.已知函数f(x)=12cos2x −√32sin2x ,则( )A .f (x )的最小正周期为πB .f (x )的图象关于直线x =7π12对称 C .f(x −5π12)是奇函数D .f (x )的单调递减区间为[kπ−π6,kπ+π3](k ∈Z)解:函数f(x)=12cos2x −√32sin2x =cos (2x +π3),f (x )的最小正周期为T =2π2=π,A 正确; ∵f (7π12)=cos 3π2=0≠±1,∴f (x )的图象不关于直线x =7π12对称,B 错误;又f (x −5π12)=cos (2x −π2)=sin2x 为奇函数,C 正确; 令2k π≤2x +π3≤2k π+π(k ∈Z ),得k π−π6≤x ≤k π+π3(k ∈Z ), ∴f (x )的单调递减区间为[kπ−π6,kπ+π3](k ∈Z),D 正确.故选:ACD .12.已知函数f (x )满足:∀m ,n ∈R ,f (m +n )+f (m ﹣n )=2f (m )cos n ,f (0)=1,f(π2)=√3,则( )A .f (x )为奇函数B .f(−π3−x)+f(x)=0C .方程f(x)−12x =0有三个实根D .f (x )在(﹣1,0)上单调递增解:令m =0,则f (n )+f (﹣n )=2f (0)cos n =2cos n , 令n =π2,则f (m +π2)+f (m −π2)=2f (m )cos π2=0,在上式中,令m =n +π2,则f (n +π)+f (n )=0,即f (π2−n )+f (−π2−n )=0,令m =π2,则f (π2+n )+f (π2−n )=2f (π2)cos n =2√3cos n ,则f (π2+n )﹣f (−π2−n )=2√3cos n ,即f (n )﹣f (﹣n )=2√3cos (n −π2),又因为f (n )+f (﹣n )=2f (0)cos n =2cos n ,所以f (n )=cos n +√3sin n =2sin (n +π6),即f (x )=2sin (x +π6),对于A ,f (0)=1≠0,故f (x )不为奇函数,故A 错误;对于B ,f (−π3−x )+f (x )=2sin (−π6−x )+2sin (π6+x )=0,故B 正确;对于C ,结合关键点的分析,再同一平面直角坐标系中作出y =f (x )与y =12x 的图象如图所示:观察图象可知,y =f (x )与y =12x 的图象有三个交点,即方程f(x)−12x =0有三个实根,故C 正确;对于D ,当x ∈(﹣1,0),t =π6+x ∈(﹣1+π6,π6)⊆(−π2,π2), 由复合函数单调性可知此时f (x )=2sin (x +π6)单调递增,故D 正确.故选:BCD .三、填空题:本题共4小题,每小题5分,共20分. 13.sin225°= −√22.解:sin225°=sin (180°+45°)=﹣sin45°=−√22.故答案为:−√22.14.已知函数f(x)=√x ,则f (f (16))= 2 . 解:因为函数f(x)=√x ,则f (f (16))=f (4)=2. 故答案为:2.15.若函数f (x )=tan ωx 在(﹣π,π)上是增函数,则ω的最大值是 12. 解:因为函数f (x )=tan ωx 在(﹣π,π)上是增函数,所以ω>0;且{kπ−π2≤ω⋅(−π)ωπ≤kπ+π2k ∈Z ,解得{ ω≤12−k ω≤12+k k ∈Z ,所以ω≤12,即ω的最大值是12.故答案为:12.16.函数f (x )=x 4﹣24x +16,g (x )=6x 3+ax 2,方程f (x )=g (x )恰有三个根x 1,x 2,x 3,其中x 1<x 2<x 3,则 (x 1+1x 1)(x 2+x 3)的值为 ﹣25 . 解:由f (x )=x 4﹣24x +16,g (x )=6x 3+ax 2,方程f (x )=g (x )得: x 4﹣24x +16﹣6x 3=ax 2,显然x =0不符合该方程, 所以a =x 2+16x2−6(x +4x )⇒(x +4x )2﹣6(x +4x )﹣8=a ⇒(x +4x −3)2=17+a , 所以x +4x −3=±√17+a ,令h (x )=x +4x−3,该函数在(﹣∞,﹣2),(2,+∞)上递增,在(﹣2,0),(0,2)上递减,且h (﹣2)=﹣7,h (2)=1,则原方程的根即为y =±√17+a 与h (x )图象交点的横坐标,作出图象:要使方程f (x )=g (x )恰有三个根x 1,x 2,x 3,只需−√17+a =−7,解得a =32,此时x 1=﹣2, 令x +4x −3=√17+a =7,即x 2﹣10x +4=0,所以x 2+x 3=10,则 (x 1+1x 1)(x 2+x 3)=−25.故答案为:﹣25.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x 2﹣2x ﹣8≤0},B ={x |(x ﹣m 2)(x ﹣m +1)≤0}. (1)当m =1时,求集合∁R B ;(2)当B ⊆A 时,求实数m 的取值范围.解:(1)当m =1时,B ={x |(x ﹣m 2)(x ﹣m +1)≤0}={x |0≤x ≤1},∴∁R B ={x |x <0或x >1};(2)集合A ={x |x 2﹣2x ﹣8≤0}={x |﹣2≤x ≤4}, ∵m 2﹣(m ﹣1)=m 2﹣m +1=(m −12)2+34>0,∴m 2>m ﹣1,∴B ={x |(x ﹣m 2)(x ﹣m +1)≤0}={x |m ﹣1≤x ≤m 2}, ∵B ⊆A , ∴{m −1≥−2m 2≤4,解得﹣1≤m ≤2,即实数m 的取值范围[﹣1,2]. 18.(12分)已知函数f (x )=2x ﹣2﹣x . (1)判断函数f (x )的奇偶性并证明;(2)若f (m ﹣2)+f (m )=0,求实数m 的值. 解:(1)函数f (x )为奇函数,证明如下: 函数f (x )=2x ﹣2﹣x ,则f (﹣x )=2﹣x ﹣2x =﹣(2x ﹣2﹣x )=﹣f (x ), 故函数f (x )为奇函数; (2)函数f (x )=2x ﹣2﹣x , y =2x 在R 上单调递增,y =2﹣x 在R 上单调递减,由复合函数的单调性可知,f (x )在R 上单调递增, f (m ﹣2)+f (m )=0,则f (m ﹣2)=﹣f (m )=f (﹣m ), 故m ﹣2=﹣m ,解得m =1. 19.(12分)已知m =432⋅8−23,n=32lg2+lg5√5. (1)求m ,n 的值;(2)已知角θ的终边过点P (m ,n ),求cos m θ的值.解:(1)因为m =432⋅8−23=23﹣2=2,n =32lg2+lg5√5=32lg 2+32lg 5=32(lg 2+lg 5)=32;(2)由题意角θ的终边过点P (2,32),所以cos θ=2√22+(32)=45,可得cos2θ=2cos 2θ﹣1=2×1625−1=725. 20.(12分)已知函数f (x )=lnx ﹣ln (x ﹣1).(1)讨论函数f (x )的单调性;(2)若函数g (x )=ln (﹣x +t )与函数f (x )的图像存在两个不同的交点,求实数t 的取值范围. 解:(1)由题意函数定义域为(1,+∞),不妨设1<x 1<x 2,则f(x 1)−f(x 2)=ln x 1x 1−1−ln x 2x 2−1=ln x 1(x 2−1)x 2(x 1−1), 因为1<x 1<x 2,所以x 1(x 2﹣1)=x 1x 2﹣x 1>x 2(x 1﹣1)=x 1x 2﹣x 2>0,即x 1(x 2−1)x 2(x 1−1)>1,所以f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在定义域内单调递减.(2)g (x )=ln (﹣x +t )定义域为x ∈(﹣∞,t ),又f (x )定义域为(1,+∞),所以t >1,x ∈(1,t )才满足题意,由题意方程ln x x−1=ln(−x +t)有在x ∈(1,t )内两根, 因为y =lnu 在定义域内单调递增,即方程−x +t =x x−1在x ∈(1,t )内有两个不同的根, 所以x 2﹣tx +t =0在x ∈(1,t )内有两个不同的根,令h (x )=x 2﹣tx +t ,则{ ℎ(1)>0Δ>01<t 2<t,所以{ℎ(1)=1>0Δ=t 2−4t >0t >2,解得t >4, 所以实数t 的取值范围为(4,+∞).21.(12分)下表是A 地一天从2~18时的部分时刻与温度变化的关系的预报,现选用一个函数y =f (x )来近似描述温度与时刻的关系.(1)写出函数y =f (x )的解析式;(2)若另一个B 地区这一天的气温变化曲线也近似满足函数y =f (x )且气温变化也是从10℃到30℃,只不过最高气温都比A 地区早2个小时,求同一时刻,A 地与B 地的温差的最大值. 解:(1)由表格可选取三角函数y =A sin (ωx +φ)+b 来近似描述温度与时刻的关系,则A =10,b =20,T 2=8,T =16=2πω, ∴ω=π8,y =10sin(π8x +φ)+20,把(14,30)代入y =10sin(π8x +φ)+20, 则π8⋅14+φ=π2+2kπ,φ=−5π4+2kπ,∴f(x)=10sin(π8x+3π4)+20,x∈[2,18];(2)由题意得B地区这一天的气温变化与时间的函数关系为:g(x)=10sin(π8x+π)+20,∴|f(x)−g(x)|=10|sin(π8x+3π4)−sin(π8x+π)|,利用sinθ−sinφ=2cos θ+φ2sinθ−φ2可得:|f(x)−g(x)|=20|cos(π8x+7π8)⋅sinπ8|,∴当π8x+7π8=kπ,x=8k﹣7∈[2,18],即x=9时,|f(x)−g(x)|max=20sinπ8=20√1−cosπ42=10√2−√2 2.22.(12分)已知函数f(x)=e x−ax(a>0).(1)若f(x)在(1,2)有零点,求实数a的取值范围;(2)记f(x)的零点为x1,g(x)=lnx−1e−ax的零点为x2,求证:x1+x2>2√ae.解:(1)由题意函数f(x)=e x−ax(a>0)单调递增,若f(x)在(1,2)有零点,则f(1)=e−a<0,f(2)=e2−a2<0,解得e<a<2e2,即实数a的取值范围为(e,2e2).(2)证明:因为e x1=ax1,所以x1=lna﹣lnx1(x1>0),即x1+lnx1=lna,又因为lnx2−1e=ax2,a>0,x2>0,两边取对数得ln(lnx2﹣1)﹣1=lna﹣lnx2,所以ln(lnx2﹣1)+lnx2﹣1=lna,令φ(x)=lnx+x,所以φ(x1)=φ(lnx2﹣1),因为φ(x)=lnx+x在定义域内单调递增,所以x1=lnx2﹣1,又因为x1+lnx1=lna,所以x2=e x1+1,所以x1x2=x1e x1+1=ae,而x1≠x2(若x1=x2,则x1=lnx1﹣1不成立,舍去),所以x1+x2>2√x1x2=2√ae.。