高一数学上学期期末考试试题 文1
- 格式:doc
- 大小:774.00 KB
- 文档页数:9
卜人入州八九几市潮王学校红桥区二零二零—二零二壹高一数学上学期期末考试试题〔含解析〕第一卷〔一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项 是符合题目要求的.1.角θ满足sin 0tan θθ>,且cos tan 0θθ<,那么角θ的终边在() A .第一象限B .第二象限C .第三象限D .第四象限3.sin 3cos xx =,那么sin cos x x 的值是() A .16B .15C .310D .29【答案】C【解析】试题分析:由22sin cos 1x x +=与sin 3cos x x =可得2221(3cos )cos 1cos 10x x x +=⇒=,而23sin cos 3cos 10x x x ==,选C. 考点:同角三角函数的根本关系式.4.假设1cos()2A π+=-,那么sin()2A π+=()A .12-B .12C . 6.点(1,2)A -,假设向量AB 与(2,3)a =同向,且||213AB =,那么点B 的坐标为() A .(5,4)-B .(4,5)C .(5,4)--D .(5,4)【答案】D 【解析】试题分析:因为AB 与a 同向,故可设(2,3)(2,3)AB λλλ==且0λ>,所以||(2|AB λ====,所以2,(4,6)AB λ==,又设(,)B x y ,那么有(1,2)AB x y =-+,所以1426x y -=⎧⎨+=⎩,解得54x y =⎧⎨=⎩,所以(5,4)B ,选D. 考点:1.两向量平行的断定与性质;2.向量的坐标运算.7.要得到函数3sin 2y x =的图像,只需将函数3sin(2)3y x π=-的图像() A .向右平移6π个单位B .向右平移3π个单位 C .向左平移6π个单位D .向车平移3π个单位 第二卷〔一共90分〕二、填空题〔每一小题4分,总分值是16分,将答案填在答题纸上〕9.求值252525cos()sin()tan()364πππ-+--=. 11.假设(1,1),2,||7b a b a b =⋅=-=,那么||a =.12.tan ,tan αβ是方程22370x x +-=的两个实数根,那么tan()αβ+的值是.三、解答题〔本大题一一共6小题,一共74分.解容许写出文字说明、证明过程或者演算步骤.〕14.(本小题总分值是8分)在ABC ∆中,设(2,3)AB =,(3,)AC k =,且ABC ∆为直角三角形,务实数k 的值. 【答案】2-或者73【解析】试题分析:此题考察分类讨论的思想、向量垂直的断定与性质,在ABC ∆为直角三角形时,要讨论哪个角为直角,然后利用两直角边所对应的向量的数量积为零,即可求出k 的值. 试题解析:假设90A =︒,由0AB AC ⋅=,得2330k ⨯+=,解得2k =-…………2分 假设90B=︒,(13)BC AC AB k =-=-,,由0AB BC ⋅=得213(3)0k ⨯+-=,解得73k =…5分 假设90C =︒,由0AC BC ⋅=,得13(3)0k k ⨯+-=,即2330k k -+=,k ∈∅ 综上,k 的值是2-或者73………8分. 考点:1.向量垂直的断定与性质;2.分类讨论的思想.15.(本小题总分值是10分)32cos ,sin 43αβ=-=,α是第三象限角,(,)2πβπ∈. (1)求sin 2α的值;(2)求cos(2)αβ+的值.〔2〕因为π(π)2β∈,,2sin 3β=,所以25cos 1sin 3ββ=-= 15372567cos(2)cos 2cos sin 2sin ()838324αβαβαβ++=-=-=……10分. 考点:1.二倍角公式;2.两角和与差的三角函数.16.(本小题总分值是10分)函数()2tan()(0)3f x x πωω=+>的最小正周期为2π. (1)求函数()f x 的定义域; (2)求函数()f x 的单调区间.17.(本小题总分值是l0分)函数()sin()f x A x b ωϕ=++〔0,0A ωϕπ><<、,b 为常数)一段图像如下列图. (1)求函数()f x 的解析式;(2)将函数()y f x =的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的4倍,得到函数()y g x =的图像,求函数()g x 的单调递增区间.18.(本小题总分值是10分)函数()cos(2)2sin()sin()344f x x x x πππ=-+-+. (1)求函数()f x 的最小正周期和图像的对称轴方程;(2)求函数()f x 在区间[,]122ππ-上的值域. 〔2〕因为ππ[]122x ∈-,,所以ππ5π2[]636x -∈-, 因为π()sin(2)6f x x =-在区间ππ[]123-,上单调递增,在区间ππ[]32,上单调递减 所以当π3x =时,()f x 取最大值1 又因为π3π1()()12222f f -=<=,当12x π=-时,()f x 取最小值32所以函数()f x 在区间ππ[]122-,上的值域为[1]………10分. 考点:1.三角函数的图像与性质;2.三角恒等变换.。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
上学期期末考试高一数学试卷一、选择题(12分×5=60分)1.设集合x x M ≤-=4|{<2},集合xx N 3|{=<}91,则N M 中所含整数的个数为( ) A .4 B .3C .2D .12.下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( )A.1y x -= B.ln y x = C.||y x = D.3y x =3.设8.012.1og a =,8.017.0og b =,8.02.1=c ,则a ,b ,c 的大小关系是( )A.a b c <<B.b a c <<C.a c b <<D.c a b <<4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m m αβαβ若则‖‖‖C .,,m n m n αα若则‖‖‖D .,,m n m nαα⊥⊥若则‖5.两条直线3)1(:1=++y a ax l ,2)23()1(:2=-++y a x a l 互相垂直,则a 的值是A .3B .1-C .1- 或3D .0 或 36.若函数⎩⎨⎧≥-<+-=)0()24()0()(2x a x a ax x x f x是R 上的单调函数,则实数a 的取值范围是( )A.)2,0[B.)2,23( C.]2,1[ D.]1,0[7已知a ,b ,c 为直角三角形中的三边长,c 为斜边长,若点),(n m M 在直线03:=++c by ax l 上,则22n m +的最小值为( )A .2B .3C .4D .98.如图,在棱长为4的正四面体ABCD 中,M 是BC 的中点,点P 在线段AM 上运动(P 不与A ,M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题: ①BC ⊥平面AMD ;②Q 点一定在直线DM 上; ③VCAMD=4 2.其中正确命题的序号是( ).A .①②B .①③C .②③D .①②③9.已知圆1)2()(:221=-++y a x C 与圆4)2()(:222=-+-y b x C 相外切, ,a b 为正实数,则ab 的最大值为 ( )A. 23B.94 C. 32 D. 6210.已知函数()f x 是定义在R 上的偶函数,且在(]0-,∞上单调递减,若()10f -=,则不等式()210f x ->解集为( )A .()()6,01,3-B .()(),01,-∞+∞ C.()(),13,-∞+∞ D .()(),13,-∞-+∞11.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的 外接球表面积为A .29πB .30π C.29π2 D .216π12.已知幂函数2422)1()(+--=m m xm x f 在()0,+∞上单调递增,函数t x g x-=2)(,)6,1[1∈∀x 时,总存在)6,1[2∈x 使得()()12f x g x =,则t 的取值范围是( )A .∅B .128≤≥t t 或C .128<>t t 或D .128t ≤≤二、填空题(4分×5=20分)13.函数1()lg(5)2=+--f x x x 的定义域为 . 14.点A(1,a,0)和点B(1-a,2,1)的距离的最小值为________.15.三条直线12110230,50l x y l x y l x my +-=-+=--=:,::围成一个三角形,则m 的取值范围是 . 16. 已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x +-=的实根个数构成的集合为 .三、解答题(10分+12分×5=70分)17.集合(]2,3A =,()1,3B =,[),C m =+∞,全集为R . (1)求()R C A B ;(2)若()A B C ≠∅,求实数m 的取值范围.18.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,PA ⊥面ABCD ,PA =E ,F 分别为BC ,PA (1)求证://BF 面PDE ; (2)求点C 到面PDE 的距离.19.已知函数()4f x x x=+(1) 用函数单调性的定义证明()x f 在区间[)2,+∞上为增函数 (2) 解不等式:()()2247f x x f -+≤20.已知圆M 上一点A (1,-1)关于直线y x =的对称点仍在圆M 上,直线10x y +-=截得圆M 14(1)求圆M 的方程;(2)设P 是直线20x y ++=上的动点,PE PF 、是圆M 的两条切线,E F 、为切点,求四边形PEMF 面积的最小值.21. 如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;(2)设CD=1,求三棱锥A ﹣BFE 的体积.22.已知函数112()log x x f x -+=,()31g x ax a =+-,()()()h x f x g x =+.(1)当1a =时,判断函数()h x 在(1,)+∞上的单调性及零点个数;(2)若关于x 的方程2()log ()f x g x =有两个不相等实数根,求实数a 的取值范围.上学期期末考试高一数学试卷一、选择题(12分×5=60分)1.设集合x x M ≤-=4|{<2},集合xx N 3|{=<}91,则N M 中所含整数的个数为( C ) A .4 B .3C .2D .12.下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( D )A.1y x -= B.ln y x = C.||y x = D.3y x =3.设8.012.1og a =,8.017.0og b =,8.02.1=c ,则a ,b ,c 的大小关系是( A )A.a b c <<B.b a c <<C.a c b <<D.c a b <<4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( D )A .,,αγβγαβ⊥⊥若则‖B .,,m m αβαβ若则‖‖‖C .,,m n m n αα若则‖‖‖D .,,m n m nαα⊥⊥若则‖5.两条直线3)1(:1=++y a ax l ,2)23()1(:2=-++y a x a l 互相垂直,则a 的值是 (C)A .3B .1-C .1- 或3D .0 或 36.若函数⎩⎨⎧≥-<+-=)0()24()0()(2x a x a ax x x f x是R 上的单调函数,则实数a 的取值范围是( B )A.)2,0[B.)2,23( C.]2,1[ D.]1,0[7已知a ,b ,c 为直角三角形中的三边长,c 为斜边长,若点),(n m M 在直线03:=++c by ax l 上,则22n m +的最小值为( D )A .2B .3C .4D .98.如图,在棱长为4的正四面体A BCD 中,M 是BC 的中点,点P 在线段AM 上运动(P 不与A ,M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题: ①BC ⊥平面AMD ;②Q 点一定在直线DM 上; ③V C AMD =4 2.其中正确命题的序号是( A ).A .①②B .①③C .②③D .①②③9.已知圆1)2()(:221=-++y a x C 与圆4)2()(:222=-+-y b x C 相外切, ,a b 为正实数,则ab 的最大值为 ( B )A. 23B.94 C. 32 D. 6210.已知函数()f x 是定义在R 上的偶函数,且在(]0-,∞上单调递减,若()10f -=,则不等式()210f x ->解集为( B )A .()()6,01,3-B .()(),01,-∞+∞ C.()(),13,-∞+∞ D .()(),13,-∞-+∞11.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的 外接球表面积为AA .29πB .30π C.29π2 D .216π12.已知幂函数2422)1()(+--=m m xm x f 在()0,+∞上单调递增,函数t x g x-=2)(,)6,1[1∈∀x 时,总存在)6,1[2∈x 使得()()12f x g x =,则t 的取值范围是( D )A .∅B .128≤≥t t 或C .128<>t t 或D .128t ≤≤二、填空题(4分×5=20分)13.函数1()lg(5)2=+--f x x x 的定义域为 (2,5) . 14.点A(1,a,0)和点B(1-a,2,1)的距离的最小值为___3_____.15.三条直线12110230,50l x y l x y l x my +-=-+=--=:,::围成一个三角形,则m 的取值范围是 1,4,2m ≠-- .16. 已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x +-=的实根个数构成..的集合为....{}2,3,4,5,6,8三、解答题(10分+12分×5=70分)17.集合(]2,3A =,()1,3B =,[),C m =+∞,全集为R .(1)求()R C A B ;(2)若()AB C ≠∅,求实数m 的取值范围.17解:(1)(]1,2,(2)3m ≤18.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,PA ⊥面ABCD ,PA =E ,F 分别为BC ,PA (1)求证://BF 面PDE ; (2)求点C 到面PDE 的距离.18.解(1)如图所示,取PD 中点G ,连结GF ,GE ,∵E ,F 分别为BC ,PA 的中点,∴可证得//FG BE ,FG BE =,∴四边形BFGE 是平行四边形,∴//BF EG ,又∵EG ⊂平面PDE ,BF ⊄平面PDE ,∴ //BF 面PDE ;(2)∵P CDE C PDE V V --=,∴11213372CDE CDE PDE PDE S PA S PA S h h S ∆∆∆∆⨯⨯=⨯⇒=== 19.已知函数()4f x x x=+(1) 用函数单调性的定义证明()x f 在区间[)2,+∞上为增函数 (2) 解不等式:()()2247f x x f -+≤19解: (1) 略(2) 2242x x -+≥, 所以2247x x -+≤[]1,3x ⇒∈-20.已知圆M 上一点A (1,-1)关于直线y x =的对称点仍在圆M 上,直线10xy +-=截得圆M (1)求圆M 的方程;(2)设P 是直线20x y ++=上的动点,PE PF 、是圆M 的两条切线,E F 、为切点,求四边形PEMF 面积的最小值.20.解 (1)圆M 的方程为(x -1)2+(y -1)2=4.(2) |PM |min =22,得|PE |min =2.知四边形PEMF 面积的最小值为4.21. 如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1)求证:DC ⊥平面ABC ;(2)设CD=1,求三棱锥A ﹣BFE 的体积.21解:(1)证明:在图甲中,∵AB=BD ,且∠A=45°, ∴∠ADB=45°,∠ABC=90° 即AB ⊥BD .在图乙中,∵平面ABD ⊥平面BDC ,且平面ABD ∩平面BDC=BD , ∴AB ⊥底面BDC ,∴AB ⊥CD .又∠DCB=90°, ∴DC ⊥BC ,且AB ∩BC=B ,∴DC ⊥平面ABC . (2)31222.已知函数112()log x x f x -+=,()31g x ax a =+-,()()()h x f x g x =+.(1)当1a =时,判断函数()h x 在(1,)+∞上的单调性及零点个数;(2)若关于x 的方程2()log ()f x g x =有两个不相等实数根,求实数a 的取值范围.22解:(1)在(1,)+∞上为增函数,22(1.1) 3.3log 210,(2)6log 30h h =-<=->,所以有一个零点.(2) 方程2()log ()f x g x =化简为2(31)(1)x x a -=-+,画图可知24a->,解得a 的取值范围是1(,0)2-.。
2024届北京市高一数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如图,在等腰梯形ABCD 中,222CD AB EF a ===,,E F 分别是底边,AB CD 的中点,把四边形BEFC 沿直线EF 折起使得平面BEFC ⊥平面ADFE .若动点P ∈平面ADFE ,设,PB PC 与平面ADFE 所成的角分别为12,θθ(12,θθ均不为0).若12=θθ,则动点P 的轨迹围成的图形的面积为A.214a B.249a C.214a π D.249a π 2.设1153a =,1315b =,151log 3c =,则,,a b c 的大小关系是()A.a b c <<B.a c b <<C.c a b <<D.c b a <<3.设定义在R 上的函数()f x 满足:当12x x <时,总有()()122122xxf x f x <,且()12f =,则不等式()2xf x >的解集为() A.(),1-∞ B.()1,+∞ C.()1,1-D.()(),11,-∞+∞4.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120︒,外圆半径为40cm ,内圆半径为20cm .则制作这样一面扇面需要的布料为()2cm .A.4003πB.400πC.800πD.7200π5.已知偶函数()f x 在[)0,∞+上单调递增,且()30f =,则()20f x ->的解集是( ) A.{}33x x -<< B.{1x x <-或}5x > C.{3x x <-或}3x > D.{5x x <-或}1x >6.已知()3sin 5απ-=,则cos2=α() A.-925 B.925C.-725 D.7257.设函数()()()sin cos f x a x b x παπβ=+++,其中a ,b ,α,β都是非零常数,且满足()120193f =-,则()2020f =()A.3-B.13-C.13D.38.下列所给出的函数中,是幂函数的是 A.3y x =- B.3y x -= C.32y x =D.31y x =-9.已知命题“x R ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是() A.1a <- B.13a -<< C.3a >-D.31a -<<10.函数f (x )=ln x +3x -4的零点所在的区间为( ) A.()0,1 B.()1,2 C.()2,3D.()2,4二、填空题:本大题共6小题,每小题5分,共30分。
最新高一数学上学期期末考试试题含答案第I卷(选择题)一、单选题(每题5分,共60分)1.已知集合,则()。
A。
B.C。
D.2.sin585的值为()。
A。
B.C。
D.3.已知角的终边经过点P(4,m),且sin3/5,则m 等于()。
A。
3B。
-3C。
±3D。
无法确定4.下列函数中,在(0,+∞)上单调递减的是()。
A。
B。
C。
D。
5.已知角的终边上一点坐标为,则角的最小正值为()。
A。
B。
C。
D。
6.下列各式中,值为1/2的是()。
A。
cos2π/12-sin2π/12B。
1-tan^2(22.5°)C。
sin150°cos150°D。
(6-2√3)/(3√3-9)7.下列各式中正确的是()。
A。
XXX(π/7)>tan(π/3)B。
tan(-4π/7)<tan(-π/3)C。
tan 281°>tan 665°D。
tan 4>tan 38.已知扇形的周长是6cm,面积是2cm^2,则扇形的圆心角的弧度数是()。
A。
1或4B。
1/2C。
4/3D。
2/39.函数的零点所在的区间是()。
A。
(1,2)B。
(1,e)C。
(e,3)D。
(3,+∞)10.函数的最小正周期为()。
A。
π/5B。
π/4C。
π/3D。
π/211.已知,sin+cos=x,则sin^2-cos^2的值为()。
A。
B。
C。
D。
12.将函数图象上所有点的横坐标缩短为原来的,再向右平移π/4个单位长度,得到函数的图象,则图象的一条对称轴是直线()。
A。
x=π/4B。
x=π/2C。
x=3π/4D。
x=π第II卷(非选择题)二、填空题(每题5分,共20分)13.已知tan=3,则tan-的值是______。
答案:-1/314.函数的定义域为________。
答案:(-∞,0)∪(0,π/2)15.已知为第二象限角,cos(π/2-2α)=________。
高一上学期期末考试数学试卷-附含有答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)已知集合A ={x|x ≤√3x},B ={x |x 2+x ﹣6≥0},则A ∩B =( ) A .∅B .{x|√3≤x ≤3}C .{x |2≤x ≤3}D .{3}2.(5分)方程:x 3﹣3x +1=0至少有一个实根的区间是( ) A .[√32,√3] B .[√3,2] C .[﹣1,0] D .[√32,1] 3.(5分)在同一平面直角坐标系中,函数f (x )的图象与y =e x 的图象关于直线y =x 对称,若f (m )=﹣1,则m 的值是( ) A .﹣eB .−1eC .eD .1e4.(5分)已知α∈(0,π),且3cos2α+7cos α=0,则sin α的值为( ) A .√53B .23C .13D .2√235.(5分)设a =log 54,则b =log 1513,c =0.5﹣0.2,则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b6.(5分)希波克拉底是古希腊医学家,他被西方尊为“医学之父”,除了医学,他也研究数学.特别是与“月牙形”有关的问题.如图所示.阴影部分的月牙形的边缘都是圆弧,两段圆弧分别是△ABC 的外接圆和以AB 为直径的圆的一部分,若∠ACB =2π3,AC =BC =1,则该月牙形的面积为( )A .√34+π24B .√34−π24C .14+π24D .3√34−π87.(5分)将log 30.81=x 化成指数式可表示为( ) A .3x =0.81B .x 0.81=3C .30.81=xD .0.813=x8.(5分)已知函数f (x )=16x ,记函数g (x )=f (x )+x +1(2≤x ≤a ),其中实数a >2,若g (x )的值域为[9,11],则a 的取值范围是( ) A .[2,6]B .[4,8]C .[6,10]D .[8,12]二.多选题(共4小题,满分20分,每小题5分)(多选)9.(5分)下列函数既是奇函数又在区间(0,1)是减函数的是( )A .y =x +1xB .y =﹣x +1C .y =x−13D .y =|x |(多选)10.(5分)下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2B .若﹣3<a <2,1<b <4,则﹣7<a ﹣b <1C .若b <a <0,m <0,则m a>m bD .若a >b >0,c >d >0,则ac >bd(多选)11.(5分)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2﹣4ac ≤0”B .两个不等式a 2+b 2≥2ab 与“a+b 2≥√ab 成立的条件不同C .命题∃x 0∈R ,x 02+2x 0+2=0是假命题D .函数y =√x 2+2+√x +2的最小值为2(多选)12.(5分)关于函数y =|sin (2x −π6)|,下列叙述正确的是( ) A .最小正周期为π2B .直线x =π12是函数图象的一条对称轴C .函数在[7π12,5π6]上单调递增D .函数在[π2,π]上先递减,后递增三.填空题(共4小题,满分20分,每小题5分)13.(5分)函数y =lg [(12)x ﹣1]的定义域是 .14.(5分)如图,在单位圆中,P (1,0),M 、N 分别在单位圆的第一、二象限内运动,若S △PON =2√37,△MON 为等边三角形,则sin ∠POM = .15.(5分)若幂函数y =x a 的图像经过(3,√3),则此函数的表达式为 . 16.(5分)函数f (x )=3sin (ωx +π3)的最小正周期T =π,则ω= . 四.解答题(共6小题,满分70分) 17.(10分)计算:(1)(13)﹣2−(338)13+√(−2)44;(2)(lg 2)2+lg 5•lg 20+log √39.18.(12分)(1)已知sinα=−13,且α为第四象限角,求sin(α−π2)与tan α值; (2)已知tan α=2,求cos αsin α的值. 19.(12分)设函数f(x)=2sin(2x +π3),x ∈R . (1)求函数f (x )的最小正周期; (2)求函数的对称轴、对称中心; (3)当x 取何值时,函数有最值; (4)求函数的单调区间;(5)判断函数在[π6,5π6]上的单调性; (6)求函数在[π6,5π6]上的值域; (7)求函数f (x )>1的解集. 20.(12分)讨论函数f(t)=5√t +√t在[25,910]上的单调性,并求函数的最大值和最小值. 21.(12分)小华同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy ,x 轴在地平面上的球场中轴线上,y 轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程=12kx−180(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.(1)求发射器的最大射程;(2)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.22.(12分)设函数f(x)=log a(1+12x),g(x)=log a(1−12x)(a>0且a≠1),若h(x)=f(x)﹣g(x).(1)求函数h(x)的定义域;(2)判断h(x)的奇偶性,并说明理由;(3)求使h(x)>0成立的x的集合.参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.【解答】解:由题意可得,A ={x |0≤x ≤3},B ={x |x ≤﹣3或x ≥2} 则A ∩B ={x |2≤x ≤3}. 故选:C .2.【解答】解:设方程:x 3﹣3x +1=0,对应函数为f (x )=x 3﹣3x +1,则f ′(x )=3x 2﹣3 令f ′(x )=3x 2﹣3=0,解得x =1或﹣1x ∈(﹣∞,﹣1]∪[1,+∞)时,f ′(x )>0,f (x )单调递减,x ∈(﹣1,1)时,f ′(x )<0,f (x )单调递增 A .在[√32,√3]上,f (x )先增后减,f (x )min =f (1),则f (√32)=(√32)3﹣3×√32+1=1−9√38<0,f (1)=(1)3﹣3×1+1=﹣1<0,f (√3)=(√3)3﹣3×√3+1=1>0,即方程x 3﹣3x +1=0有一个实根,符合题意,故A 正确;B .在[√3,2]上,f (x )单调递减,则f (2)=23﹣3×2+1=3>0,f (√3)=(√3)3﹣3×√3+1=1>0,即方程x 3﹣3x +1=0无实根,不符合题意,故B 错误;C .在[﹣1,0]上,f (x )单调递增,则f (﹣1)=(﹣1)3﹣3×(﹣1)+1=3>0,f (0)=03﹣3×0+1=1>0,即方程x 3﹣3x +1=0无实根,不符合题意,故C 错误;D .在[√32,1]上,f (x )单调递增,则f (√32)=(√32)3﹣3×√32+1=1−9√38<0,f (1)=(1)3﹣3×1+1=﹣1<0,即方程x 3﹣3x +1=0无实根,不符合题意,故D 错误; 故选:A .3.【解答】解:∵函数y =f (x )的图象与y =e x 的图象关于直线y =x 对称 ∴函数y =f (x )与y =e x 互为反函数 则f (x )=lnx 又∵f (m )=﹣1 ∴lnm =﹣1 m =1e故选:D .4.【解答】解:由3cos2α+7cos α=0得3(2cos 2α﹣1)+7cos α=0,即6cos 2α+7cos α﹣3=0 所以(2cos α+3)(3cos α﹣1)=0,又α∈(0,π),则cos α∈(﹣1,1) 所以cosα=13所以sinα=√1−cos 2α=2√23. 故选:D .5.【解答】解:∵b =log 1513=log 53,a =log 54<log 55=1∴b <a <1 ∵c =0.5﹣0.2>0.50=1∴b <a <c 故选:B .6.【解答】解:由已知可得AB =√3,△ABC 的外接圆半径为1 由题意,内侧圆弧为△ABC 的外接圆的一部分,且其对应的圆心角为2π3则弓形ABC 的面积为12×12×(2π3−sin2π3)=π3−√34外侧的圆弧以AB 为直径 所以半圆AB 的面积为12×π×(√32)2=3π8 则月牙形的面积为3π8−(π3−√34)=√34+π24. 故选:A .7.【解答】解:把对数式log 30.81=x 化成指数式 为3x =0.81. 故选:A .8.【解答】解:因为f (x )=16x所以g (x )=f (x )+x +1=16x +x +1(2≤x ≤a )根据对勾函数单调性可知g (x )在[2,4]上单调递减,在[4,+∞)上单调递增 因为a >2当2<a ≤4时,g (x )在[2,a ]上单调递减且g (x )的值域为[9,11] 则g (2)=11,g (a )=a +1+16a=9 解得a =4当a >4时,g (x )在[2,4]上单调递减,在[4,a ]上单调递增 所以g (4)=9为最小值,g (2)=11 因为g (x )的值域为[9,11] 所以g (a )=a +1+16a ≤11 解得2≤a ≤8 所以4<a ≤8综上,a 的取值范围为[4,8]. 故选:B .二.多选题(共4小题,满分20分,每小题5分) 9.【解答】解:根据题意,依次分析选项:对于A ,y =x +1x,是奇函数且在区间(0,1)是减函数,符合题意; 对于B ,y =﹣x +1,是一次函数,不是奇函数,不符合题意 对于C ,y =x−13,是幂函数,是奇函数且在区间(0,1)是减函数,符合题意;对于D ,y =|x |,是偶函数,不符合题意 故选:AC .10.【解答】解:对于A ,当c =0时,ac 2=bc 2=0,A 错误;对于B ,∵1<b <4,∴﹣4<﹣b <﹣1,又﹣3<a <2,∴﹣7<a ﹣b <1,B 正确; 对于C ,∵b <a <0,∴1a<1b ,又m <0,∴m a>m b,C 正确;对于D ,∵a >b >0,c >d >0,∴ac >bc >bd ,D 正确. 故选:BCD .11.【解答】解:对于A ,取a =b =0,c =﹣1,满足条件“b 2﹣4ac ≤0”,但不满足“ax 2+bx +c ≥0”,所以“b 2﹣4ac ≤0”不是“ax 2+bx +c ≥0”的充分条件,所以A 错; 对于B ,不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ,不等式a+b 2≥√ab 成立的条件是a ,b ∈[0,+∞),所以B 对;对于C ,因为对任意x 0∈R ,有x 02+2x 0+2=(x 0+1)2+1>0,所以C 对;对于D ,令u =√x 2+2,则u ≥√2>1,因为函数y =u +1u,在[1,+∞)上单调增加,所以y =√x 2+2+1√x +2=u +1u ≥√2+1√2=3√22,所以D 错. 故选:BC .12.【解答】解:作出函数的图象,如图示:根据函数的性质可知,选项A ,B ,C 正确函数在[π2,π]上先递减,再递增,再递减,故选项D 错误;故选:ABC .三.填空题(共4小题,满分20分,每小题5分) 13.【解答】解:由题意,可知(12)x ﹣1>0即(12)x >1解得x <0.故答案为:(﹣∞,0).14.【解答】解:S △PON =12×1×1×sin∠PON =2√37,解得sin∠PON =4√37而点N 在第二象限则cos ∠PON =−1−(4√37)2=−17 ∵∠MON =π3∴sin∠POM =sin(∠PON −π3)=sin∠PON ×12−cos∠PON ×√32=5√314. 故答案为:5√314. 15.【解答】解:幂函数y =x a 的图像经过(3,√3),则√3=3a ,∴a =12 y =x 12=√x .故答案为:y =√x .16.【解答】解:函数f (x )=3sin (ωx +π3)的最小正周期T =π 故ω=2ππ=2. 故答案为:2.四.解答题(共6小题,满分70分)17.【解答】解:(1)(13)﹣2−(338)13+√(−2)44=9−32+2=192; (2)(lg 2)2+lg 5•lg 20+log √39=(lg 2)2+lg 5•(1+lg 2)+4 =lg 2(lg 2+lg 5)+lg 5+4 =lg 2+lg 5+4=5.18.【解答】解:(1)因为sinα=−13,且α为第四象限角 所以cosα=√1−sin 2α=2√23可得sin(α−π2)=−cos α=−2√23,tanα=−√24. (2)因为tan α=2 可得sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=25. 19.【解答】解:(1)对于函数f(x)=2sin(2x +π3),x ∈R ,它的最小正周期为2π2=π.(2)令2x +π3=k π+π2,k ∈Z ,求得x =kπ2+π12,可得它的图象的对称轴为x =kπ2+π12,k ∈Z ; 令2x +π3=k π,k ∈Z ,求得x =kπ2−π6,可得它的图象的对称中心为(kπ2−π6,0)k ∈Z .(3)令2x +π3=2k π+π2,k ∈Z ,求得x =k π+π12,可得当x =k π+π12,k ∈Z 时,函数取得最大值为2; 令2x +π3=2k π−π2,k ∈Z ,求得x =k π−5π12,可得当x =k π−5π12,k ∈Z 时,函数取得最小值为﹣2. (4)令2k π−π2≤2x +π3≤2k π+π2,k ∈Z ,求得k π−5π12≤x ≤k π+π12 可得函数的增区间为[k π−5π12,k π+π12],k ∈Z .令2k π+π2≤2x +π3≤2k π+3π2,k ∈Z ,求得k π+π12≤x ≤k π+7π12可得函数的减区间为[kπ+π12,kπ+7π12],k∈Z.(5)在[π6,5π6]上,2x+π3∈[2π3,2π]故当2x+π3∈[2π3,3π2π]时,即x∈[π6,7π12],函数f(x)单调递减;当2x+π3∈[3π2π,2π]时,即x∈[7π12,5π6],函数f(x)单调递增故函数f(x)在[π6,5π6]上的减区间为[π6,7π12],增区间为[7π12,5π6].(6)在[π6,5π6]上,2x+π3∈[2π3,2π],故当2x+π3=3π2时,函数f(x)取得最小值为﹣2;当2x+π3=2π3时,函数f(x)取得最大值为√3故函数的值域为[﹣2,√3].(7)函数f(x)>1,即sin(2x+π3)>12,故有2kπ+π6<2x+π3<2kπ+5π6,k∈Z求得kπ−π12<x<kπ+π4,k∈Z故函数f(x)>1的解集为(kπ−π12,kπ+π4),k∈Z.20.【解答】解:因为t∈[25,910],令x=√t,则x∈[√25,√910]对于y=g(x)=5x+8x,g(x)在[√25,√910]上单调递减,证明如下:在[√25,√910]上任取x1,x2,且x1<x2.则g(x2)−g(x1)=(5x2+8x2)−(5x1+8x1)=5(x2−x1)+8(x1−x2)x1x2=(x2−x1)(5x1x2−8x1x2)因为√25≤x1<x2≤√910<1<√85,则x1x2<85所以x2﹣x1>0,5x1x2﹣8<0,x1x2>0.故g(x2)﹣g(x1)<0,即g(x1)>g(x2)所以g(x)在[√25,√910]上单调递减而x=√t在[25,910]上单调递增所以f(t)=5√t 8√t在[25,910]上单调递减所以f(x)在[25,910]的最大值为f(25)=5√25√25=5√10第11页(共11页)最小值为f(910)=5√910√910=25√106. 21.【解答】解:(1)由12kx −180(1+k 2)x 2=0得:x =40k1+k2或x =0,…(2分) 由x =40k+1k ≤20,当且仅当k =1时取等号. 因此,最大射程为20米; …(5分)(2)网球发过球网,满足x =8时y >1.所以4k −45(1+k 2)>1,即4k 2﹣20k +9<0,因此12<k <92…(8分) 依题意:关于k 的方程12ka −180(1+k 2)a 2=2.55在(12,92)上有实数解 即a 2k 2﹣40ak +a 2+204=0(a ≠0)…9分Δ=1600a 2﹣4a 2(a 2+204)≥0得a ≤14,…(11分)此时k =107,球过网了,所以击球点的横坐标 a 最大为14 …(12分) 22.【解答】解:(1)根据题意,由h (x )=f (x )﹣g (x )=log a (1+12x )﹣log a (1−12x )则有1+12x >0且1−12x >0,解可得﹣2<x <2所以函数定义域为(﹣2,2)(2)根据题意,对任意的x ∈(﹣2,2),﹣x ∈(﹣2,2)ℎ(−x)=f(−x)−g(−x)=log a (1−12)x −log a (1+12)x =g (x )﹣f (x )=﹣h (x ) 所以h (x )为奇函数(3)h (x )>0,即f(x)>g(x)⇔{a >11+12x >1−12x >0或{0<a <10<1+12x <1−12x 则a >1时,有0<x <2,0<a <1时,﹣2<x <0则a >1时,x ∈{x |0<x <2},0<a <1时,x ∈{x |﹣2<x <0}。
卜人入州八九几市潮王学校宝安区二零二零—二零二壹高一上学期期末考试数学试题一、选择题〔本大题一一共10小题,一共50.0分〕0,1,,,那么A. B. C.0, D.1,【答案】A【解析】【分析】解一元二次不等式,求出集合B,然后进展交集的运算即可.【详解】解:,0,1,;.应选:A.【点睛】考察列举法、描绘法表示集合,解一元二次不等式,以及交集的运算.的值是A. B. C. D.【答案】C【解析】根据两角和的余弦公式可得:,故答案为C.的定义域是A. B. C. D.【答案】A【解析】【分析】根据函数成立的条件即可求函数的定义域.【详解】解:要使函数有意义,那么,得,即,即函数的定义域为应选:A.【点睛】此题主要考察函数的定义域的求解,要求纯熟掌握常见函数成立的条件.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.4.如图,正方形ABCD中,点E,F分别是DC,BC的中点,那么〔〕A.B.C.D.【答案】D【解析】因为点是的中点,所以,点是的中点,所以,所以,应选D.的图象向左平移个单位长度,那么平移后的图象的对称轴为A. B.C. D.【答案】B【解析】【分析】利用函数的图象的变换及正弦函数的对称性可得答案.【详解】解:将函数的图象向左平移个单位长度,得到,由得:,即平移后的图象的对称轴方程为,应选:B.【点睛】此题考察函数的图象的变换规律的应用及正弦函数的对称性质,属于中档题.〔〕的最小值为8,那么〔〕A. B. C. D.【答案】A【解析】因为在上单调递减,在上单调递增,所以,令,那么在上单调递增,又,,所以存在零点.应选A.7.为三角形内角,且,假设,那么关于的形状的判断,正确的选项是A.直角三角形B.锐角三角形C.钝角三角形D.三种形状都有可能【答案】C【解析】【分析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状.【详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形应选:C.【点睛】此题主要考察了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数根本技巧的运用.8.(2021高考III,理3)向量,那么ABC=A.30B.45C.60D.120【答案】A【解析】试题分析:由题意,得,所以,应选A.【考点】向量的夹角公式.【思维拓展】〔1〕平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;〔2〕由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.在单调递减,且为奇函数,假设,那么满足的的取值范围是〔〕.A. B. C. D.【答案】D【解析】是奇函数,故;又是增函数,,即那么有,解得,应选D.【点睛】解此题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.的局部图象如下列图,那么函数图象的一个对称中心可能为A. B. C. D.【答案】C【解析】由图可知,,,当时,,该对称中心为时,,当时,,所以对称中点为,应选C.【方法点睛】此题主要通过三角函数的图像求解析式考察三角函数的性质,属于中档题.利用利用图像先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法〞的第几个点,用五点法求值时,往往以寻找“五点法〞中的第一个点为打破口,“第一点〞(即图象上升时与轴的交点)时;“第二点〞(即图象的“峰点〞)时;“第三点〞(即图象下降时与轴的交点)时;“第四点〞(即图象的“谷点〞)时;“第五点〞时.二、填空题〔本大题一一共4小题,一共20.0分〕的值域为,那么实数a的取值范围是______.【答案】.【解析】∵函数的值域为,∴,解得或者,那么实数a的取值范围是,故答案为.的图象关于y轴对称,且其定义域为,那么函数在上的值域为________.【答案】【解析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考察函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是纯熟掌握二次函数的性质,此题理解对称性很关键.,假设关于x的方程有两个不同的实根,那么实数m的取值范围是______.【答案】【解析】【分析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案.【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公一共点,由图象可知当时,满足题意,故答案为:.【点睛】此题考察方程根的个数,数形结合是解决问题的关键,属根底题.,正实数m,n满足,且,假设在区间上的最大值为2,那么______.【答案】【解析】【分析】由正实数满足,且,可知且,再由在区间上的最大值为2,可得出求出、,从而可得的值.【详解】,正实数满足,且,由对数函数的性质知,,可得,所以,又函数在区间上的最大值为2,由于,故可得,即,即,即,可得,那么,故答案为.【点睛】此题主要考察对数的运算法那么以及对数函数的图象、值域与最值,意在考察对根本性质掌握的纯熟程度以及综合应用所学知识解答问题的才能,求解此题的关键是根据对数函数的性质判断出,以及,此题属于难题.三、解答题〔本大题一一共6小题,一共80.0分〕=R.(1)求;(2)求(A);(3)假设非空集合,且A,求的取值范围.【答案】(1)(2)(3).【解析】试题分析:〔1〕化简集合、,根据并集的定义写出;〔2〕根据补集与交集的定义写出;〔3〕根据非空集合与,得出关于的不等式,求出解集即可.试题解析:(1)∵===∴(2)∵A=∴A)(3)非空集合∴,即∵A∴或者即或者∴xOy中,角α与角β均以Ox为始边,它们的终边关于y,那么=___________.【答案】【解析】试题分析:因为和关于轴对称,所以,那么,〔或者〕,所以.【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】此题考察了角的对称关系,以及诱导公式,常用的一些对称关系包含:假设与的终边关于轴对称,那么,假设与的终边关于轴对称,那么,假设与的终边关于原点对称,那么.17.如图,游客从某旅游景区的景点A处下山至C处,第一种是从A沿直线步行到C,第二种是先从A沿索道乘缆车到B,然后从B沿直线步行到某旅客选择第二种方式下山,山路AC长为1260m,从索道步行下山到时C处经测量,,,求索道AB的长.【答案】索道AB的长为1040m.【解析】【分析】利用两角和差的正弦公式求出,结合正弦定理求AB即可【详解】解:在中,,,,,那么,由正弦定理得得,那么索道AB的长为1040m.【点睛】此题主要考察三角函数的应用问题,根据两角和差的正弦公式以及正弦定理进展求解是解决此题的关键.,,且.务实数m的值;作出函数的图象并直接写出单调减区间.假设不等式在时都成立,求m的取值范围.【答案】〔1〕〔2〕详见解析,单调减区间为:;〔3〕【解析】【分析】由,代入可得m值;分类讨论,去绝对值符号后根据二次函数表达式,画出图象.由题意得在时都成立,可得在时都成立,解得即可【详解】解:,由得即解得:;由得,即那么函数的图象如下列图;单调减区间为:;由题意得在时都成立,即在时都成立,即在时都成立,在时,,.【点睛】此题考察的知识点是函数解析式的求法,零点分段法,分段函数,由图象分析函数的值域,其中利用零点分段法,求函数的解析式是解答的关键.的图象关于直线对称,且图象上相邻两个最高点的间隔为.Ⅰ求和的值;Ⅱ假设,求的值.【答案】〔1〕;〔2〕.【解析】试题分析:〔1〕由两个相邻的最高点的间隔可求得周期,那么,函数为,由函数关于直线对称,可知,结合可求得的值;〔2〕对进展三角恒等变换,可求得的值,又为锐角,可求得,再利用三角恒等变换求得值.试题解析:〔1〕由题意可得函数的最小正周期为,再根据图象关于直线对称,可得结合,可得〔2〕再根据考点:三角函数的周期与初相,三角恒等变换.且是奇函数.求常数k的值;假设,试判断函数的单调性,并加以证明;假设,且函数在区间上的最小值为,务实数m的值.【答案】〔1〕;〔2〕在上为单调增函数;〔3〕.【解析】试题分析:〔1〕根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定义检验;〔2〕判断单调性,一般由单调性定义,设,判断的正负〔因式分解后判别〕,可得结论;〔3〕首先由,得,这样就有,这种函数的最值求法是用换元法,即设,把函数转化为二次函数的问题,注意在换元过程中“新元〞的取值范围.试题解析:〔1〕函数的定义域为函数〔且〕是奇函数,〔2〕设、为上两任意实数,且,,,,即函数在上为单调增函数.〔3〕,,解得或者且,〔〕令〔〕,那么当时,,解得,舍去当时,,解得考点:函数的奇偶性、单调性,函数的最值.。
平顶山市2024届高一数学第一学期期末统考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12小题,共60分)1.已知圆C :x 2+y 2+2x =0与过点A (1,0)的直线l 有公共点,则直线l 斜率k 的取值范围是() A.33,22⎡-⎢⎣⎦ B.33,33⎡-⎢⎣⎦C.11,22⎡⎤-⎢⎥⎣⎦ D.[]1,1-2.已知函数,则()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,则()()11f f --=A.22log 32- B.2log 71-C.2D.2log 63.如果幂函数()a f x x =的图象经过点()2,4,则()f x 在定义域内A.为增函数B.为减函数C.有最小值D.有最大值4.已知(2,5,6)A -,点P 在y 轴上,||7PA =,则点P 的坐标是A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,8,0)-5.角α的终边经过点()2,1-,则2sin 3cos αα+的值为()A.55-C.5D.5-6.已知函数1()sin()f x x ωφ=+(0,2ωφπ><)的部分图象如图所示,则,ωφ的值分别为A.2,3π B.2, 3π-C.1, 6π D.1, 6π-7.已知1tan 2α=,则cos sin cos sin αααα+=-().A.2B.2-C.3D.3-8.如图,四边形ABCD 是平行四边形,则()A. B.C. D.9.下表是某次测量中两个变量,x y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是x 23456789y0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10.已知角α满足2cos2cos 04παα⎛⎫=+≠⎪⎝⎭,则sin2α=A .18- B.78-C.18 D.7811.已知角θ为第四象限角,则点()sin ,tan P θθ位于()A.第一象限B.第二象限C.第三象限D.第四象限12.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A.910 B.45C.25 D.12二、填空题(本大题共4小题,共20分)0.258+(1258-)0+323log=_____14.若tan(2,4πα+=则sin cossin cosαααα-=+______15.已知tan3α=,则sin cossin cosαααα+=-___________16.函数212()log()f x x x=-的单调增区间为________三、解答题(本大题共6小题,共70分)17.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是()2sin(0,0)3f x A x Aπϕϕπ⎛⎫=+>≤<⎪⎝⎭,其中的振幅为2,且经过点()1,2-.(1)求该噪声声波曲线的解析式()f x以及降噪芯片生成的降噪声波曲线的解析式()g x;(2)将函数()f x图象上各点的横坐标变为原来的3π倍,纵坐标不变得到函数()h x的图象.若锐角θ满足()1013hθ=-,求cos2θ的值.18.已知定义域为R的函数()122xxaf xb+-+=+是奇函数.(1)求,a b的值;(2)判断函数()f x的单调性(只写出结论即可);(3)若对任意的[1,1]t∈-不等式()()2220f t t f k t-+-<恒成立,求实数k的取值范围19.已知a R ∈,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程()()2log 4250f x a x a ⎡⎤--+-=⎣⎦的解集中恰有一个元素,求a 的取值范围;(3)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.20.如图,正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC =()1求二面角1B AD B --的正切值;()2求三棱锥11C ABB -的体积21.函数()()2log 21x f x =-(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围22.已知,a b ∈R ,0a ≠,函数()cos )f x x x b =++,1()sin cos 22a g x a x x a =⋅+++(1)若(0,)x π∈,()5f x b =-+,求sin cos x x -的值;(2)若不等式()()f xg x ≤对任意x ∈R 恒成立,求b 的取值范围参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r =1,设直线方程为y ﹣0=k (x ﹣1),即kx ﹣y ﹣k =0∴圆心到直线的距离d =≤1,解得33-≤k 33≤故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题2、B 【解析】因为()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,所以()()()()2112617117log 71f f f f --=---=--==-,,故选B.3、C【解析】由幂函数()f x x α=的图象经过点(2,4),得到2()f x x =,由此能求出函数的单调性和最值【详解】解: 幂函数()f x x α=的图象经过点(2,4),()224a f ∴==,解得2a =,2()f x x ∴=,()f x ∴在(],0x ∈-∞递减,在[)0,x ∈+∞递增,有最小值,无最大值故选C【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答4、C【解析】依题意设()0,,0P b ,根据7PA ==,解得2,8b =,所以选C .5、D【解析】根据三角函数定义求解即可.【详解】因为角α的终边经过点()2,1-,所以5sin 5α==,25cos 5α==-,所以2565452sin 3cos 555αα+=-=-.故选:D6、B 【解析】由条件知道:27,36x x ππ==均是函数的对称中心,故这两个值应该是原式子分母的根,故得到27sin()0,sin()036w w πφπφ+=+=,由图像知道周期是π,故2w =,故47sin()0,sin()033πφπφ+=+=,再根据三角函数的对称中心得到4+=k 3πφπ,故.3πφ=-如果7433k πφπφπ+=⇒=-,根据2πφ<,得到.3πφ=-故答案为B 点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法7、C 【解析】将cos sin cos sin αααα+-分子分母同除以cos α,再将1tan 2α=代入求解.【详解】11cos sin 1tan 231cos sin 1tan 12αααααα+++===---.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.8、D【解析】由线性运算的加法法则即可求解.【详解】如图,设交于点,则.故选:D9、D【解析】对于A ,由于x 均匀增加1,而y 值不是均匀递增,∴不是一次函数模型;对于B ,由于该函数是单调递增,不是二次函数模型;对于C ,x y a =过()0,1,∴不是指数函数模型,故选D.10、B【解析】∵2cos2cos 4παα⎛⎫=+ ⎪⎝⎭∴2222(cos sin )2(cos sin )(cos sin )(cos sin )02αααααααα-=+-=-≠,∴2cos sin 4αα+=,两边平方整理得11+2sin cos 1+sin28ααα==,∴7sin28α=-.选B 11、C 【解析】根据三角函数的定义判断sin θ、tan θ的符号,即可判断.【详解】因为θ是第四象限角,所以sin 0θ<,tan 0θ<,则点(sin ,tan )θθ位于第三象限,故选:C12、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为2225110C C =,则2名同学中至少有一名男同学的概率是1911010-=.故选:A .二、填空题(本大题共4小题,共20分)13、5【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式()1134422122125=⨯++=++=.故答案为:5【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.14、12-【解析】sin cos sin cos αααα-=+tan 111tan 12tan()4απαα-=-=-++15、2【解析】将齐次式弦化切即可求解.【详解】解:因为tan 3α=,所以sin cos tan 1312sin cos tan 131+++===---αααααα,故答案为:2.16、1,12⎡⎫⎪⎢⎣⎭.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由20x x ->得()f x 定义域为()0,1,令2t x x =-,则t 在112⎡⎫⎪⎢⎣⎭,单调递减,又12log y t =在()0,∞+单调递减,所以()f x 的单调递增区间是112⎡⎫⎪⎢⎣⎭,.故答案为:112⎡⎫⎪⎢⎣⎭,.三、解答题(本大题共6小题,共70分)17、(1)()252sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()252sin 36g x x ππ⎛⎫=-+ ⎪⎝⎭(2)123526【解析】(1)利用函数的振幅求得A ,代入()1,2-求得ϕ的值,从而求得函数()f x ,利用对称性求得函数()g x ;(2)利用三角函数图像变换求得()h x ,由()1013h θ=-得5cos 2313πθ⎛⎫+=- ⎪⎝⎭,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由()2sin (0,0)3f x A x A πϕϕπ⎛⎫=+>≤< ⎪⎝⎭振幅为2知2A =,()22sin 3f x x πϕ⎛⎫∴=+ ⎪⎝⎭,代入()1,2-有22sin 23πϕ⎛⎫+=- ⎪⎝⎭,272,2326k k πππϕπϕπ∴+=-+∴=-+,而0ϕπ≤<,()525,2sin 636f x x πππϕ⎛⎫∴=∴=+ ⎪⎝⎭而()f x 与()g x 关于x 轴对称,()()252sin 36g x f x x ππ⎛⎫∴=-=-+ ⎪⎝⎭【小问2详解】由已知()352sin 26h x f x x ππ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,()5102sin 22sin 22cos 2623313h ππππθθθθ⎛⎫⎛⎫⎛⎫∴=+=++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5cos 2313πθ⎛⎫∴+=- ⎪⎝⎭40,22333ππππθθ<<∴<+< ,而514cos 2cos 31323ππθ⎛⎫+=->-= ⎪⎝⎭,故223ππθπ<+<,12sin 2313πθ⎛⎫∴+= ⎪⎝⎭cos2cos 233ππθθ⎡⎤⎛⎫∴=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 3333ππππθθ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭51123132132⎛⎫=-⨯+⨯ ⎪⎝⎭123526-=.18、(1)1a =,2b =;(2)见解析;(3)(2,)+∞.【解析】(1)根据函数奇偶性得()00f =,()()11f f -=-,解得,a b 的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为2k t >,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1) ()f x 在R 上是奇函数,∴()00f =,∴102a b -+=+,∴1a =,∴()1122x x f x b+-=+,∴()()11f f -=-,∴111214b b --=-++,∴2b =,∴()11222xx f x +-=+,经检验知:()()f x f x -=,∴1a =,2b =(2)由(1)可知,()()()21211221221x x x f x -++==-+++在R 上减函数.(3)()()2220f t t f k t -+-< 对于[]1,1t ∈-恒成立,()()222f t t f k t ∴-<--对于[]1,1t ∈-恒成立, ()f x 在R 上是奇函数,()()222f t t f t k ∴-<-对于[]1,1t ∈-恒成立,又 ()f x 在R 上是减函数,222t t t k ∴->-,即2k t >对于[]1,1t ∈-恒成立,而函数()2g x t =在[]1,1-上的最大值为2,2k ∴>,∴实数k 的取值范围为()2,+∞【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭.(2)(]{}1,23,4 .(3)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当5a =时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a 的取值范围进行求解即可;(3)根据条件得到11f t f t -+≤()(),恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由21log 50x >⎛⎫+ ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭(2)由f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0得log 2(1x +a )﹣log 2[(a ﹣4)x +2a ﹣5]=0即log 2(1x +a )=log 2[(a ﹣4)x +2a ﹣5],即1x+a =(a ﹣4)x +2a ﹣5>0,①则(a ﹣4)x 2+(a ﹣5)x ﹣1=0,即(x +1)[(a ﹣4)x ﹣1]=0,②,当a =4时,方程②的解为x =﹣1,代入①,成立当a =3时,方程②的解为x =﹣1,代入①,成立当a ≠4且a ≠3时,方程②的解为x =﹣1或x 14a =-,若x =﹣1是方程①的解,则1x +a =a ﹣1>0,即a >1,若x 14a =-是方程①的解,则1x+a =2a ﹣4>0,即a >2,则要使方程①有且仅有一个解,则1<a ≤2综上,若方程f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2,或a =3或a =4(3)函数f (x )在区间[t ,t +1]上单调递减,由题意得f (t )﹣f (t +1)≤1,即log 2(1t +a )﹣log 2(11t ++a )≤1,即1t +a ≤2(11t ++a ),即a ()12111t t t t t -≥-=++设1﹣t =r ,则0≤r 12≤,()()()2111232t r r t t r r r r -==+---+,当r =0时,232r r r =-+0,当0<r 12≤时,212323r r r r r =-++-,∵y =r 2r +在(0)上递减,∴r 219422r +≥+=,∴211229323332r r r r r =≤=-++--,∴实数a 的取值范围是a 23≥【一题多解】(3)还可采用:当120x x <<时,1211a a x x ++>,221211log log a a x x >⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,∞+上单调递减则函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭20、(1)2(2)934【解析】()1取BC 中点O,11B C 中点E,连结OE,OA,以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1B AD B --的正切值()2三棱锥11C ABB -的体积1111C ABB A BB C V V --=,由此能求出结果【详解】()1取BC 中点O ,11B C 中点E ,连结OE ,OA ,由正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC=以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,则13(,2B 3,0),(0,A 0,2,9(,2D 0,0),3(,2B 0,0),所以9(,2AD = 0,33)2-,13(,2AB = 3,332-,其中平面ABD 的法向量(0,n =1,0),设平面1ADB 的法向量(,m x = y ,)z ,则19330223333022m AD x z m AB x y z ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,取3z =,得(1,m =1,3),设二面角1B AD B --的平面角为θ,则1cos 5m n m n θ⋅==⋅,则12sin 155θ=-=,则sin tan 2cos θθθ==,所以二面角1B AD B --的正切值为2()2由(1)可得AO ⊥平面11BB C ,所以AO 是三棱锥11A BB C -的高,且332AO =,所以三棱锥11C ABB -的体积:11111111331933333224C ABB A BB C BB C V V AO S --==⨯⨯=⨯⨯⨯⨯= 【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题21、(1){}20log 3x x <<(2)1m >【解析】(1)由()1f x <,根据对数的单调性可得212x -<,然后解指数不等式即可.(2)由()()4log 4x f x m =-实数根,化为214x x m -=-有实根,令2x t =,22()210t t m ⋅-⋅+-=有正根即可,对称轴12t =,开口向上,只需0∆≥即可求解.【详解】(1)由()1f x <,即2log (21)1x -<,所以0212x <-<,123x <<,解得20log 3x <<所以不等式的解集为{}20log 3x x <<.(2)由()()4log 4x f x m =-实数根,即()()221log 21log 42x x m -=-有实数根,所以21x -=有实根,两边平方整理可得22(2)2210x x m ⋅-⋅+-=令2x t =,且1t >,由题意知22()210t t m ⋅-⋅+-=有大于1根即可,即22()21t t m ⋅-⋅+=,令2()2()21g t t t =⋅-⋅+,1t >,故()1g t >故1m >.故实数m 的取值范围1m >.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.22、(1)5(2)见解析.【解析】(1)利用同角三角函数基本关系式进行求解;(2)作差,分离参数,将问题转化为求函数的最值问题,再利用换元思想进行求解.试题解析:(1)依题意得10sin cos 5x x +=,222sin cos 2sin ·cos 5x x x x ∴++=,即32sin ·cos 5x x =-812sin ·cos 5x x ∴-=,即()2228sin cos 2sin ·cos sin cos 5x x x x x x +-=-=由32sin ·cos 05x x =-<,()0,x π∈,得,2x ππ⎛⎫∈ ⎪⎝⎭,sin 0,cos sin cos 0,x x x x ∴>∴-210sin cos ,5x x ∴-=(2)即不等式)1sin cos sin cos 22a b a x x x x a ≤⋅+++++对任意R x ∈恒成立,即)min1sin cos sin cos 22a b a x x x x a ⎡⎤≤⋅++++⎢⎥⎣⎦下求函数)1sin cos sin cos 22a y a x x x x a =⋅+++++的最小值令sin cos ,t x x =+则4t x π⎛⎫⎡=+∈ ⎪⎣⎝⎭且21sin cos .2t x x -⋅=令())1sin cos sin cos 22a m t y a x x x x a ==⋅+++++()2211122222a t a a t a a-=+++=+++()22221222,022a a t t t a a a a ⎛⎫⎛=+++=++≠ ⎪ ⎪ ⎝⎭⎝⎭1°当()201,a m t a⎡-<<<⎣即时在区间上单调递增,()()(min 1.m t m a a ∴==+2°当20a ≤-<,即1a ≥时,()2min 2.m t m a ⎛⎫=-= ⎪ ⎪⎝⎭3°当()(2101,min a m t m a a a <-≤≤-==+即时4°当()(2110,min .a m t m a a a ->-<<==+即时min 2111,0a y a a a a ≥⎧⎪∴=⎨+<≠⎪⎩,所以当1a ≥时,2b ≤;当0a <或0<1a <时,1.b a a ≤+。
2016—2017学年度上学期孝感市七校教学联盟期末联合考试高一数学文科试卷本试题卷共4页,共22题。
满分150分,考试时间120分钟。
注意事项:1、请考生务必将自己的姓名、准考证号、所在学校填(涂)在试题卷和答题卡上。
2、考生答题时,选择题请用2B 铅笔将答题卡上对应题目的答案标号涂黑;非选择题请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效。
3、考试结束后,请将本试卷和答题卡一并上交。
第I 卷 选择题一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求. 请在答题卡上填涂相应选项.1.设全集{0,1,2,3}U =,集合{0,2}A =,集合{2,3}B =,则()U C A B =( )A .{3} B.{2,3} C .{1,2,3} D .{01,2,3},2.已知角α的终边经过点(4,3)P -,则sin α的值为( )A .35B .45C .45-D .35- 3.sin15cos15的值是( )A.14 B. 12C. 34D. 324.若()1cos 3πα+=-,则cos α的值为( )A .13-B .13C .22225.函数sin 2y x =是( )A. 周期为π的奇函数B. 周期为π的偶函数C. 周期为2π的奇函数D. 周期为2π的偶函数6.幂函数的图象过点(2,2),则该幂函数的解析式为( ) A .1y x -= B .12y x = C .2y x = D .3y x =7.已知函数()f x 是定义在[0,)+∞上的增函数,则满足不等式1(21)()3f x f -<的实数x 的取值范围是( )A .2(,)3-∞B .12[,)33C .1(,)2+∞D .12[,)238.要得到函数cos(2)3y x π=+的图象,只需将函数cos2y x =的图象( )A .向左平移6π个长度单位 B .向右平移6π个长度单位 C .向左平移3π个长度单位D .向右平移3π个长度单位9.方程2log 0x x +=的解所在的区间为( )A .1(0,)2B .1(,1)2C .(1,2)D .[1,2] 10.已知11tan(),tan()243παβα+=+=-,则tan()4πβ-=( ) A. 2 B .32 C. 1 D. 1211.已知函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><一个周期的图象如图所示,则ϕ的值为( ) A.6π B.4π C.3π D.83π12.已知cos 61cos127cos 29cos37a =+⋅⋅,22tan131tan 13b =+,1cos502c -=,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .c a b >>D .a c b <<xyO6π-3π1第Ⅱ卷 非选择题二、填空题:本题共4小题,每小题5分.请将答案填在答题卡对应题号的位置上,答错位置、书写不清、模棱两可均不得分.13.若sin(0)()612(0)xx f x x x π⎧≤⎪=⎨⎪->⎩,则[(1)]f f = .14.弧长为3π,圆心角为34π的扇形的面积为 . 15.定义在R 上的函数()f x 是周期为π的偶函数,且[0,]2x π∈时,()2f x x π=-,则5()3f π= . 16. 函数()221f x ax x =-+,若()y f x =在区间11[,]22-上有零点,则实数a 的取值范围为 .三、解答题:本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知角α为第四象限角,且4tan 3α=-. (1)求sin cos αα+的值; (2)求sin()2cos()33sin()cos()22παπαπαπα-++--+的值.18.(本小题满分12分)已知23cos()(,).424x x πππ-=∈ (1)求sin x 的值; (2)求sin(2)6x π+的值.19.(本小题满分12分)某同学用“五点法”画函数()2sin(2)13f x x π=-+在区间[,]22ππ-上的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并在给出的直角坐标系中,画出()f x 在区间[,]22ππ-上的图象;(2)利用函数的图像,直接写出函数()f x 的单调递增区间.20.(本小题满分12分)已知集合}0)1)(18({≤--=x x x A ;集合}52{+<<=a x a x C(1)若A t∈)41(,求实数t 的取值集合B ;(2)在(1)的条件下,若C B A ⊆)( ,求实数a 的取值范围21.(本小题满分12分)已知函数()sin(2)sin(2)cos 233f x x x x a ππ=++-++,x R ∈.(1)求函数()f x 的最小正周期; (2)当[,]44x ππ∈-时,恒有()0f x >,求实数a 的取值范围.22.(本小题满分12分)某园林公司准备绿化一块半径为200米,圆心角为4π的扇形空地(如图的扇形OPQ 区域),扇形的内接矩形ABCD 为一水池,其余的地方种花,若COP α∠=,矩形ABCD 的面积为S (单位:平方米).(1)试将S 表示为关于α的函数,求出该函数的表达式; (2)角α取何值时,水池的面积 S 最大,并求出这个最大面积.2016—2017学年度上学期孝感市七校教学联盟期末联合考试高一数学文科参考答案及评分细则一、选择题(每小题5分,满分60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CDABABDABCCD二、填空题(每小题5分,满分20分) 13. 12-; 14. 6π; 15. 6π; 16. (],0-∞.三、解答题(本大题共6小题,满分70分) 17.解:①因为角α为第四象限角,且4tan 3α=-, 43sin ,cos 55αα∴=-=, ……………………………………………………4分则1sin cos 5αα+=- ……………………………………………………5分②原式4102sin 2cos tan 2331041cos sin 1tan 133αααααα-----=====------+ ……………10分18.解:(1)因为3(,),24x ππ∈所以(,)442x πππ-∈, ………………………………1分于是272sin()1cos ()44x x ππ-=--=………………………………………3分 sin sin[()]sin()cos cos()sin 444444x x x x ππππππ=-+=-+- ……………………4分722224.1021025=+⨯= …………………………………………………6分 (2)因为3(,).24x ππ∈故2243cos 1sin 1().55x x =-=-=- …………8分24sin 22sin cos 25x x x ==-,27cos 22cos 1.25x x =-=- ……………………10分 所以中7243sin(2)sin 2coscos 2sin666x x x πππ++=+= …………………12分19.解:(1)数据补全如下表:23x π-43π-π- 2π- 02π 23π x2π-3π-12π-6π512π 2π()f x31+ 1 1- 1 3 31+……………………………………………………………………………………6分 故()f x 在区间[,]22ππ-上的图象如图所示.………………………………………………………………………………………9分(2)由函数的图像可得,函数()f x 的单调递增区间为5[,]()1212k k k Z ππππ-++∈ ………………………………………………………………………………………12分 20.解:由已知集合}181{≤≤=x xA……………………………………………… 2分123O 1-12π- 6π-4π- 3π- 512π- 2π- 712π-12π 6π 4π 3π 512π 2π 712πx y 31+(1)若A t∈)41(,即1)41(81≤≤t,即023222≤≤--t ………………………4分 023≤-≤-∴t 230≤≤∴t ,故集合]23,0[=B………………………………6分 (2)在(1)的条件下,]23,0[=B A…………………………………………8分 由C B A ⊂)( ,即)52,(]23,0[+⊂a a⎪⎩⎪⎨⎧≥+≤∴23520a a , ……………………………………………………………10分 解得:047≤≤-a………………………………………………………………12分21.解:(1) ()sin(2)sin(2)cos 233f x x x x a ππ=++-++sin 2cos 22sin(2)4x x a x a π=++=++ ………………………………………4分所以函数()f x 的最小正周期22T ππ== …………………………………………6分(2)∵]4,4[ππ-∈x ,∴]43,4[42πππ-∈+x∴]1,22[)42sin(-∈+πx ,2sin(2)[1,2]4x π+∈-,……………………… 8分 故函数()f x 在区间[,]44ππ-上的最小值为1a -+, ………………………9分 由()0f x >恒成立,故有10a -+>,解得1a > ………………………11分 实数a 的取值范围为(1,)+∞ …………………………………………12分 22.解:(1)在Rt△OBC 中,200cos OB α=,200sin BC α= (0)4πα<<…………………………………………………………………………………1分在Rt△OAD 中,tan 14DA OAπ==, ∴200sin OA DA BC α=== ……………………………………2分 ∴200cos 200sin AB OB OA αα=-=-, ……………………………………4分 故(200cos 200sin )200sin S AB BC ααα=⋅=-240000sin cos 40000sin ααα=-20000sin 220000(1cos 2)20000(sin 2cos 2)20000αααα=--=+- ……………6分=200002sin(2)200004πα+-,(0)4πα<<…………………………………8分(2)由04πα<<,得32444πππα<+<, ………………………………9分 所以当242ππα+=,即8πα=时,S 最大=20000220000- …………………11分因此,当8πα=时,水池的面积S 最大,最大面积为20000220000-平方米……12分注:各题其它解法酌情给分。