理论力学(百度文库)-第七版答案-哈工大
- 格式:doc
- 大小:5.74 MB
- 文档页数:31
第5章 摩 擦5-1 如图5-1a 所示,置于V 型槽中的棒料上作用1力偶,力偶矩m N 15⋅=M 时,刚好能转动此棒料。
已知棒料重力N 400=P ,直径m 25.0=D ,不计滚动摩阻。
求棒料与V 形槽间的静摩擦因数f s 。
(a)(b)图5-1解 圆柱体为研究对象,受力如图5-1b 所示,F s1,F s2为临界最大摩擦力。
0=∑x F ,045cos 2s 1N =°−+P F F (1) 0=∑y F ,045sin 1s 2N =°−−P F F (2) 0=∑O M ,0222s 1s =−+M DF D F(3)临界状态摩擦定律:1N s 1s F f F =(4) 2N s 2s F f F =(5)以上5式联立,化得 0145cos s2s =+°−MPDf f 代入所给数据得01714.4s 2s =+−f f 方程有2根:442.4s1=f (不合理), 223.0s2=f (是解)故棒料与V 形槽间的摩擦因数223.0s =f5-2 梯子AB 靠在墙上,其重力为N 200=P,如图5-2a 所示。
梯长为l ,并与水平面交角°=60θ。
已知接触面间的静摩擦因数均为0.25。
今有1重力为650 N 的人沿梯向上爬,问人所能达到的最高点C 到点A 的距离s 应为多少?AN F As F(a)(b)图5-2解 梯子为研究对象,受力如图5-2b 所示,刚刚要滑动时,A ,B 处都达最大静摩擦力。
人重力N 650=W ,平衡方程: 0=∑x F , 0s N =−A B F F (1) 0=∑y F , 0s N =−−+W P F F B A(2)0=∑A M ,060cos 60sin 60cos 60cos 2s N =°−°−°+°l F l F Ws lPB B (3) 临界补充方程:A s A F f F N s = (4)B s B F f F N s =(5)联立以上5式,解得 N 80012sN =++=f WP F A ,N 200s =A F N 200)(12s N =++=W P f f F sB ,N 50s =B F l PF f W l s B 456.02)3[(N s =−+=5-3 2根相同的匀质杆AB 和BC ,在端点B 用光滑铰链连接,A ,C 端放在不光滑的水平面上,如图5-3a 所示。
集美大学诚毅学院机械1093期末复习材料理论力学(思考题答案)思考题i-i猛明下列戏子与丈宇的盘义和区別.(D科二孔,(2)幵一盼⑶力靳等效于力列,*W?答】⑴力乌和町,大小相等帯柯相岡g(2)N和&大小相萄⑶耐刑耳的夫小相等, 方向si^ats同亠1-2试X别片=眄|压和血=凤+骂两个等戎代表的意义。
【岸答】町一耐十用朮示朋是任意方向上箭个为门和A的合力洽力弘的大小和方问由平行四边形抚阳鴉定;打=片一%表示忌足同方向上蘭个力几和月的合.乩含力A的大小为F L和E的大小的和I方向与Fl和F.的方向科同3【解答】均有错•正确图如答1一1图。
1—3图1 - 1C1)〜1-1(0中各物体的受力番是否错谋?如何改正?1-4 刚体上△点受力尸作用.in 18 1-2所示,问罷否在。
点加一个力懐刚体平箕。
为什么?Ul 1 -2(a)也fS P= 0【解答1 不能。
当在E 点械抑力怖时,不能同时保订丿 1,故不能平衡B2JM= o1- 5 如摆】一3所冻结均•科丿JF 作用在E 点,至统能否乎猶?若力F 仍作用在丑点,袒可住 愆改变F 的方向,F 在什么方向上结购能平衡? 上匕解答】不能, 来/在如簷范围内可以令结构平鸳,如着? 一 3圖所示.1- 6 将如下间题抽象为力学模型,充分发挥你们的想象、分析和抽躱能力*试画出它心的力 学荒圏及受力<1)用两根细绳將B 光灯吊挂在天花板上»(?)水面匕的一块浮冰*G) 本打开的韦静止于桌面上; <4) 一个人坐在一只足球上*【解答】⑴⑵图1-4<4)u1 -7若将图1-5屮力F作用于三锻拱供较陡C处的请订上,所有物体里虽不计试分别画出左、右两拱茂销匚的受力圈八刃若傭订匚碾于AC•分别画岀汗、右两拱的受力图H3)若洌订C 属于EC,分鬧画出古、右两拱的量力阳°3 1-5mA2_1输亀钱普麦/相同时,电线下垂量片趙小■电线捷易亍拉Wh 为什么?【網答】可儒得J = F B =疵;=好也越小恥越小不和尸庞儿助以电线更易于拉2-2图2 — 1所赤时三种机构,构件自童不计9翅略靡擦,, 平力F,问Aifc 的妁京力是否相同。
理论力学第七版课后习题答案第一章: 引言习题1-11.问题描述:给定物体的质量m=2kg,加速度a=3m/s^2,求引力F。
2.解答:根据牛顿第二定律F=ma,其中m表示物体的质量,a表示物体的加速度。
代入已知值,可求得F=6N。
习题1-21.问题描述:给定物体的质量m=5kg,引力F=20N,求加速度a。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=4m/s^2。
第二章: 运动的描述习题2-11.问题描述:一个物体以恒定速度v=10m/s匀速直线运动,经过t=5s,求物体的位移。
2.解答:位移等于速度乘以时间,即s=vt。
代入已知值,可得s=50m。
习题2-21.问题描述:一个物体以初始速度v0=5m/s匀加速直线运动,加速度a=2m/s^2,经过t=3s,求物体的位移。
2.解答:由于物体是匀加速直线运动,位移可以通过公式s=v0t+0.5at^2计算。
代入已知值,可得s=(53)+(0.52*3^2)=45m。
第三章: 动力学基础习题3-11.问题描述:一个物体质量为m=4kg,受到的力F=10N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2.5m/s^2。
习题3-21.问题描述:一个物体质量为m=3kg,受到的力F=6N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
第四章: 动力学基本定理习题4-11.问题描述:一个物体质量为m=8kg,受到的力F=16N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
习题4-21.问题描述:一个物体质量为m=6kg,受到的力F=12N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
以上是理论力学第七版课后习题的答案。
希望能对你的学习有所帮助!。
哈工大理论力学(I)第7版部分习题答案1-2
两个老师都有布置的题目
2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3
以下题为老师布置必做题目
1-1(i,j), 1-2(e,k)
2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-4
7-9, 7-10, 7-17, 7-21, 7-26
8-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-6
11-5, 11-15
12-10, 12-15, 综4,15,16,18 13-11,13-15,13-16
6-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4
解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在
棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统
质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标
分别为
当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为
系统初始时质心坐标
棱柱B 接触水平面时系统质心坐标
因并注意到得
10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无
初速地倒下时,端点A相对图b所示坐标系的轨迹。
解取均质杆AB 为研究对象,建立图11-6b 所示坐标系Oxy,原点O
与杆AB 运动初始时的点B 重合,因为杆只受铅垂方向的重力W 和地
面约束反力N F 作用,且系统开始时静止,所以杆AB 的质心沿轴x 坐
标恒为零,即
设任意时刻杆AB 与水平x 轴夹角为θ,则点A坐标
从点A 坐标中消去角度θ,得点A 轨迹方程
10-5 质量为m1 的平台AB,放于水平面上,平台与水平面间的动滑动摩擦因数为f。
质量为m2 的小车D,由绞车拖动,相对于平台的运动规律为,其中b 为已知常数。
不计绞车的质量,求平台的加速度。
解受力和运动分析如图b 所示
式(1)、(4)代入式(3),得
10-6 如图所示,质量为m的滑块A,可以在水平光滑槽中运动,具有刚性系
数为k 的弹簧1 端与滑块相连接,另 1 端固定。
杆AB 长度为l,质量忽略不计,A 端与滑块A 铰接,B 端装有质量m1,在铅直平面内可绕点A 旋转。
设在力偶M 作用下转动角速度ω为常数。
求滑块A 的运动微分方程。
解取滑块A 和小球B组成的系统为研究对象,建立向右坐标x,原点取在
运动开始时滑块A 的质心上,则质心之x 坐标为
系统质心运动定理:
此即滑块A的运动微分方程。
讨论:设,则由上述方程得滑块A 的稳态运动规律(特解)原题力矩M只起保证ω=常数的作用,实际上M 是随ϕ变化的。
11-15如图所示均质杆AB 长为l,放在铅直平面内,杆的1 端A 靠在光滑铅直墙上,另1端B 放在光滑的水平地板上,并与水平面成0 ϕ角。
此后,令杆由静止状态倒下。
求(1)杆在任意位置时的角加速度和角速度;(2)当杆脱离墙时,此杆与水平面所夹的角。
解(1)取均质杆为研究对象,受力及坐标系Oxy 如图12-17b 所示,杆AB 作平面运
动,质心在点C。
刚体平面运动微分方程为
由于
将其对间t求2 次导数,且注意到
本答案由各班代表负责编排(答案源来自网络),在此感谢为这次编排做出贡献的各位同学。
由于各方面原因,可能个别题目解答不妥甚至有误,或者在编排上有漏洞,希望大家能够指出并共享正确的结果。
——福州大学至诚学院机械系09级
配套理论力学(I)第七版课后习题答案福州大学至诚学院09机械整理
本答案由各班代表负责编排(答案源来自网络),在此感谢为这次编排做出贡献的各位同学。
由于各方面原因,可能个别题目解答不妥甚至有误,或者在编排上有漏洞,希望大家能够指出并共享正确的结果。
——福州大学至诚学院机械系09级
31。