专题(4)数列通项公式的求法教师版
- 格式:doc
- 大小:844.50 KB
- 文档页数:10
专题----通项公式的求法总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法 适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解;由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n 练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和 n a n 12-=二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +=== ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n Λ ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:Q 11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===-gg g g L g g g g L g ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:Q 121n n a a -=+ ∴()1112221n n n a a a --+=+=+ ∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n aQ 1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+Θ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1Θ不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列的通项公式(教师版)1、数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.2、数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1或a n +1的关系式表示(如a n =2a n -1+1),则这个关系式就称为数列的递推公式.3、由数列的递推公式求数列的通项公式的常见方法(1)待定系数法:①形如a n +1=ka n +b 的数列求通项;②形如a n +1=ka n +r ∙b n 的数列求通项;(2)倒数法:形如a n +1=pa nqa n +r的数列求通项可用倒数法;(3)累加法:形如a n +1-a n =f (n )的数列求通项可用累加法;(4)累乘法:形如a n +1a n=f (n )的数列求通项可用累乘法;(5) “S n ”法:数列的通项a n 与前n 项和S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.;S n 与a n 的混合关系式有两个思路:①消去S n ,转化为a n 的递推关系式,再求a n ;②消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .考向一 待定系数法例1—1 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式。
解:设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t )即a n +1=2a n -t ⇒t =-3.故递推公式为a n +1+3=2(a n+3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列,则b n =4×2n -1=2n +1,所以a n =2n +1-3.例1—2 在数列{a n }中,a 1=-1,a n +1=2a n +4·3n ,数列{a n }的通项公式。
求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。
2. 学会求解数列的通项公式,并能应用于实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。
2. 教学难点:数列通项公式的推导和应用。
四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。
2. 利用例题,演示数列通项公式的应用过程。
3. 布置习题,巩固所学知识。
五、教学过程1. 引入数列的概念,讲解数列的基本性质。
2. 讲解数列通项公式的求法,引导学生掌握求解方法。
3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。
4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。
5. 总结本节课的重点内容,布置课后作业。
教案结束。
例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。
解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。
将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。
该数列的通项公式为an = n/2 + 1/2。
习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。
2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。
3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。
4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。
5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。
六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。
2. 学习利用函数的方法求解数列的通项公式。
3. 提升学生分析问题、解决问题的能力。
高2016届数学(理科)第二轮专题复习专题(4)数列通项公式的求法 类型1、等差数列公式例1、已知等差数列}{n a 满足2680,10a a a =+=-,求数列}{n a 的通项公式; 解:设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩,故数列{}n a 的通项公式为2.n a n =-类型2、等比数列公式例2、设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),因此2q =,所以{}n a 的通项为1*222().n n n a n N -=⋅=∈ 变式:设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441n n a S n +=++,*n N ∈,且2a ,5a ,14a 恰好是等比数列{}n b 的前三项.求数列{}n a ,{}n b 的通项公式.解:由题意得,21441n n S a n +=--①,当2n ≥时,()214411n n S a n -=---②,由①—②得,22144n n n a a a +=--,即()2221442n n n a a n a +=++=+,∵0n a >,∴12n n a a +=+.当2n ≥时,数列{}n a 是公差为2的等差数列.∵2a ,5a ,14a 构成等比数列,∴25214a a a =⋅,()()2222624a a a +=+,解得23a =.由条件可知212454a a =-=,∴11a =,212a a -=,∴{}n a 是首项为1,公差为2的等差数列,∴数列{}n a 的通项公式是21n a n =-.…4分 由题意知,数列{}n b 的首项为23a =,公比为52933a q a ===, ∴数列{}nb 的通项公式为3n n b =. 类型3、1()n S f n a a ==,.例3、设数列}{n a 的前n 项和为22n S n =,求数列}{n a 的通项公式.变式:已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式.解:当1n =时011==s a ,当2≥n 时12]1)1[()1(221-=----=-=-n n n s s a n n n由于1a 不适合于此等式,∴⎩⎨⎧≥-==)2(12)1(0n n n a n类型4、11(),n n a a f n a a +-==(累加法).例4、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =.变式1、已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-变式2、已知数列{}n a 满足11211,2n n a a a n n+==++,求数列{}n a 的通项公式. 解:由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a a a ---∴=-+-+-+……111111131()()()1211222n n n n n =-+-++-+=----……说明:已知11(),n n a a f n a a +-==,,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 是关于n 的二次函数,累加后可分组求和;③若()f n 是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 是关于n 的分式函数,累加后可裂项求和. 类型5、11(),n na f n a a a +==(累乘法). 例5、已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a . 解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即 1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=na a n 11=⇒,又321=a ,n a n 32=∴. 变式:正项数列{}n a 中,11=a ,()()*122101N n a a na a n n n n n ∈=+-+++,则=n a ;解:因为()221111110()[()]0(1)0n n n n n n n n n n n n a na a a a a n a a a n a na ++++++-+=⇒+-+=⇒+-=111n n n a n a a n n+⇒=⇒=+. 类型6、求差(商)法. 例6、122111{}25222n n n n a a a a n a ++⋯⋯+=+已知数列满足,求通项公式.解:1111215142n a a ==⨯+∴=时,,;1212111122152222n n n a a a n --≥++⋯⋯+=-+<>时, 11222n n a <>-<>=得:;12n n a +∴=;114(1)2(2)n n n a n +=⎧∴=⎨≥⎩变式:设数列{}n a 满足21*123333,3n n na a a a n N -++++=∈ .求数列{}n a 的通项. 解:因为212212312311333......(1) 333......(2)33n n n n n n a a a a a a a a ----++++=++++=所以由(1)—(2)得111333n n n n a a -=⇒=. 类型7、形如qa p a n n +⋅=+1()10,p a a ≠=型的递推数列.(1)若1p =,则数列{}n a 为等差数列; (2)若0q =,则数列{}n a 为等比数列;(3)若10p q ≠≠且,则数列{}n a 为线性递推数列,其通项可通过待定系数法构造辅助数列来求.. 方法一:已知 111n n q q a p a p p +⎛⎫⇒+=+ ⎪--⎝⎭,则1n q a p ⎧⎫+⎨⎬-⎩⎭为公比为p 的等比数列; 方法二:已知 111++++=⇒n nn n n pq pa pa ,再用累加法;方法三:(待定系数法)设B p A a n n +⋅=-1,由21,a a 的值求B A ,.例7、已知数列{}n a 中,111,31n n a a a +==+,(1)求234,,a a a ;(2)求数列{}n a 的通项公式. 解:(1)2344,13,40a a a ===; (2)因为1111111,313()(31)222n n n n n n a a a a a a ++==+⇒+=+⇒=-. 变式:已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
解法一:121(2)n n a a n -=+≥ ,112(1)n n a a -∴+=+又{}112,1n a a +=∴+ 是首项为2,公比为2的等比数列,12n n a ∴+=,即 21n n a =-解法二:121(2)n n a a n -=+≥ ,121n n a a +∴=+两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……类型8、倒数变换法,适用于分式关系的递推公式,分子只有一项,形如11nn n a a ka +=+的递推数列.例8、已知数列)(61,1}{*11N n a a a a a nnn n ∈+==+满足,求此数列通项公式.解:因为1111111,61665n n n n n n a a a a a a a n ++==⇒=+⇒=+-. 变式:已知数列{}n a 满足112,12nn n a a a a +==+,求数列{}n a 的通项公式。
解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公差为12,112(1),21n n n a a n ∴=+∴=+ 类型9、形如1nn n a a ka b+=+的递推数列.例9、已知数列*1122{},,,31n n n n a a a a n N a +==∈+的首项 1(1){1}na -证明是等比数列; (2)n a 求通项公式.解:因为11112211111112,1(1)3122221nn n n nn n n n n a a a a a a a a a +++==⇒=⋅+⇒-=-⇒=++. 变式:已知数列{}n a 中, ()*112,1N n a a a a n nn ∈+==+,n a 求通项公式.解:因为1111111112112(1)2121,n nn n n n n n n a a a a a a a a a +++=⋅+⇒+=+⇒==⇒+-=. 类型10、形如()10,1nn n a p a qq q +=⋅+>≠的递推数列(1)若1p =,则()10,1nn n a a qq q +=+>≠,利用累加法求解;(2)若1p ≠,可以用以下方法求解: 方法一、两边同除以1n p+,目的是把所求数列构造成等差数列,即:111()n n n n n a a q p p p p ++=+ ,令nnna b p =,则11()nn n q b b p p+-=,然后累加求通项.方法二、两边同除以1n q +,目的是把所求数列构造成等差数列,即:111n n n n a a p q q q q ++=+ ,令nnna b q =,则可化为11n n p b b q q+=+ ,然后转化为类型7来解; 方法三、待定系数法:目的是把所求数列构造成等差数列,设11()n n n n a q p a q λλ+++=+ ,通过比较系数,求出λ,转化为等比数列求通项.注意:应用待定系数法时,要求p q ≠,否则待定系数法会失效。