§7.2 二元一次方程组的解法(二)
- 格式:doc
- 大小:45.50 KB
- 文档页数:2
第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
7.2二元一次方程组的解法(代入消元法)教学设计一、教学内容:初中数学华东师大2011课标版七年级下册第七章第二节二元一次方程组的解法。
二、教学目标1、使学生通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想;2、了解把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
三、教学重难点:重点:用代入消元法解二元一次方程组的解题步骤;难点:如何正确消元。
四、教具、学具准备:教具:课件、电脑投影、导学案等;学具:签字笔、草稿纸、课本等。
五、设计理念这一堂课的学习目标是“探索二元一次方程组的解法”,通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的“最近发展区”,愉悦地接受教学活动.这是我备课时的设计意图。
六、教学流程(一)创设情境上课一开始,我就把学生学过的、熟悉的问题提出来,引导学生解答,说:“同学们,在生活中,我们时常遇到这样的问题,你能用前面我们学过的知识解决这个问题吗?问题1:小明到商店购买签字笔和作业本,签字笔价格是作业本价格的2倍,小明购买一支笔和一个作业本共花了6元钱,请你算一算签字笔和作业本的价格分别是多少元?学生活动:独立完成问题1的解答教师活动:通过巡视,发现问题的解答有可能会出现两种,一种是列一元一次方程解,另一种是列二元一次方程解,分别让学生将两种解法写在黑板上。
师:“同学们,黑板上两位同学用了不同的方法来解决这个问题,你认为哪一种方法是正确的呢?那我想请一位同学来说一说这两种方法分别是用到了前面我们学过的什么知识?那列出来的这个二元一次方程组和这个一元一次方程有没有什么联系呢,我们又该如何求解呢?这就是今天我们要一起探讨的内容,请同学们翻开书27页,并熟悉本节课的学习目标。
设计意图:当学生看到自己所学的知识与“现实世界”息息相关时,学习通常会更主动。
“与其拉马喝水,不如让它口渴”。
蓬溪外国语实验学校数学学案模板 课题:7.2.二元一次方程组的解法(第二课时) 班级: 七年级2班 姓名:一、学习目标:1、进一步理解代入消元法的基本思想和代入法解题的一般步骤。
2、选择较为合理、简单的表示方法,将一个未知数表示为含另一个未知数的代数式 五、达标检测一、解下列方程组:⎩⎨⎧=+=-⎩⎨⎧=+=-751424.21732623.1y x y x y x y x⎩⎨⎧=-=-⎩⎨⎧=+-=-575832.410073203.3x y y x y x y x )原方程组的解.(的值;)试求:(写成了相反数,解得乙将一个方程中的;,解得甲解题时看错了)()(组甲、乙两位同学解方程二.2,1112325311b a y x b y x a by x by ax ⎩⎨⎧-==⎩⎨⎧==⎩⎨⎧=+=-.23213523的值、的解,试求是方程组已知三b a ay bx by ax y x 、⎩⎨⎧-=+=-⎩⎨⎧-==二、自学指导: 1、回忆:13212=--=y x y x15212=+=+y x y x 的解题关键是什么?解题步骤是什么?2、把方程652=-y x 写成用含y 的代数式表示x 的形式______________ 把方程652=-y x 写成用含x 的代数式表示y 的形式______________3、请认真看P29的例2,思考:(1)这两个方程中未知数的系数都不是1,怎么办?(2)这个题目进行方程变形为什么选择的是x 2而不是别的未知数?用别的未知数可以解方程组吗? 三 、自学检测试: 1、853642=-=-y x y x 2、 224743=+=-y x y x3、 13132=-=-y x y x 4、 2343553=-=-y x y x四、检查自己测试效果,自己哪里出错,总结解题步骤和思路。
小结:对于一般形式的二元一次方程组用代入消元法求解关键是选择哪一个方程方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是: 1.选择未知数的系数是1或–1的方程2.若未知数的系数不是1或–1,选系数的绝对值比较小的方程如224743=+=-y x y x 就选择y 2进行变形。
7.2二元一次方程组的解法——加减消元法(2)一、学习目标:1、学会把类似2x+3y=-11这样的方程组中X和Y的系数变为相等或互为相反数。
6x-5y=92、学会用加减法解上面这样的二元一次方程组。
3、体会“化未知为已知”的化归思想。
二、旧知回顾:1、加减消元法解二元一次方程组的条件是什么?2、用加减消元法解二元一次方程组2x+3y=-11 ①2x-3y=7 ②三、自学探究:1、二元一次方程2x+3y=-11 ①的两边同时乘以3得到二元一次方程=②,方程①的这种变形记作①×3,那么①×5得③,你认为①、②、③是一样的吗?说说你的依据。
2、已知二元一次方程组2x+3y=-11 ①(现在能直接用加减法消去其中一个6x-5y=9 ②未知数吗?)完成下面的问题:(1)①、②中X的系数有何关系?X系数的最小公倍数是多少?(2)仿照1中变形的方法把方程组变形,使得X的系数相等(都变成X系数的最小公倍数)①×、②×1得③(此时,可消去未知数)②(3)仿照1中变形的方法,把方程组变形,使得Y的系数互为相反数。
①×、②×得③(此时,可消去未知数)④例:用加减法解二元一次方程组3x-4y=1 ①(解题格式参照教材30页例5)5x+6y=27 ②解法1、(先消去X)解法2、(先消去Y)归纳:对于不能直接用加减法的二元一次方程组,我们可以先求出X(Y)的系数的,再把X(Y)的系数都化为,使得X(Y)的系数或互为,再运用加减法求解。
注意:在对方程进行变形时,一定不要忘记方程右边的常数。
四、练习反馈:1、用加减法解方程组 1.5x+7y=11 ①,将①的两边乘以再把得到的方程4.5x-2y=4 ②与②相,就可以消去未知数。
2、用加减法解方程组2x+3y=1 以下变形的结果能达到消元的目的的有()3x-2y=8①6x+9y=1 ②4x+6y=2 ③6x+9y=3 ④4x+6y=26x-4y=8 9x-6y=8 -6x+4y=-16 9x-6y=243、用加减消元法解下列方程组:(1)2x-5y=11 ①(2)5x-2y=17 ①4x+y=33 ②2x+3y=3 ②4、已知二元一次方程组2x-y=7 和x+by=1 有相同的解,求a、b的值。
7.2 二元一次方程组的解法——加减消元法一、教材分析:本节课内容节选自华师大版七年级数学下册第7章第二节第2课时。
是在学生学习了代入消元法解二元一次方程组的基础上,继续学习的另外的一种消元方法——加减消元法,它是学生系统学习二元一次方程组知识的前提和基础。
如何求得二元一次方程组的解是本节课要解决的主要问题,通过本节的学习要让学生掌握解二元一次方程组的另一种方法——加减法。
使学生体会“化未知为已知”的化归思想,培养他们对数学的兴趣,同时,对后继数学的学习起到奠基作用。
二、学情分析:我所任教的班级学生基础比较一般,不过有些学生还是具有一定的探索能力和思维能力,也初步养成了合作交流的习惯。
有好一部分学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨、引导和归纳。
因此,我遵循学生的认知规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
三、教学策略分析:1、深究教材定教法:在深究教材章节内容后,围绕着确定的教学目标,我根据所要教的内容和七年级学生的年龄特征和认知特点,在教学中我主要采取了“先练后教,问题发现,分层探究,例题讲解,巩固训练,拓展设疑”的教法掌握重点,突破难点。
2、因材施教定学法:英国教育学家斯宾塞说过:“教课应该从具体开始,而以抽象结束。
”因此,在教学中,我先温故而知新,复习旧知,增加兴趣,再引入新知识,富有挑战性,课堂要求学生自主探究、合作学习。
对于问题,分组交流,相互补充,再进行归纳小结,而教师参与小组讨论,解答疑问。
四、教学目标:(一)知识与技能目标:1、理解加减消元法的基本思想,体会化未知为已知的化归思想。
2、灵活的对方程进行恒等变形使之便于加减消元;3、学会用加减消元法解二元一次方程组;(二)过程与方法目标:1、根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;训练学生的运算技巧。
§7.2 二元一次方程组的解法(二)
浙江省台州市椒江二中 阮建跃
教学目标设计:
1. 了解并会用加减消元法解二元一次方程组。
2. 了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。
3. 初步体验二元一次方程组解法的多样性和选择性。
教学重点:
1. 会用加减消元法解二元一次方程组。
2. 会用加减消元法解二元一次方程组。
教学难点:
掌握解二元一次方程组的“消元”思想。
教学过程设计:
一.复习引入:
1、解二元一次方程组的基本思路是什么?
2、用代入法解方程的步骤是什么?3.提问:怎样解下面的二元一次方程组呢?
⎩⎨⎧=-=+11
-52125y 3x y x 分析:观察方程组中的两个方程,未知数y 的系数互为相反数,把这两个方程两边分别相加,就可以消去未知数y ,得到一个一元一次方程;
二、讲授新课:
1.探索尝试:
参考小丽的思路,怎样解下面的二元一次方程组呢?
例3 解下列方程组.
⎩
⎨⎧-=+=-13275y 2x y x 分析:观察方程组中的两个方程,未知数x 的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x ,同样得到一个一元一次方程.解:略。
2.随堂练习:
指出下列方程组求解过程中有错误步骤,并给予订正:
⎩⎨⎧=+=24544y -7x y x ⎩
⎨⎧-=-=445144y -3x y x 解:①-②,得 解 ①-②,得
-2x =12 2x =4-4,
x =-6 x =0
3.议一议:
上面这些方程组的特点是什么?解这类方程组基本思路是什么?主要步骤有哪些? 这些方程组的特点是同一个未知数的系数相同或互为相反数
这类方程组基本思路:加减消元----二元 ---- 一 元
主要步骤:
加减----消去一个元
求解----分别求出两个未知数的值
写解----写出方程组的解
4.课堂练习:P195 1、 2
5.例4.用加减法解方程组
⎩⎨⎧=+=+17
43123y 2x y x 分析:(1)用加减消元法解方程组时,若哪个未知数系数的绝对值正好相等,就可先消哪个未知数;若两个未知数的系数绝对值均不等,则可选定一个未知数,通过变形使其绝对值相等,再进行消元.
(2)运用加减消元法解方程组的条件是方程组中两个方程的某个未知数的系数的绝对值相等,当方程组中两方程不具备这种特点时,必须用等式性质2来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值已经相等的新的方程组,从而为加减消元法解方程组创造条件.
6.课堂练习:P195 3、 4
补充练习:用加减消元法解方程组:⎪⎪⎩⎪⎪⎨⎧=-=++2412x 12
y 31x y 7.小结 :加减消元法解方程组基本思路是什么?主要步骤有哪些?
加减消元法解方程组基本思路:加减消元----二元---一元
主要步骤有:变形----同一个未知数的系数相同或互为相反数
加减----消去一个元
求解----分别求出两个未知数的值
写解----写出方程组的解
8.探索与思考:在解方程组⎩⎨⎧=-=+53c 2b y x y ax 时,小张正确的解⎩⎨⎧==2
1x y ,小李由于看错了方程
组中的C 得到方程组的解为⎩⎨
⎧=-=13y x ,试求方程组中的a 、b 、c 的值。
三、作业
1、课本P-197 [习题7.3] 1
2、作业本P-36;3. 思考题:在解二元一次方程组中, 代入法和加减法有什么异同点?。