自动控制原理课程设计
- 格式:doc
- 大小:521.00 KB
- 文档页数:16
自控课程设计 课程设计(论文)设计(论文)题目 单位反馈系统中传输函数研究学院名称 Z Z Z Z 学院 专业名称 Z Z Z Z Z学生姓名 Z Z Z 学生学号 Z Z Z Z Z Z Z Z Z Z 任课老师 Z Z Z Z Z设计(论文)成绩单位反馈系统中传输函数研究一、设计题目设单位反馈系统被控对象传输函数为 )2)(1()(00++=s s s K s G (ksm7)1、画出未校正系统根轨迹图,分析系统是否稳定。
2、对系统进行串联校正,要求校正后系统满足指标: (1)在单位斜坡信号输入下,系统速度误差系数=10。
(2)相角稳定裕度γ>45º , 幅值稳定裕度H>12。
(3)系统对阶跃响应超调量Mp <25%,系统调整时间Ts<15s3、分别画出校正前,校正后和校正装置幅频特征图。
4、给出校正装置传输函数。
计算校正后系统截止频率Wc和穿频率Wx。
5、分别画出系统校正前、后开环系统奈奎斯特图,并进行分析。
6、在SIMULINK中建立系统仿真模型,在前向通道中分别接入饱和非线性步骤和回环非线性步骤,观察分析非线性步骤对系统性能影响。
7、应用所学知识分析校正器对系统性能影响(自由发挥)。
二、设计方法1、未校正系统根轨迹图分析根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式根在s平面上改变轨迹。
1)、确定根轨迹起点和终点。
根轨迹起于开环极点,最终开环零点;本题中无零点,极点为:0、-1、-2 。
故起于0、-1、-2,最终无穷处。
2)、确定分支数。
根轨迹分支数和开环有限零点数m和有限极点数n中大者相等,连续而且对称于实轴;本题中分支数为3条。
3)、确定根轨迹渐近线。
渐近线和实轴夹角为φa,交点为:σa。
且:φa=(2k+1)πn−m k=0,1,2······n-m-1; σa=∈pi−∈zin−m;则:φa=π3、3π3、5π3;σa=0−1−23=−1。
自动控制原理课程设计一、引言自动控制原理课程设计是为了帮助学生深入理解自动控制原理的基本概念、原理和方法,通过实际项目的设计与实现,培养学生的工程实践能力和创新思维。
本文将详细介绍自动控制原理课程设计的标准格式,包括任务目标、设计要求、设计方案、实施步骤、实验结果及分析等内容。
二、任务目标本次自动控制原理课程设计的目标是设计一个基于PID控制算法的温度控制系统。
通过该设计,学生将能够掌握PID控制算法的基本原理和应用,了解温度传感器的工作原理,掌握温度控制系统的设计和实现方法。
三、设计要求1. 设计一个温度控制系统,能够自动调节温度在设定范围内波动。
2. 使用PID控制算法进行温度调节,实现温度的精确控制。
3. 使用温度传感器实时监测温度值,并将其反馈给控制系统。
4. 设计一个人机交互界面,能够实时显示温度变化和控制系统的工作状态。
5. 设计一个报警系统,当温度超出设定范围时能够及时发出警报。
四、设计方案1. 硬件设计方案:a. 使用温度传感器模块实时监测温度值,并将其转换为电信号输入到控制系统中。
b. 控制系统使用单片机作为主控制器,通过PID控制算法计算控制信号。
c. 控制信号通过电路板连接到执行器,实现温度的调节。
d. 设计一个报警电路,当温度超出设定范围时能够触发警报。
2. 软件设计方案:a. 使用C语言编写单片机的控制程序,实现PID控制算法。
b. 设计一个人机交互界面,使用图形化界面显示温度变化和控制系统的工作状态。
c. 通过串口通信将温度数据传输到电脑上进行实时监控和记录。
五、实施步骤1. 硬件实施步骤:a. 搭建温度控制系统的硬件平台,包括温度传感器、控制系统和执行器的连接。
b. 设计并制作电路板,将传感器、控制系统和执行器连接在一起。
c. 进行硬件连接调试,确保各个模块正常工作。
2. 软件实施步骤:a. 编写单片机的控制程序,实现PID控制算法。
b. 设计并编写人机交互界面的程序,实现温度变化和控制系统状态的实时显示。
自动控制原理课程设计一、课程目标知识目标:1. 理解自动控制原理的基本概念,掌握控制系统数学模型的建立方法;2. 掌握控制系统性能指标及其计算方法,了解各类控制器的设计原理;3. 学会分析控制系统的稳定性、快速性和准确性,并能够运用所学知识对实际控制系统进行优化。
技能目标:1. 能够运用数学软件(如MATLAB)进行控制系统建模、仿真和分析;2. 培养学生运用自动控制原理解决实际问题的能力,提高学生的工程素养;3. 培养学生团队协作、沟通表达和自主学习的能力。
情感态度价值观目标:1. 培养学生对自动控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生严谨、务实的学术态度,树立正确的价值观;3. 增强学生的国家使命感和社会责任感,认识到自动控制技术在国家经济建设和国防事业中的重要作用。
本课程针对高年级本科学生,结合学科特点和教学要求,将目标分解为具体的学习成果,为后续的教学设计和评估提供依据。
课程注重理论与实践相结合,提高学生的实际操作能力和解决实际问题的能力,为培养高素质的工程技术人才奠定基础。
二、教学内容本课程教学内容主要包括以下几部分:1. 自动控制原理基本概念:控制系统定义、分类及其基本组成;控制系统的性能指标;控制系统的数学模型。
2. 控制器设计:比例、积分、微分控制器的原理和设计方法;PID控制器的参数整定方法。
3. 控制系统稳定性分析:劳斯-赫尔维茨稳定性判据;奈奎斯特稳定性判据。
4. 控制系统性能分析:快速性、准确性分析;稳态误差计算。
5. 控制系统仿真与优化:利用MATLAB软件进行控制系统建模、仿真和分析;控制系统性能优化方法。
6. 实际控制系统案例分析:分析典型自动控制系统的设计原理及其在实际工程中的应用。
教学内容按照以下进度安排:第一周:自动控制原理基本概念及控制系统性能指标。
第二周:控制系统的数学模型及控制器设计。
第三周:PID控制器参数整定及稳定性分析。
第四周:控制系统性能分析及MATLAB仿真。
自动控制原理课程设计
自动控制原理课程设计是针对自动控制原理课程的学习内容和要求进行的实践性教学任务。
其目的是通过设计和实现一个自动控制系统,加深学生对自动控制原理的理解和应用能力。
一般来说,自动控制原理课程设计包括以下几个步骤:
1. 选题:根据课程要求和学生的实际情况,选择一个合适的自动控制系统作为课程设计的对象。
可以选择一些简单的控制系统,如温度控制、水位控制等,也可以选择一些复杂的控制系统,如飞行器控制、机器人控制等。
2. 系统建模:对选定的控制系统进行建模,包括确定系统的输入、输出和状态变量,建立系统的数学模型。
可以使用传递函数、状态空间等方法进行建模。
3. 控制器设计:根据系统模型和控制要求,设计合适的控制器。
可以使用经典控制方法,如比例积分微分(PID)控制器,也可以使用现代控制方法,如状态反馈控制、最优控制等。
4. 系统仿真:使用仿真软件(如MATLAB/Simulink)对设计的控制系统进行仿真,验证控制器的性能和稳定性。
5. 硬件实现:将设计的控制器实现到实际的硬件平台上,如单片机、PLC等。
可以使用编程语言(如C语言、Ladder图等)进行编程。
6. 系统调试:对实际的控制系统进行调试和优化,使其达到设计要求。
可以通过实验和测试来验证系统的性能。
7. 实验报告:根据课程要求,撰写实验报告,包括实验目的、方法、结果和分析等内容。
通过完成自动控制原理课程设计,学生可以深入理解自动控制原理的基本概念和方法,掌握控制系统的设计和实现技术,提高自己的实践能力和创新能力。
matlab课程设计自动控制原理一、教学目标本课程的目标是使学生掌握自动控制原理的基本概念和MATLAB在自动控制领域的应用。
通过本课程的学习,学生应能理解自动控制系统的组成、工作原理和设计方法,熟练运用MATLAB进行自动控制系统的分析和仿真。
知识目标:学生通过本课程的学习,应掌握自动控制基本理论、MATLAB基本操作和自动控制系统仿真方法。
技能目标:学生应能熟练使用MATLAB进行自动控制系统的建模、仿真和分析,具备一定的实际问题解决能力。
情感态度价值观目标:培养学生对自动控制技术的兴趣和热情,提高学生运用现代技术手段进行科学研究的能力,培养学生的创新精神和团队合作意识。
二、教学内容本课程的教学内容主要包括自动控制原理的基本概念、MATLAB的基本操作和自动控制系统的仿真方法。
1.自动控制原理:包括自动控制系统的组成、数学模型、稳定性分析、控制器设计和校正方法等。
2.MATLAB基本操作:包括MATLAB的安装和启动、变量和数据类型、矩阵运算、编程和函数的使用等。
3.自动控制系统仿真:包括MATLAB仿真环境的设置、Simulink的介绍和应用、控制系统仿真的方法和步骤等。
三、教学方法本课程采用讲授法、案例分析法和实验法相结合的教学方法。
1.讲授法:通过教师的讲解,使学生掌握自动控制原理的基本概念和MATLAB的基本操作。
2.案例分析法:通过分析实际案例,使学生理解和掌握自动控制系统的建模和仿真方法。
3.实验法:通过上机实验,使学生熟练掌握MATLAB自动控制系统仿真工具的使用,提高学生的实际操作能力。
四、教学资源本课程的教学资源包括教材、多媒体资料和实验室设备。
1.教材:选用《自动控制原理》和《MATLAB基础教程》作为主要教材,为学生提供系统的理论知识和实践指导。
2.多媒体资料:制作课件、教学视频等,以图文并茂的形式展示自动控制原理和MATLAB的操作方法。
3.实验室设备:提供计算机和MATLAB软件,供学生进行自动控制系统的仿真实验。
名称:《自动控制原理》课程设计题目:基于自动控制原理的性能分析设计与校正院系:建筑环境与能源工程系班级:学生姓名:指导教师:目录一、课程设计的目的与要求------------------------------3二、设计内容2.1控制系统的数学建模----------------------------42.2控制系统的时域分析----------------------------62.3控制系统的根轨迹分析--------------------------82.4控制系统的频域分析---------------------------102.5控制系统的校正-------------------------------12三、课程设计总结------------------------------------17四、参考文献----------------------------------------18一、课程设计的目的与要求本课程为《自动控制原理》的课程设计,是课堂的深化。
设置《自动控制原理》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
使相关专业的本科学生学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。
通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。
通过此次计算机辅助设计,学生应达到以下的基本要求:1.能用MATLAB软件分析复杂和实际的控制系统。
2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。
3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。
matlab自动控制原理课程设计一、教学目标本课程的教学目标是使学生掌握MATLAB在自动控制原理中的应用,培养学生利用MATLAB进行自动控制系统分析和设计的能力。
具体目标如下:1.知识目标:(1)理解自动控制系统的的基本概念、原理和特点;(2)熟悉MATLAB的基本操作和功能,掌握MATLAB在自动控制原理中的应用;(3)了解自动控制系统的常见分析和设计方法,并能运用MATLAB 进行实现。
2.技能目标:(1)能够运用MATLAB进行自动控制系统的建模、仿真和分析;(2)能够运用MATLAB进行自动控制系统的控制器设计和参数优化;(3)能够结合自动控制理论,对实际控制系统进行MATLAB仿真和调试。
3.情感态度价值观目标:(1)培养学生对自动控制理论和实践的兴趣,提高学生学习的积极性;(2)培养学生勇于探索、严谨治学的科学态度;(3)培养学生团队协作、交流分享的良好习惯。
二、教学内容根据教学目标,本课程的教学内容主要包括以下三个方面:1.MATLAB基本操作和功能介绍:MATLAB的安装和配置、基本数据类型、运算符、矩阵操作、函数编写等。
2.自动控制原理:控制系统的基本概念、数学模型、稳定性分析、控制器设计、系统校正等。
3.MATLAB在自动控制原理中的应用:控制系统建模、仿真、分析方法,控制器设计及参数优化,实际控制系统调试等。
三、教学方法本课程采用多种教学方法相结合,以提高学生的学习兴趣和主动性:1.讲授法:用于讲解自动控制原理的基本概念、理论和方法。
2.案例分析法:通过分析实际案例,使学生更好地理解自动控制原理及其在工程中的应用。
3.实验法:让学生动手实践,利用MATLAB进行控制系统建模、仿真和分析。
4.讨论法:学生进行分组讨论,促进学生间的交流与合作,培养学生的团队协作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将采用以下教学资源:1.教材:《MATLAB自动控制原理与应用》。
自动控制原理-教案一、课程简介1.1 课程背景自动控制原理是工程技术和科学研究中的重要基础,广泛应用于工业、农业、医疗、航空航天等领域。
本课程旨在介绍自动控制的基本理论、方法和应用,使学生掌握自动控制系统的基本原理和设计方法,具备分析和解决自动控制问题的能力。
1.2 教学目标(1)理解自动控制的基本概念、原理和分类;(2)掌握线性系统的数学模型建立和求解方法;(3)熟悉系统的稳定性、瞬态和稳态性能分析;(4)学会设计简单的线性控制器;(5)了解自动控制技术的应用和发展趋势。
二、教学内容2.1 自动控制的基本概念(1)自动控制系统的定义和分类;(2)自动控制系统的组成和基本环节;(3)自动控制系统的性能指标。
2.2 线性系统的数学模型(1)连续时间线性系统的数学模型;(2)离散时间线性系统的数学模型;(3)系统的状态空间表示。
2.3 系统的稳定性分析(1)连续时间线性系统的稳定性;(2)离散时间线性系统的稳定性;(3)系统稳定性的判定方法。
2.4 系统的瞬态和稳态性能分析(1)连续时间线性系统的瞬态响应;(2)离散时间线性系统的瞬态响应;(3)系统的稳态性能分析。
2.5 控制器的设计方法(1)PID控制器的设计;(2)状态反馈控制器的设计;(3)观测器的设计。
三、教学方法3.1 讲授法通过课堂讲授,系统地介绍自动控制原理的基本概念、理论和方法。
3.2 案例分析法通过分析实际案例,使学生更好地理解自动控制系统的原理和应用。
3.3 实验法安排实验课程,让学生亲自动手进行实验,培养实际操作能力和问题解决能力。
3.4 讨论法组织学生进行课堂讨论,促进学生思考和交流,提高分析和解决问题的能力。
四、教学评估4.1 平时成绩包括课堂表现、作业完成情况、实验报告等,占总成绩的30%。
4.2 期中考试通过期中考试检验学生对自动控制原理的基本概念、理论和方法的掌握程度,占总成绩的30%。
4.3 期末考试通过期末考试全面评估学生对自动控制原理的掌握程度,占总成绩的40%。
物理科学与工程技术学院课程设计说明书课题名称:自动控制原理设计题目:自动控制与检测原理专业班级:11级自动化学生姓名:袁学号:**********自动控制系统为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。
在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。
自动检测检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的质量标准和技术要求目标值而进行的测试、测量等质量检测活动。
检测有3个目标: ①实际测定产品(含零、部件)的规定质量特性及其指标的量值。
②根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。
③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故障诊断。
他是性能检测、连续监测、故障检测和故障定位的总称。
现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。
凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术课程内容——设计一个雷达天线伺服控制系统1雷达天线伺服控制系统简介1.1概述用来精确地跟随或复现某个过程的反馈控制系统。
又称随动系统。
在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。
伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。
它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。
位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。
位置指令与被控量可以是直线位移或角位移。
随着工程技术的发展,出现了各种类型的位置随动系统。
由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。
伺服系统的精度主要决定于所用的测量元件的精度。
此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。
通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。
因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。
本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。
系统的原理图如图1-1所示。
图1-1 雷达天线伺服控制系统原理图1.2 系统的组成从图1-1可以看出本系统是一个电位器式位置随动系统,用来实现雷达天线的跟踪控制,由以下几个部分组成:位置检测器、电压比较放大器、可逆功率放大器、执行机构。
以上四部分是该系统的基本组成,在所采用的具体元件或装置上,可采用不同的位置检测器,直流或交流伺服机构等等。
现在对系统的组成进行分析:1、受控对象:工作机械(雷达天线)。
2、被控量:角位置m θ。
3、干扰:主要是负载变化(f 及L T )。
4、给定值:指令转角*m θ。
5、传感器:由电位器测量m θ、*m θ,并转化为U 、*U 。
6、比较计算:两电位器按电桥连接,完成减法运算*U U e -=(偏差)。
7、控制器:放大器,比例控制。
8、执行器:直流电动机及减速箱。
1.3 工作原理现在来分析该系统的工作原理。
由图1-1可以看出,当两个电位器1RP 和2RP 的转轴位置一样时,给定角*m θ与反馈角m θ相等,所以角差*m mm 0θθθ∆=-=,电位器输出电压 *U U =,电压放大器的输出电压ct U 0=,可逆功率放大器的输出电压d U 0=,电动机的转速n 0=,系统处于静止状态。
当转动手轮,使给定角*m θ增大,m 0θ∆>,则*U >U ,ct U 0>,d U 0>,电动机转速n >0,经减速器带动雷达天线转动,雷达天线通过机械机构带动电位器2RP 的转轴,使m θ也增大。
只要*m m θθ<,电动机就带动雷达天线超着缩小偏差的方向运动,只有当*mm θθ=,偏差角m 0θ∆=,ct U 0=,d U 0=,系统才会停止运动而处在新的稳定状态。
如果给定角*m θ减小,则系统运动方向将和上述情况相反。
2 雷达天线伺服控制系统主要元部件2.1 位置检测器位置检测器作为测量元件,由电位器1RP 和2RP 组成位置(角度)检测器,其中电位器1RP 的转轴和手轮相连,作为转角给定,电位器2RP 的转轴通过机械机构与负载部件相连接,作为转角反馈,两个电位器均由同一个直流电源S U 供电,这样可将位置直接转换成电量输出。
在控制系统中,单个电位器用作为信号变换装置,一对电位器可以组成误差检测器,空载时,单个电位器的电刷角位移()t θ与输出电压()u t 的关系曲线在进行理论分析时可以用直线近似,于是可得输出电压为0()()u t K t θ= 式中0max K E θ=,是电刷单位角位移对应的输出电压,称为电位器传递系数,其中E 是电位器电源电压,max θ是电位器最大工作角。
对上式求拉氏变换,并令()[()]U s L u t =,()[()]s L t θθ=,可求得电位器传递函数为0()()()U s G s K s θ== 可以看出电位器的传递函数是一个常值,它取决于电源电压E 和电位器最大工作角度max θ。
电位器可用图2-1的方框图表示。
图2-1 电位器方框图其中输入()X s 就是()s θ,输出()C s 就是()U s ,()G s 就是0K 。
用一对相同的电位器组成误差检测器时,其输出电压为120120()()()[()()]()u t u t u t K t t K t θθθ=-=-=∆式中0K 是单个电位器的传递系数;12()()()t t t θθθ∆=-是两个电位器电刷角位移之差。
称为误差角。
因此,误差角为输入时,误差检测器的传递函数与单个电位器传递函数相同,即为0()()()U s G s K s θ==∆ 在使用电位器时要注意负载效应。
所谓负载效应就是指在电位器输出端接有负载时所产生的影响。
当电位器接负载时,一般负载阻抗比较大,所以可以将电位器视为线性元件,其输出电压与电刷角位移之间成线性关系。
2.2 电压比较放大器电压比较放大器由1A 、2A 组成,其中放大器1A 仅仅起倒相的作用,2A 则起电压比较和放大作用,其输出信号作为下一级功率放大器的控制信号,并具备鉴别电压极性(正反相位)的能力。
电压比较放大器实际上是比较元件和一部分放大元件的组合,其职能是把测量元件检测到的被控量实际值与给定元件给出的参据量进行比较,求出它们之间的偏差,并经过电压型集成运算放大器的放大作用,将偏差信号放大。
具体说来就是:*ct ct ()U K U U =- 其中ct 10K R R =-,又因*U U e -=(偏差),所以上式可以写成ct ct U K e =,对该式两边同时进行拉氏变换,可得电压比较运算放大器的传递函数为ct ct ()()()U s G s K E s ==从式子可以知道电压比较放大器的传递函数也是一个常值。
电压比较放大器可以用图2-2所示的方框图表示图2-2 电压比较器方框图其中ct ()G s K =。
2.3 可逆功率放大器为了推动随动系统的执行机构,即执行电动机,只有电压放大是不够的,还必须有功率放大,这样才能驱动电动机SM 。
可逆功率放大器也是放大元件。
由于在控制系统中,控制信号不能提供驱动执行元件的功率,所以必须进行功率放大。
只有这样,才能使电动机(执行元件)按着期望的方向和速度运行。
可以说,功率放大元件把具有固定电压的电源变成了由信号控制的能源,即电压或电流随控制信号而变化的电源。
根据所要驱动的电动机的不同,功率放大元件分为直流伺服功率放大器和交流伺服功率放大器两种。
前者驱动直流电动机,后者驱动交流电动机。
控制系统中目前应用最广的功率放大元件是直流功率放大器。
系统对直流功率放大器一般有下述基本要求:1、能够输出足够高的电压和足够大的电流,能输出足够大的电功率。
2、线性度好。
3、可靠的限流装置。
4、能够吸收电动机的回输能量。
5、应具备电流负反馈线路。
常用的直流功率放大器有三种:线性(比例式)功率放大器、开关式功率放大器和晶闸管功率放大器。
本设计用到的功率放大器由晶闸管或大功率晶体管组成功放电路,由它输出一个足以驱动电动机SM 的电压和电流。
分析可知,对该环节做近似处理,可得d d ct U K U =对式子两边同时做拉氏变换,得可逆功率放大器的传递函数为d d ct ()()()U s G s K U s ==用图2-3所示的方框图表示。
图2-3 可逆功率放大器方框图其中d ()G s K =。
2.4 执行机构执行机构即执行元件,它的只能是直接推动被控对象,使其被控量发生变化。
一般用来作为执行元件的有控制阀、电动机、液压马达等。
虽然随着科技的发展,近些年来,交流电动机在控制系统特别是调速系统中应用越来越广,使直流电动机的地位受到了严重的挑战。
但目前直流电动机在控制系统中仍占主要地位。
对于调速范围不大,动态响应要求不高的系统,可以使用普通直流电动机。
对于调速范围大,动态响应要求快的系统,特别是伺服系统(随动系统),则应采用直流伺服电动机。
直流伺服电动机是专门为控制系统特别是伺服系统设计和制造的一种电机。
它的转子的机械运动受输入电信号控制作快速反应。
直流伺服电动机的工作原理、结构和基本特征与普通直流电动机没有原则区别,但为了满足控制系统的要求,在结构和性能上做了一些改进,具有如下特点:1、采用细长的电枢以便降低转动惯量,其惯量大约是普通直流电动机的1/31/2。
2、具有优良的换向性能,在大的峰值电流冲击下仍能保持良好的换向条件。
3、机械强度高,能够承受住巨大的加速度造成的冲击力作用。
4、电刷一般都安排在几何中性面上,以确保正、反转特性对称。
本系统就是采用直流伺服电动机SM 作为带动负载运动的执行机构,系统中的雷达天线即为负载,电动机到负载之间通过减速器匹配。
直流伺服电动机在控制系统中广泛用作执行机构,用来对被控对象的机械运动实现快速控制,通过简化处理后的直流伺服电动机的微分方程为m m m 1d 2()()()()d t T t K u t K M t dtωω+=- 式中()M t 可视为负载扰动转矩。