2
利用
得到
E h , p k , h / 2 , 2 , k 2 / ,
d 2 2 0, 所以,t x(t ) dk m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
37
参考书目
曾谨言《量子力学》,科学出版社 周世勋《量子力学教程》,高等教育出版 社
38
量子力学 第二章 波函数及薛定谔方程
39
2.1 波函数及其统计解释
40
一、自由粒子的波函数
自由粒子指的是不受外力作用,静止或匀速运动 的质点。因此,其能量E 和动量 p pe 都是常量。 根据德布罗意波粒二象性的假设,自由粒子的频 率和波长分别为
4
1.1 经典物理学的困难
5
19世纪末,物理学界建立了牛顿力 学、电动力学、热力学与统计物理, 统称为经典物理学。其中的两个结论 为 1、能量永远是连续的。 2、电磁波(包括光)是这样产生的: 带电体做加速运动时,会向外辐射电 磁波。
6
经典物理学的成就
牛顿力学-支配天体和力学对象的运动; 杨氏衍射实验-确定了光的波动性; Maxwell方程组的建立-把光和电磁现象建立在 牢固的基础上; 统计力学的建立。
46
3、概率波
粒子的波动性可以用波函数来表示, 其中,振幅 ( x, y, z) | ( x, y, z) | ei ( x, y,z ) 表示波动在空间一点(x,y,z)上的强弱。 | ( x, y, z) |2 应该表示粒子出现在点 所以, (x,y,z)附近的概率大小的一个量。 因此,粒子的波函数又称为概率波。