空间解析几何-第3章-常见的曲面2
- 格式:ppt
- 大小:2.22 MB
- 文档页数:68
考研数学一大纲空间解析几何空间解析几何是考研数学一科目的重要内容之一。
在考研数学一大纲中,空间解析几何包括平面方程与空间直线、平面及空间中的曲面方程、立体几何与相关计算方法等内容。
下面将对这些内容进行详细讨论。
一、平面方程与空间直线平面方程是空间解析几何的基础,在考研数学一大纲中要求掌握平面的一般方程、点法式方程、截距式方程以及向量法方程。
对于一般方程Ax+By+Cz+D=0,其中A、B、C为方程的系数,D为常数项,可以通过法向量的系数A、B、C来确定该平面的法向量。
点法式方程是通过平面上的一点和法向量来表示平面方程的形式,截距式方程是通过平面与坐标轴的截距来表示平面方程的形式。
向量法方程是通过平面上的一点和与平面垂直的一个向量来表示平面方程的形式。
空间直线也是空间解析几何的重点内容之一。
在考研数学一大纲中要求掌握空间直线的点向式方程、对称式方程以及向量式方程。
点向式方程是通过直线上的一点和方向向量来表示直线方程的形式,对称式方程是通过直线与坐标轴的截距来表示直线方程的形式。
向量式方程是通过直线上一点和与该直线平行的一个向量来表示直线方程的形式。
二、平面及空间中的曲面方程在考研数学一的大纲中,平面与空间中的曲面方程也是重要的内容。
常见的曲面方程包括二次曲面方程、柱面方程、圆锥曲线方程等。
二次曲面方程的一般形式为Ax^2+By^2+Cz^2+Dxy+Exz+Fyz+Gx+Hy+Kz+L=0,其中A、B、C、D、E、F、G、H、K、L为方程的系数。
不同的二次曲面有不同的特点和性质,例如椭球、单叶双曲面、双叶双曲面、椭圆抛物面等。
柱面方程是通过直线沿着某一方向无限延伸而形成的表面。
柱面方程的一般形式为Ax+By+C=0,其中A、B、C为方程的系数。
圆锥曲线方程是由一个点(焦点)和一个直线(准线)确定的曲线。
圆锥曲线方程的一般形式为(x-a)^2+(y-b)^2-(z-c)^2=0,其中(a, b, c)为焦点的坐标。
第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。
曲西方程;F (xj,z )=O空同解祈/L 何一・曲面方程的概念定义:如果曲面s 与三元方程F (x,j,z) = O 满足:(1)曲面s 上任一点的坐标都满足方程F (xj^z) =O(2)不在曲面S 上的点的坐标都不满足方程.二、平面及其方程例1设有点A (1,2,3)与B (2,-1,4),求与线段AB垂直平分的平面方程・所求平面就是与A和B等距离的动点的轨迹设平面上任一点为A/(x,j,z)AM\ = \MnI (X・ 1)2 + (y ・ 2)2 + (z - 3)2 = V(x-2y+6 + iy +(z-4)2化简得2x-6j + 2z-7 = 0 —所求平面方程Ax + By+ Cz + D = O平面的一般方程■特殊半廁XOYlfri z = 0YOZ 而x =()zox 而y=o适合下列条件的平面方程Ax + B\+Cz^D = 0仃什么特征?I.过原点0 = 02•平行于他标轴 3 •包含坐标轴平行于X4 = 0包含X4 = 0Q = 0v/? = o>^B = 0 D = 02C = 0zC = 0Q = ()4•平行于坐标平面平行于XOY面4=0 B=Q zox®4=0C=0YOZifii B = 0 C = 04例2作Z-2的图形.三、球面及其方程例3建立球心在点Mo (myo, z…)半径为R的球而的方程.设是球面上的任一点\M A M = RJ (X-Xo) 2 + Cv-几)'+ (z・zj 承(尤-X J+ (y - y 0 y+ (z - z J=j 11+ZH OXZ ——HA THP GWOZZ XHXZ(o n )吕舍sHJ+X•I \7 卜 乙——K \—/ 丟逗迂膜低丫OHd +Xz IJ+ wZ = JQ■宀b上半部例5求与原点O及M❶(2,3,4)的距离之比为1:2 点的全体所组成的曲面方程•解设M (兀jsz)是曲面上任一点根据题意有-=1恨俯惣恵月IMMJ 2J(X・2), + (y - 3)2 +(Z - 4), 2所求方程为卜+I卜0+1)并+寻」四•旋转曲面定义以一条平曲线纟翹平面上的一条直线旋黔一周所成的曲面称为旋转曲面.这条定直线叫旋转曲面的轴.旋转面的方程曲线C卩(”Z)=0lx = 0曲线C〔八”乙)二。
第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
第三章 常见曲面习题3.11.证明:如果2220a b c d ++->,那么由方程2222220x y z ax by cz d ++++++=给出的曲面是一球面,求出它的球心坐标和半径。
证明:将方程配方得222222()()()x a y b z c a b c d +++++=++-,由2220a b c d ++->,得到方程表示球心是(,,)a b c ---2.求过三点(3,0,0),(0,2,0),(0,0,1)的圆的方程。
解:空间中的圆可由过三点(3,0,0),(0,2,0),(0,0,1)的一个球面和一个平面的交线表示,设过该三点的球面方程为2220x y z ax by cz d ++++++=,得到930,420,10a d b d c d ++=⎧⎪++=⎨⎪++=⎩球面方程为22294(1)032d dx y z x y d z d ++++---++=,其中d 任意。
过该三点的平面方程是132x yz ++=,所以所求圆的方程可以为 2226()2(9)3(4)6(1)60,23660x y z d x d y d z d x y z ⎧++-+-+-++=⎨++-=⎩ 其中d 任意。
3.证明曲线24224324,1,(,)1,1t x t t t y t t t t z t t ⎧=⎪++⎪⎪=∈-∞+∞⎨++⎪⎪=⎪++⎩在一球面上,并此球面方程。
证明:因为曲线满足2322222224242422242424()()()111()(1)11tt t x y z t t t t t t t t t t y t t t t++=++++++++=++==++++即22211()24x y z +-+=,所以曲线在一个球面上。
4.适当选取坐标系,求下列轨迹的方程(1)到两定点距离之比等于常数的点的轨迹; (2)到两定点距离之和等于常数的点的轨迹; (3)到定平面和定点等距离的点的轨迹。
第3章 平面与空间直线§ 3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;(3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。
求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面。
解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为:⎪⎩⎪⎨⎧++-=-=--=v u z u y vu x 212123一般方程为:07234=-+-z y x(2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:⎪⎩⎪⎨⎧+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。
(3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:⎪⎩⎪⎨⎧+-=+=--=v u z uy vu x 235145 一般方程为:0745910=-++z y x 。
(ⅱ)设平面π'通过直线AB ,且垂直于ABC ∆所在的平面∴}1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为:⎪⎩⎪⎨⎧+-=++=+-=v u z v u y v u x 35145 一般方程为:0232=--+z y x .2.化一般方程为截距式与参数式: 042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:⎪⎩⎪⎨⎧=-=++-=v z uy v u x 24 3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为:⎪⎪⎩⎪⎪⎨⎧==---=v z uy v A C u A B A D x 故其方位矢量为:}1,0,{},0,1,{ACA B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔01001=--AC A B Z Y X ⇔ 0=++CZ BY AX .4.已知:连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 里的坐标z .解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .§ 3.2 平面与点的相关位置1.计算下列点和平面间的离差和距离:(1))3,4,2(-M , :π 0322=++-z y x ; (2))3,2,1(-M , :π 0435=++-z y x . 解: 将π的方程法式化,得:01323132=--+-z y x , 故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ(2)类似(1),可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:(1)在y 轴上且到平面02222=--+z y 的距离等于4个单位的点;(2)在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点; (3)在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点。
空间解析几何(Space Analytic Geometry)课程编号:(由教务处统一编写)学分:3学时:45 (其中:讲课学时:45 实验学时:上机学时:)先修课程:无适用专业:数学各专业1年级教材:(教材名称;主编;出版社、版次)蔡国梁等主编,解析几何教程,江苏大学出版社,2012开课学院:理学院一、课程的性质与任务:《解析几何》是高等学校本、专科数学与应用数学、信息与计算专业的一门重要基础课,是初等数学通向高等数学的桥梁,是数学专业课的基石,也是江苏大学重点建设的“842”核心课程之一。
自江苏大学成立以来,《空间解析几何》课程一直是我系数学与应用数学专业(师范和非师范)及信息与计算科学专业的一门重要的专业基础课程,课时数为45课时,在第1学期开设。
解析几何的基本内容和基本方法包括:向量代数,空间直线和平面,常见曲面,坐标变换,二次曲线方程的化简等。
通过学习这门课程,学生可以掌握用代数的方法研究空间几何的一些问题,而坐标法、向量法正是贯穿全书的基本方法。
学好空间解析几何是学生学好其他后继数学课程的基础,数学知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,空间解析几何课程正是其中最重要的一个环节。
数学分析、高等代数和解析几何是大学数学类专业的三大主要基础课程。
解析几何是用代数的方法来研究几何,从而把几何问题的讨论,从定性的研究推进到可以计算的定量的层面,“数形结合”是解析几何的精髓。
解析几何是现代数学区别于经典数学的里程碑。
《空间解析几何》是初等数学通向高等数学的桥梁,是数学专业课的基石。
空间解析几何是用坐标法和向量法作为主要的研究工具,用代数方法来研究几何图形的几何学,它把数学的基本对象与数量关系密切联系起来,它对整个数学的发展起了很大作用。
空间解析几何,作为高等师范学校数学系开设的一门专业课,它是培养初中数学教师知识体系的一部分,是构成合格的初中数学教师的智能结构中的一个元素.它是由中学的平面几何、立体几何发展起来的几何学的一个分支。