《运筹学》第三章 运输问题
- 格式:ppt
- 大小:1.04 MB
- 文档页数:48
第三章运输问题在生产实际中,经常需要将某种物资从一些产地运往一些销地,因而存在如何调运使总的运费最小的问题.这类问题一般可用线性规划模型来描述,当然可以用单纯形法求解。
但由于其模型结构特殊,学者们提供了更为简便和直观的解法-—表上作业法.此外,有些线性规划问题从实际意义上看,并非运输问题,但其模型结构类似运输问题,也可以化作运输问题进行求解。
第一节运输问题及其数学模型首先来分析下面的问题。
例3。
1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。
三个收购站A1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。
已知各收购站到各纺织厂的单位运价如表3—1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。
表3-2由于总供应量等于总需求量,因此,一方面从某收购站运往各纺织厂的总棉花数量等该收购站的供应量,即x11+x12+x13 = 50x21+x22+x23 = 45x31+x32+x33 = 65另一方面从各收购站运往某纺织厂的总棉花数量等该纺织厂的需要量,即x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70因此有该问题的数学模型为min f= 4x 11+8x 12+5x 13+6x 21+3x 22+6x 23+2x 31+5x 32+7x 33x 11+x 12+x 13 = 50 x 21+x 22+x 23 = 45 x 31+x 32+x 33 = 65 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70x ij ≥0,i=1,2,3;j=1,2,3生产实际中的一般的运输问题可用以下数学语言描述。
运筹学第3章运输问题第1节运输问题的数学模型第2节表上作业法钱颂迪制作运筹学(第三版)《运筹学》教材编写组第3章运输问题清华大学出版社第3章运输问题第1节运输问题的数学模型第2节表上作业法第3节产销不平衡的运输问题及其求解方法第4节应用举例第1节运输问题的数学模型已知有m个生产地点Ai,i=1,2,…,m。
可供应某种物资,其供应量(产量)分别为ai,i=1,2,…,m,有n个销地Bj,j=1,2,…,n,其需要量分别为bj,j=1,2,…,n,从Ai到Bj运输单位物资的运价(单价)为cij,这些数据可汇总于产销平衡表和单位运价表中,见表3-1,表3-2。
有时可把这两表合二为一。
表3-1销地产地1 2 ┉ n产量12┆mA 1A2┆Am销量B1 B2 ┈ BNn表3-2若用xij表示从Ai到Bj的运量,那么在产销平衡的条件下,要求得总运费最小的调运方案,数学模型这就是运输问题的数学模型。
它包含m×n个变量,(m+n)个约束方程。
其系数矩阵的结构比较松散,且特殊。
该系数矩阵中对应于变量xij的系数向量Pij,其分量中除第i个和第m+j个为1以外,其余的都为零。
即Pij=(0,… ,1,0,…,0,1,0,…,0)T=ei+em+j对产销平衡的运输问题,由于有以下关系式存在:第2节表上作业法表上作业法是单纯形法在求解运输问题时的一种简化方法,其实质是单纯形法。
但具体计算和术语有所不同。
可归纳为:(1) 找出初始基可行解。
即在(m×n)产销平衡表上用西北角法或最小元素法,Vogel法给出m+n-1个数字,称为数字格。
它们就是初始基变量的取值。
(2) 求各非基变量的检验数,即在表上计算空格的检验数,判别是否达到最优解。
如已是最优解,则停止计算,否则转到下一步。
(3) 确定换入变量和换出变量,找出新的基可行解。
在表上用闭回路法调整。
(4) 重复(2),(3)直到得到最优解为止。
例 1 某公司经销甲产品。