数学分析期末考试题1、2(第二份有答案)
- 格式:doc
- 大小:457.00 KB
- 文档页数:6
数学分析期末考试试题2### 数学分析期末考试试题2一、选择题(每题3分,共15分)1. 函数\( f(x) = \sin x \)在区间[0, \( \pi \)]上的最大值是: - A. 1- B. \( \frac{\pi}{2} \)- C. \( \sqrt{2} \)- D. \( \sqrt{3} \)2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:- A. 0- B. 1- C. \( \frac{1}{2} \)- D. \( \frac{\pi}{2} \)3. 如果\( \int_{0}^{1} f(x) \, dx = 2 \),那么\( \int_{0}^{1} x f(x) \, dx \)的值是:- A. 0- B. 1- C. 2- D. 无法确定4. 函数\( g(x) = x^2 + 3x + 2 \)的导数是:- A. \( 2x + 3 \)- B. \( x^2 + 3 \)- C. \( 2 + 3x \)- D. \( 3x + 2 \)5. 以下哪个序列是收敛的?- A. \( \{ \frac{1}{n} \} \)- B. \( \{ (-1)^n \} \)- C. \( \{ n^2 \} \)- D. \( \{ \frac{1}{n^2} \} \)二、填空题(每题2分,共10分)1. 函数\( f(x) = x^3 - 6x^2 + 11x - 6 \)的极值点是______。
2. 如果\( \lim_{n \to \infty} a_n = L \),则\( \lim_{n \to \infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = \)______。
3. 函数\( h(x) = e^x \)的泰勒展开式在\( x = 0 \)处的前三项是______。
数学分析期末考试题及答案ppt1. 极限的概念和性质- 题目1:求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
- 答案:极限值为1。
2. 连续函数的性质- 题目2:判断函数 \(f(x) = \frac{1}{x}\) 在 \(x = 0\) 处是否连续。
- 答案:不连续。
3. 导数的定义和计算- 题目3:求函数 \(f(x) = x^3 - 6x^2 + 9x + 1\) 的导数。
- 答案: \(f'(x) = 3x^2 - 12x + 9\)。
4. 微分中值定理- 题目4:证明函数 \(f(x) = x^2\) 在区间 \([0,1]\) 上至少存在一点 \(c\),使得 \(f'(c) = \frac{f(1) - f(0)}{1 - 0}\)。
- 答案:根据罗尔定理,由于 \(f(0) = 0\) 且 \(f(1) = 1\),且 \(f(x)\) 在 \([0,1]\) 上连续可导,故存在 \(c \in (0,1)\) 使得 \(f'(c) = 1\)。
5. 定积分的计算- 题目5:计算定积分 \(\int_{0}^{1} x^2 dx\)。
- 答案: \(\frac{1}{3}x^3 \Big|_0^1 = \frac{1}{3}\)。
6. 级数的收敛性- 题目6:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2}\) 是否收敛。
- 答案:收敛。
7. 多元函数的偏导数- 题目7:求函数 \(f(x, y) = x^2y + y^3\) 的偏导数 \(f_x\) 和 \(f_y\)。
- 答案: \(f_x = 2xy\),\(f_y = x^2 + 3y^2\)。
8. 多元函数的极值- 题目8:求函数 \(f(x, y) = x^2 + y^2\) 在点 \((1, 1)\) 处的极值。
- 答案:点 \((1, 1)\) 是局部最小值点。
数学分析-1样题(一)一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+L 收敛. 四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.数学分析-1样题(二)一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=.三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导. 七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. xe dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数(1)nn x x∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑. 数学分析-2样题(二)一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.10arcsin x dx ⎰4.1000π⎰二. (各5分,共10分)求下列数列与函数极限: 1. 221limnn k nn k→∞=+∑2. 20lim1xt xx x e dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列 证明{()}n f x 在[0,1]不一致收敛. 五. (10分)求幂级数(1)nn n x∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1nn a∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.数学分析-3样题(一)一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂二 (10分) 设n 个正数12, , , n x x x L 之和是a ,求函数u =.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22C xdy ydx x y -+⎰Ñ,其中C 是光滑的不通过原点的正向闭曲线.九 (10分) 求dS z ∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部. 数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f xy z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数. 九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。
数学分析2期末试题库 《数学分析II 》考试试题(1)一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、∑∞=1n na收敛的cauchy 收敛原理3、 全微分 二、计算题:(每小题8分,共32分)1、4202sin limx dt t x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。
3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和4、已知zy x u = ,求yx u∂∂∂2三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。
,一、叙述题:(每小题5分,共10分)1、 叙述反常积分a dx x f ba,)(⎰为奇点收敛的cauchy 收敛原理2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)212111(lim nn n n +++++∞→ 2、求摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的面积3、求⎰∞+∞-++dx x xcpv 211)(4、求幂级数∑∞=-12)1(n nn x 的收敛半径和收敛域 5、),(yxxy f u =, 求y x u ∂∂∂2三、讨论与验证题:(每小题10分,共30分)1、yx y x y x f +-=2),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为什么?2、讨论反常积分⎰∞+0arctan dx x xp的敛散性。
《数学分析(二)》期末试题一、选择题(共20分) 1、dxx dxd b a⎰2sin =( ) A 、22sin sinab - B 、22cos cos ab - C 、2sinxD 、02、下列积分中不是非正常积分的是( ) A 、 dx x⎰+∞+0211 B 、dxx⎰-1211 C 、dx x⎰-42211 D 、dxx ⎰-22)1(13、若任意的),(b a x ∈,有0)0(,0)(>''>'f x f 则)(x f 在),(b a 内是( ) A 、单调增加的凸函数 B 、单调减少的凹函数 C 、单调减少的凸函数 D 、单调增加的凹函数4、cx dx x f x+='⎰2ln2)(ln 1且1)0(=f ,则=)(x f ( )A 、122+xB 、x 2ln 2C 、22xD 、c x +2ln 25.下列级数中条件收敛的是() A 、∑!sin n x B 、1)1(+-∑n n nC 、∑+-]11)1[(nnnD 、nn2sin)1(∑-6、曲线1)1(3--=x y 的拐点是( )A 、)0,2(B 、)1,1(-C 、)2,0(-D 、无拐点 7、若级数∑∞=+0)1(n nu 收敛,则=∞→n n u lim ()。
A 、1B 、-1C 、0D 、不存在。
8、设)(x f 为连续函数,则dtt f dxd xx⎰2)(=( )A 、)()(22x f x xf-B 、)(22x xf C 、)(x f D 、)()21(x f x -9、若1n n μ∞=∑收敛,1nn k k S μ==∑,则下列命题中正确的是( )。
A 、lim 0nn S →∞=B 、lim n n S →∞存在C 、lim n n S →∞不存在 D 、}{n S 单调 10、13n nn xn ∞=⋅∑的收敛半径为( )A 、0B 、1C 、3D 、13二、填空题(共20分) 1、=⎰-xdx x arccos117( )2、23sin limxx t dt x→=⎰( )3、=--⎰dx x x)cos 312(2( )曲线)10(,2≤≤=x x y 绕x 轴旋转一周所成的旋转体的体积是( ) 5、dxxx p⎰+∞1sin 条件收敛,那么p 的取值范围为( )6、设13--=ax x y 在1=x 处存在极值,则=a ( )7、函数)1()1()(>-+=p x xx f pp在]1,0[上的最大值为( )8、曲线2y x=和2y x=所围城的平面图形的面积为( ) 9.级数()111n n n ∞=+∑的和为( )。
课程编号:100171019 北京理工大学2021-2022学年第二学期2021级数学分析(II )期终考试试题A 卷解答1.(23分)求下列函数的偏导数或全微分 (1)设cos xyz e=,求dz .(2)设(,)z z x y =由方程zx y z e ++=所确定的隐函数,求z x ∂∂和22zx∂∂.(3)设1()()z f xy yg x y x=++,其中f 和g 在R 上有连续的二阶导数,求z x ∂∂,z y ∂∂和2zy x∂∂∂ 解:(1)cos (cos )xy dz e d xy =cos (sin )()xy e xy d xy =−cos sin ()xy xye ydx xdy =−+.(2)方程关于x 求导,y 是常数,z 是x 的函数,1z x x z e z +=,11x zz e =−. 23(1)(1)z zx xx z ze z e z e e =−=−−−. 方法二. zzxx x x xx z e z z e z =+,221(1)z zx xx z ze z e z e e =−=−−−. (3)//211()()()z f xy f xy y yg x y x x x∂=−+⋅++∂ //21()()()yf xy f xy yg x y x x =−+++,//1()()()z f xy x g x y yg x y y x∂=⋅++++∂ //()()()f xy g x y yg x y =++++,2/////()()()zf xy yg x y yg x y y x∂=⋅++++∂∂ /////()()()yf xy g x y yg x y =++++.2.(15分)(1)求二重积分22Dy I dxdy x=⎰⎰,其中D 为由1,2,y y y x x ===所围的区域. (2)求三重积分I x dxdydz Ω=⎰⎰⎰,其中Ω由0,0,0,21x y z x y z ===++=所围成.(3)求第一型曲面积分()MI x y z dS =++⎰⎰,其中M为上半球面:z =222x y R +≤(0)R >. 解:(1)2221221y y Dy y I dxdy dy dx x x==⎰⎰⎰⎰22111()yyy dy x =−⎰2223111()()y y dy y y dy y=−=−⎰⎰ 94=. 方法二. 22212221122212x x Dy y y I dxdy dx dy dx dy x xx ==+⎰⎰⎰⎰⎰⎰.(2)设D 为xy −平面上由0,0,21x y x y ==+=所围成区域.I x dxdydz Ω=⎰⎰⎰120x yDdxdy xdz −−=⎰⎰⎰(12)Dx x y dxdy =−−⎰⎰[]11(1)20(1)2x dx x x xy dy −=−−⎰⎰12011(1)448x x dx =−=⎰. 方法二. 对任意的[0,1]x ∈,x D 为yz −平面上由0,0,21y z y z x ==+=−所围成区域.I x dxdydz Ω=⎰⎰⎰1xD dx xdydz =⎰⎰⎰12011(1)448x x dx =−=⎰(3) x z =y z =,()MI x y z dS =++⎰⎰221(x y x y +≤=++⎰⎰221(x y x y +≤=++⎰⎰221x y Rdxdy +≤=⎰⎰3R π=.3.(8分)设(,)z z x y =在2R 有连续偏导数,并且322cos(2)3cos(2)dz axy x y dx x y b x y dy ⎡⎤⎡⎤=+++++⎣⎦⎣⎦其中,a b 是常数,求,a b 的值和(,)z z x y =的表达式. 解:由条件3cos(2)x z axy x y =++,223cos(2)y z x y b x y =++, 则232sin(2)xy z axy x y =−+,26sin(2)yx z xy b x y =−+. 因为xy z 和yx z 都连续,所以xy yx z z =, 232sin(2)axy x y −+26sin(2)xy b x y =−+, 取,02x y π==,解得2b =,进而得出2a =.再由32cos(2)x z xy x y =++,23(,)sin(2)()z x y x y x y y ϕ=+++, 22/32cos(2)()y z x y x y y ϕ=+++, 于是/()0y ϕ=,()y C ϕ=.故23(,)sin(2)z x y x y x y C =+++.4.(10分)求幂级数211(1)(21)!n n n n x n +∞−=−+∑的收敛域及和函数的表达式.解:记21(1)()(21)!n n n n u x x n −−=+. 对任意的0x ≠,21()0,()2(23)n n u x xn u x n n +=→→+∞+, 则211(1)(21)!n n n n x n +∞−=−+∑收敛. 即得211(1)(21)!n n n n x n +∞−=−+∑的收敛域为(,)−∞+∞. 记211(1)()(21)!n n n n S x x n +∞−=−=+∑,定义域为(,)−∞+∞.容易求得(0)0S =. 对任意的0x ≠,利用幂级数的性质,2/11(1)()()2(21)!nn n S x x n +∞=−=+∑/211(1)2(21)!n n n x n +∞=⎛⎫−= ⎪+⎝⎭∑/21111(1)2(21)!n n n x x n +∞+=⎛⎫−= ⎪+⎝⎭∑/11(sin )2x x x⎛⎫=− ⎪⎝⎭ 2cos sin 2x x xx−=.5.(10分)设()f x 是以2π为周期的函数,它在区间(,]ππ−上的表达式为00()20x f x x ππ−<≤⎧=⎨<≤⎩. (1)求()f x 的Fourier 级数;(2)求()f x 的Fourier 级数的和函数在区间[0,2]π上的表达式;(3)求11(1)21n n n −+∞=−−∑.解:(1)先计算()f x 的Fourier 系数, 01()a f x dx πππ−=⎰122dx ππ==⎰,1()cos n a f x nxdx πππ−=⎰12cos 0nxdx ππ==⎰,1,2,n =,1()sin n b f x nxdx πππ−=⎰ ()0122sin 1(1)n nxdx n πππ==−−⎰2421(21)n k n k k π=⎧⎪=⎨=−⎪−⎩,1,2,k =.()f x 的Fourier 级数为()01cos sin 2n n n a a nx b nx +∞=++∑ 14sin(21)121k k xk π+∞=−=+−∑. (2) 12(0,)4sin(21)10(,2)2110,,2k x k x x k x ππππππ+∞=∈⎧−⎪+=∈⎨−⎪=⎩∑. (3)令2x π=,1411sin (21)2212k k k ππ+∞=⎛⎫+−= ⎪−⎝⎭∑,解得11(1)214n n n π−+∞=−=−∑.6.(12分)(1)判别下列广义积分的收敛性,若收敛,是绝对收敛还是条件收敛?(a) 30411dx +∞−⎰ (b) 20sin x dx +∞⎰ (2)设()af x dx +∞⎰收敛,并且lim ()x f x L →+∞=.证明:0L =.解:(1)(a) 0,1x x ==为瑕点, 考虑30411dx +∞−⎰1122133330122444411111111dx dx dx dx +∞=+++−−−−⎰⎰⎰⎰.因为330004411lim lim111x x x →+→+==−−,3431141lim 111x x x →→−⋅==−,31342433441lim lim111x x xxx +→+∞→+∞⋅==−−,而其中1351244+=>,所以112213333012244441111,,,1111dx dx dx dx +∞−−−−⎰⎰⎰⎰都收敛,于是30411dx +∞−⎰收敛,又被积函数非负,故是绝对收敛.(b)0x =不是瑕点,20sin x dx +∞⎰与21sin x dx +∞⎰具有相同的收敛性,只讨论21sin x dx +∞⎰即可.令2t x =,则2111sin 2x dx +∞+∞=⎰⎰, 1+∞⎰条件收敛. 那么20sin x dx +∞⎰条件收敛.(2)假设0L ≠,不妨设0L >.由lim ()x f x L →+∞=,根据极限性质,存在0X >,使得当x X >时,()2Lf x >.则A X ∀>,()()()A X AaaXf x dx f x dx f x dx =+⎰⎰⎰()()2X aLf x dx A X >+−⎰, 由此推出lim()A aA f x dx →+∞=+∞⎰,与()af x dx +∞⎰收敛矛盾.假设不成立,即0L =.7.(12分)(1)证明:函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,但在(0,)+∞不一致收敛.(2)证明:1()nx n f x ne +∞−==∑在区间(0,)+∞上连续且可导.证:(1)对任意的[,)x δ∈+∞和任意的正整数n ,0nx n ne ne δ−−<<, 而1,e n δδ−−=→<→+∞,说明1nn neδ+∞−=∑收敛,根据M 判别法,函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛.记()nx n u x ne −=,对任意的正整数n ,取1(0,)n x n=∈+∞, 1()0,n n u x ne n −=→+∞,则()nxn u x ne−=在(0,)+∞不一致收敛于0.故函数项级数1nx n ne +∞−=∑在(0,)+∞不一致收敛. (2) (0,)x ∀∈+∞,存在0δ>,使得(,)x δ∈+∞.因为()nxn u x ne−=在(0,)+∞连续(1,2,)n =,利用(1),函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,所以和函数1()nx n f x ne +∞−==∑在[,)δ+∞上连续,于是它在x 连续.由x 的任意性,1()nx n f x ne +∞−==∑在区间(0,)+∞上连续.对任意的0δ>,/22()nx n n u x n e n e δ−−=−≤,[,),1,2,x n δ∀∈+∞=,而1,e n δδ−−=→<→+∞,说明21nn n eδ+∞−=∑收敛,根据M 判别法,函数项级数/1()n n u x +∞=∑在[,)(0)δδ+∞>一致收敛.根据一致收敛的函数项级数的逐项可导性,1()nx n f x ne +∞−==∑在区间[,)(0)δδ+∞>可导. 同理可得,1()nx n f x ne +∞−==∑在区间(0,)+∞上可导.8.(10分)设1α>,10n n a a +<≤,0,1,2,n =.证明:111n n n n n a a a a α+∞−=−−∑收敛. 证:由条件,{}n a 单调递增,则要么{}n a 有上界要么{}n a 趋于+∞. (1)设{}n a 有上界. 则{}n a 收敛,记lim n n A a →+∞=,显然0A >.利用极限性质,存在0N ,当0n N >时, 2n Aa >. 则当01n N >+时,由条件1α>,那么1111120()()()22n n n n n n n n a a a a a a A A a a A ααα+−−−−−−≤<=−. 由于1001(),nk k n k a a a a A a n −=−=−→−→+∞∑,说明11()n n n a a +∞−=−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.(2) 设{}n a 无上界,即lim n n a →+∞=+∞.利用极限性质,存在0N ,当0n N >时,1n a >. 则当01n N >+时,由条件1α>,那么11111110n n n n n n n n n na a a a a a a a a a α−−−−−−−≤≤=−. 由于 110011111(),nk k k n n a a a a a =−−=−→→+∞∑, 说明1111()n n n a a +∞=−−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.。
2021-2022学年第二学期期末《数学分析》一.填空题 ( 每题5分,共30分 )1. 已知势函数 2u x yz =,则其梯度 grad u = ,其梯度的散度 ()div grad u = 。
2. 曲面:ln x z y y ⎛⎫∑=+ ⎪⎝⎭在点0(1,1,1)P 处的单位法向量为 ,在该点处的切平面方程为 .3. 设22()d ,x x u x f x e u -=⎰ 则'()f x = .4. 设Γ是以(0,0),(1,0),(0,1)O A B 为顶点的三角形的边界,则曲线积分()x y ds Γ+⎰ = .5. 设Ω是由锥面z =和上半球面 z = 围成的空间区域, 则三重积分222()d f xy z V Ω++⎰⎰⎰ 在球坐标系下的累次积分为.6. 利用Γ函数和B 函数的性质,可知 2560sin cos d x x x π⎰ = .二. 计算题 (10分) 计算二重积分D,其中 D 是由22221x y a b += 所围的平面区域。
设Γ是任意一条包围着原点(不经过原点)的分段光滑、逆时针定向曲线,试计算曲线积分22.2xdy ydxx y Γ-+⎰四. 计算题 (10分)设∑为曲面 )20(222≤≤+=z y x z 的下侧.计算曲面积分33()d d ()d d 2()d d x y y z y z z x x y z x y ∑++-++-⎰⎰.计算曲线积分22I y dx xdy z dz Γ=-++⎰,其中Γ是平面2y z +=与柱面221x y +=的交线,从Oz 轴正向往下看为逆时针方向.六.计算题 (10分)计算双曲面z xy = 被围在圆柱面222x y a +=内部的面积.设()f x 是[,]a b 上的连续函数,利用二重积分性质证明不等式22()d ()()d b b a a f x x b a f x x ⎡⎤≤-⎢⎥⎣⎦⎰⎰八. 证明题 (10分)设(,)f x u 在[,][,]a b αβ⨯上连续,证明对任意 0[,]u αβ∈,总有0lim (,)d (,)d b baau u f x u x f x u x →=⎰⎰设Ω为闭区域,∂Ω是Ω的边界外侧,n是∂Ω的单位外法向量。
《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。
yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。
a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。
四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。
]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。
求。
∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。
证明:存在且小于)(lim x f x +∞→41π+。
七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。
1>x 判别级数∑∞=2)(1n n f 的敛散性。
八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。
求级数的和。
∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。
二.。
3=a 三. 是紧集。
四.一致收敛。
五.43。
六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。
第三学期数学分析考试题一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( )6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( )9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分)1.设)sin(y x e z xy+=,则其全微分=dz . 2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad . 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 .5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 3.设]1,0[]1,0[⨯=A ,求⎰⎰++=Ay x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a axy x 与x 轴所围的面积.四、(10分)密度22),,(y x z y x +=ρ的物体V 由曲面222y x z +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++S dxdy z dzdx y dydz x222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 六、(第1小题8分,第2小题7分,共15分).1. 求曲线6222=++z y x ,22y x z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:221140π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xx x x ab .第三学期数学分析参考答案及评分标准一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. (⨯) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( √ ) 3.连续函数的全增量等于偏增量之和. ( ⨯) 4.xy y x f =),(在原点不可微. ( √ )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ⨯)6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( √ )7.平面图形都是可求面积的. (⨯) 8.学过的各种积分都可以以一种统一的形式来定义. ( √ )9.第二型曲面积分也有与之相对应的“积分中值定理”. (⨯)10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( √ ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dzdy y x y x x e dx y x y x y e xy xy )]cos()sin([)]cos()sin([+++++++.2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3). 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy 2 .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532. 5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.解:先求其对数的极限)ln(lim22)0,0(),(y x xy y x +→.由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令,所以)ln(lim22)0,0(),(y x xy y x +→=0,故xy y x y x )(lim22)0,0(),(+→=1.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 解:方程ze z y x =++两边对x ,y 求偏导数,得 xze x z z∂∂=∂∂+1 y z e y z z ∂∂=∂∂+1 解得11-=∂∂=∂∂z e y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=z zz z z xy e e y z e e e y z 。
2020-2021《数学分析》(二)期末课程考试试卷A一、 填空题(3分⨯5=15分).1.(ln )[1(ln )]f x dx x f x '=+⎰ln (ln )1f x c ++ .2.45522[sin cos ]x x x dx ππ-+=⎰8/15 . 3.22limarcsin x x x e dxx x--->⎰=1 .4.设()f x C =+⎰则 )(x f ''= .5. 2()xf x e -=的麦克劳林级数为()f x = 0(1)2!nnn n x n ∞=-∑二、 选择题(3分⨯5=15分).1.若反常积分1a xx e dx +∞-⎰收敛,则 ( A ).(A )0>a , (B) R a ∈, (C) 1>a , (D) 0<a . 2. 若反常积分011(1)adx x -⎰收敛,则 ( D ).(A )0>a , (B) R a ∈, (C) 1>a , (D) 1<a . 3. 若反常积分1sin axdx x +∞⎰绝对收敛,则 ( C ). (A )0>a , (B) R a ∈, (C) 1>a , (D) 0<a .4. 若级数∑∞=+-031)1(n annn 条件收敛,则 ( D ). (A )0>a , (B) R a ∈, (C) 1>a , (D) 2/3>3/1>a .5. 设函数()f x =⎪⎩⎪⎨⎧-11 ππ<≤<≤-x x 00以2T π=为周期,其傅里叶级数的和函数为()S x ,则(6)4S ππ+=( B ).(A )-1 , (B) 1 , (C) 0 , (D)不存在.三、计算题(6分⨯5=30分)1.求ln(1)x dx +⎰. 解:原式=ln(1)1xx x dx x +-+⎰-------------------4分 =ln(1)ln(1)x x x x C +-+++-----------------6分 2.求312x xdx -⎰.解:原式=21(2)x x dx -⎰+32(2)x x dx -⎰--------------2分=43--------------6分 3.求)1sin 2sin (sin 1lim πππn n n n n n -+++∞>- .解:原式=n k n n k n π)1(sin 1lim 1-∑=∞>-=⎰1sin xdx π-------------2分院系 班级 序号 姓名 装 订 线=10)cos (1x -π-------------4分=2/π-------------6分4.求21⎰.解:原式=22sin cos cos ttdx tπ⎰-------4分=4π-------6分5. 求反常积分211(1)dx x x +∞+⎰的值. 解:因为211(1)dx x x +∞+⎰21111111dx dx dx x x x +∞+∞+∞=-++⎰⎰⎰------------4分 1ln 2=--------------6分四、(1)求由曲线2y x =与直线0,1,1x x y ===-所围图形的面积. (2)求上述图形绕直线1y =-旋转一周而得立体体积. (10分).解:(1)120413s x dx =+=⎰--------------------5分(2)122028(1)15v x dx ππ=+=⎰--------------------10分 五、证明:若级数∑∞=12n n a 收敛,)0(1>∑∞=n n na na 也收敛. (4分) 证明:因为级数 ∑∞=121n n,∑∞=12n na收敛------------2分所以)1(212n n a n +∑∞=收敛,又(21≤n a n )122n a n+ 则)0(1>∑∞=n n na n a 也收敛. ----------------4分 六、求幂级数0(1)1n nn x n ∞=-+∑的收敛半径、收敛域与和函数,又求01(1)(1)2n nn n ∞=-+∑的 和(10分)解: 令 =)(x s ∑∞=+-01)1(n n n x n=)(x xs ∑∞=+-+01)1(1n n n x n , ])(['x xs =∑∞=-0)1(n n n x =x+11,)1,1(-∈x=)(x xs ⎰+=+xx dx x 0)1ln(11=)(x s xx )1ln(+0≠x0)(,0==x s x ------------------4分收敛半径为1 ,收敛域为(-1,1]。
一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yxxy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dz .2.设32),,(yzxy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad . 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy. 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 .5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xyy x y x )(lim 22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x=++所确定的隐函数,求xyz .3.设]1,0[]1,0[⨯=A ,求⎰⎰++=A y x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a ax y x 与x 轴所围的面积.四、(10分)密度22),,(yx z y x +=ρ的物体V 由曲面222yxz +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++Sdxdy z dzdx y dydz x 222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向.六、(第1小题8分,第2小题7分,共15分). 1. 求曲线6222=++z y x ,22yx z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:22114π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xxx x ab . 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dzdy x y x x e dx y x y x y e xyxy )]cos()sin([)]cos()sin([+++++++. 2.设32),,(yz xy z y x f +=,则f在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3). 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy2 . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532.5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分)1.求极限xyy x y x )(lim 22)0,0(),(+→.解:先求其对数的极限)ln(lim 22)0,0(),(y x xy y x +→. 由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令, 所以)ln(lim 22)0,0(),(y x xy y x +→=0,故xyy x y x )(lim 22)0,0(),(+→=1.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xyz .解:方程ze z y x =++两边对x ,y求偏导数,得x z e x z z ∂∂=∂∂+1 yze y z z∂∂=∂∂+1 解得11-=∂∂=∂∂ze y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=z z z z z xy e ey z e e e y z 。
3.设]1,0[]1,0[⨯=A ,求⎰⎰++=A y x ydxdyI 2322)1(. 解:先对y 后对x 积分,得到⎰⎰++=10232210)1(y x ydy dx I ⎰+-+=1022)2111(dx x x 3122ln ++= 。
4.计算抛物线)0()(2>=+a ax y x 与x 轴所围的面积.解:曲线ACO 由函数],0[,a x x ax y ∈-=表示,ONA 为直线0=y ,于是⎰=xdy S D ⎰⎰+=ACO ONA xdy xdy dx axax a ⎰-=0)12(2061)2(a dx x ax a =-=⎰。
四、(10分)密度22),,(yx z y x +=ρ的物体V 由曲面222yxz +=与2=z 所围成,求该物体关于z 轴的转动惯量.解:根据物体关于坐标轴的转动惯量的定义,得dV z y x y x J Vz ),,()(22ρ⎰⎰⎰+= 作柱面坐标变换⎪⎩⎪⎨⎧===,,sin ,cos :z z r y r x T θθ有Vr z r J .),,(=θ在xy 坐标面上的投影为}4),{(22≤+=y x y x D , 则V 在T 下的原象为}20,20,22),,{(2πθθ≤≤≤≤≤≤='r z rz r V于是有dz r dr d J r z ⎰⎰⎰=πθ20202242ππ35256)22(22024=-=⎰dr r r 。
五、(10分)求第二类曲面积分⎰⎰++Sdxdy z dzdx y dydz x 222 其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 解:由轮换对称性知,只须计算⎰⎰Sdxdy z 2,由,)()(222b y a x R c z ----±=- 利用极坐标变换可得:⎰⎰Sdxdyz2dxdy b y a x R c dxdyb y a x Rc Rb y a x Rb y a x ))()(())()((222222)()(222222)()(⎰⎰⎰⎰≤-+-≤-+-----------+=dr r R d c R 220204-=⎰⎰ϕπ c R 338π= 最后得到⎰⎰++Sdxdy z dzdx y dydz x 222)(383c b a R ++=π 。
六、(第1小题8分,第2小题7分,共15分). 1. 求曲线6222=++z y x ,22y x z +=在点)2,1,1(0P 处的切线方程和法平面方程. 解:令6),,(222-++=z y x z y x F ,22),,(y x z z y x G --=,- 则两曲面在点)2,1,1(0P 处的法向量为: )2,1,1//()4,2,2()2,2,2())(),(),((00001===P z y x z y x P F P F P F n )1,2,2()1,2,2())(),(),((00002--=--==P z y x y x P G P G P G n 于是曲线的切向量为:)0,1,1//()0,5,5(55122211--=-=--=j i kj i τ 从而切线方程为:21111-=--=-z y x , 法平面方程为:0)1()1()1(1=-⋅-+-⋅y x ,即0=-y x . 2.证明:22114π=+⎰+∞dx x . 证明:设411x t +=,则dt t t dx 4345)1(41----= ,有=+⎰+∞dx x4011dt t t 434110)1(41---⎰ )431,411(41--B =)431,43(41-B = 2243sin 41πππ=⋅=。
七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xxx x a b . 解:令⎪⎪⎩⎪⎪⎨⎧==-<<-=0,01,10,ln )1cos(ln )(x x a b x x x x x x g ab . 则)(x g 在]1,0[上连续,因此有dx x g dx xxx x I ab ⎰⎰=-=1010)(ln )1cos(ln )ln (])1cos(ln [10⎰⎰⎰-==b a ab yy ba x x x dy x dx dy x x 令⎪⎩⎪⎨⎧=≤<=0,010,)1cos(ln ),(x x x xy x f y则),(y x f 在],[]1,0[b a ⨯上连续,所以有dx dy x x y ba ])1(ln cos [10⎰⎰dx x x s co dy yb a ⎰⎰=)1(ln 10 )(cos )1(0tb a t y e x dt t e dy -+-+∞==⎰⎰令 dy y yba ⎰+++=2)1(11 2222ln 2122++++=a a b b 。