简述数学建模的主要过程
- 格式:docx
- 大小:37.55 KB
- 文档页数:2
叙述数学建模的基本步骤
建模题目(或者实际问题),往往是定性描述需要解决的问题,首先要做的是读懂问题、明确问题、分解问题,简单来说就是知道要做些什么想得到什么结果,不好解决的大问题分解成好解决的小问题。
然后是把每个小问题,通过引入变量,利用物理规律、机理分析,表达成用数学语言描述。
这就是数学模型。
再下一步是模型求解,需要考虑适合的算法和编程实现,涉及到一些变量的量化,另一些变量的求解,得到数值解。
还要对模型的解进行检验,检验误差、稳定性、灵敏度分析等,还要讨论模型的适用范围、可推广性、可进一步研究的。
最后还要把上述整个过程,用科技论文的规范表述成一篇建模论文。
数学建模知识及常用方法数学建模是一种综合运用数学知识和方法来解决实际问题的过程。
它涉及到多个学科领域,如数学、统计学、计算机科学等,并充分利用了数学模型的概念和数学方法的理论基础。
在实际应用中,数学建模被广泛应用于物理学、生物学、经济学、社会学等各个领域,为决策提供了重要的参考依据。
一、数学建模的基本步骤1.确定问题:明确问题的目标和需求,界定问题的范围和限制。
2.建立模型:根据问题需求,选择适当的数学模型,构建问题的数学描述。
3.求解模型:利用数学方法和计算工具,对模型进行求解,得到问题的解答。
4.模型验证:对解答进行分析和验证,评估模型的准确性和可靠性。
5.结果分析:根据解答结果,给出相应的结论和建议,提供决策参考。
二、数学建模的常用方法1.差分方程模型:差分方程是一类描述自然现象变化规律的数学方程,常用来建立动态系统的模型,如种群增长模型、股票价格预测模型等。
2.微分方程模型:微分方程是关于函数及其导数的方程,常用来描述变化率问题,如物理学中的牛顿第二定律、生物学中的生物变化过程等。
3.线性规划模型:线性规划是一种数学优化方法,用于解决线性约束条件下的最大化或最小化问题,广泛应用于生产计划、资源配置等方面。
4.整数规划模型:整数规划是一种将变量限制为整数的线性规划方法,主要应用于需要整数解决方案的问题,如项目选址、货物装载等。
5.动态规划模型:动态规划是一种将问题转化为一系列相互关联但具有较小规模的子问题的优化方法,通过求解子问题的最优解,得到原问题的最优解。
6.贝叶斯统计模型:贝叶斯统计是一种基于贝叶斯定理的推断统计方法,常用于根据已有的信息更新对未知情况的概率预测。
7.神经网络模型:神经网络是一种模拟人脑神经元连接方式的计算模型,通过模拟神经网络的学习和训练过程,实现对复杂模式的自动识别和预测。
8.时间序列模型:时间序列是一组按照时间顺序排列的数据,通过对时间序列数据的分析和建模,可以预测未来的趋势和变化规律,如股票市场预测、天气预报等。
数学建模的步骤伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。
数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。
一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进.应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法.(2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法.(3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.(4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式.(5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.(1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.①离散系统仿真--有一组状态变量.②连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.。
数学建模的流程一、问题提出。
1.1 这就好比咱们平常生活里啊,遇到个事儿,得先知道是个啥事儿对吧。
数学建模也一样,先得明确问题。
比如说要研究城市交通拥堵,那这就是个大问题,但具体怎么个堵法,哪些地方堵得厉害,这都得搞清楚。
不能稀里糊涂的,就像“丈二和尚摸不着头脑”那样可不行。
1.2 这时候呢,就得去收集各种信息啦。
就像侦探破案似的,到处找线索。
可以去实地考察,看看马路上车流量啥样,也可以查查相关的数据资料,这都是为了把问题的全貌给弄明白。
二、模型假设。
2.1 有了问题和信息之后啊,咱们就得做假设啦。
这假设呢,就像是给这个事儿定个规矩。
比如说研究交通拥堵,咱们假设车的行驶速度是均匀的,这虽然不完全符合实际,但能让这个事儿简单点,先把大框架搭起来嘛。
这就叫“先粗后细”,不能一开始就把事儿想得太复杂,不然根本没法下手。
2.2 假设也不是乱设的,得符合常理。
要是设个车能飞起来的假设,那这模型就乱套了。
咱们得根据实际情况,做一些合理的简化,就像画画一样,先勾勒出个大概的形状。
三、模型建立。
3.1 这时候就开始建立模型啦。
这可是个技术活,就像盖房子一样,得一块砖一块砖地砌。
比如说根据前面的假设,咱们可以用一些数学公式来表示交通流量和拥堵程度的关系。
可能是个很复杂的公式,但是别怕,只要前面的基础打得好,就像“万丈高楼平地起”,总能把这个模型给建起来。
3.2 在建立模型的过程中,还得考虑各种因素的相互作用。
就像一个生态系统似的,每个部分都影响着其他部分。
比如说车流量影响车速,车速又反过来影响车流量,这就得用一些巧妙的数学方法来处理。
四、模型求解。
4.1 模型建好了,就得求解啦。
这就像解一道超级大难题。
有时候可能有现成的数学方法可以用,就像走在一条熟悉的小路上。
但有时候呢,就得自己想办法,这就像在荒野里开辟一条新的道路一样困难。
可能要用到计算机软件来帮忙计算,就像请个小助手似的。
4.2 在求解的过程中,可能会遇到各种各样的问题。
数学模型建立步骤数学模型是用数学语言描述现实问题的工具,建立数学模型的过程通常包括以下步骤:1. 问题定义:清晰地定义问题,明确需要解决的具体问题是什么。
将实际问题转化为数学问题的第一步是准确地理解和描述问题。
2. 建立变量:确定与问题相关的各种变量,并对它们进行定义。
这些变量可以是时间、空间、数量等与问题相关的量。
3. 制定假设:为了简化问题或使问题更容易处理,可能需要引入一些假设。
这些假设可能涉及到变量之间的关系、影响因素等。
4. 建立数学关系:将问题中的变量之间的关系用数学公式或方程表示。
这可能包括线性关系、非线性关系、微分方程、差分方程等,取决于问题的性质。
5. 解析求解或数值求解:对于一些简单的模型,可以尝试找到解析解,即用代数方法求解方程。
对于较为复杂的模型,可能需要使用数值方法,如数值模拟、计算机模拟等。
6. 模型验证:验证模型的准确性和可靠性。
通过实验数据或实际观测数据来检验模型的有效性,对模型的输出结果进行比较和分析。
7. 模型分析:分析模型的性质,如稳定性、收敛性、敏感性等。
理解模型的特点有助于更好地解释模型的行为和结果。
8. 模型优化:在验证和分析的基础上,对模型进行优化。
优化可能涉及调整参数、修正假设、改进数学形式等。
9. 模型应用:使用建立好的模型解决实际问题。
模型应用可能包括对未来情景的预测、对政策决策的支持、对系统行为的理解等。
10. 结果解释:将模型的输出结果转化为对实际问题的解释和建议。
这需要将数学语言翻译为实际问题的语言,并确保结果对决策者或问题的相关方具有实际意义。
建立数学模型是一个迭代的过程,可能需要多次调整和修改,以适应实际问题的复杂性和变化。
这一过程需要数学建模者有深厚的领域知识、数学技能以及对实际问题的深刻理解。
数学建模的主要步骤:第一、模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
第三、模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析 对模型解答进行数学上的分析。
"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。
还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
数学建模采用的主要方法有:(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
数学建模的步骤伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。
数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。
一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进.应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法.(2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法.(3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.(4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式.(5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.(1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.①离散系统仿真--有一组状态变量.②连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.。
高中数学数学建模的基本步骤和应用在高中数学学习中,数学建模是一项重要的技能,它将已学知识应用于实际问题的解决过程中。
本文将介绍高中数学数学建模的基本步骤和应用。
一、基本步骤1. 问题理解与分析:首先,我们需要理解和分析给定的问题。
明确问题的背景、条件和目标,确保对问题有全面的理解,并能提炼出关键信息。
2. 建立数学模型:在理解问题基础上,我们需要建立数学模型来描述问题。
数学模型是对实际问题的抽象与简化,通常由数学方程、函数或图形表示。
选择合适的模型是解决问题的关键。
3. 模型求解:一旦建立了数学模型,我们就需要求解模型以得到问题的解。
根据具体情况,可以采用解析方法、数值方法或计算机模拟等方式进行求解。
4. 模型验证与优化:完成模型求解后,我们应该对模型进行验证和优化。
验证是指根据问题的实际情况,对模型的可靠性和实用性进行检验。
优化是指对模型进行修改和改进,以得到更准确和可行的结果。
5. 模型分析与应用:最后,我们需要对求解结果进行分析和应用。
分析是指对结果进行解释和说明,找出问题的规律和特点。
应用是指利用结果解决实际问题,为决策提供科学依据。
二、应用案例1. 食品配送问题:假设一家餐厅需要将食品从仓库送到不同的客户处,每个客户对食品的需求量不同,仓库到客户的距离也不同。
我们可以建立数学模型,将餐厅、仓库和客户看作点,建立起点、路径和终点间的数学关系。
通过模型求解,确定最佳配送路径,以提高配送效率和降低成本。
2. 疫情传播模型:在疫情爆发时,我们可以利用数学建模来研究疫情的传播规律和控制策略。
例如,可以建立传染病传播的差分方程模型,通过调整模型中的参数,预测疫情的传播趋势,评估防控措施的效果,为疫情防控提供科学依据。
3. 人口增长模型:人口增长是一个复杂而重要的问题。
通过建立人口增长的微分方程模型,我们可以研究人口数量的变化趋势和影响因素,了解人口增长与资源分配、环境保护等问题之间的关系,以制定科学的人口政策。
数学建模过程
数学建模是一种利用数学模型来描述实际问题的方法,常常是对实际问题的抽象思考
及数学化处理,以便做出预测和分析,从而提出合理的结论和决策。
首先,进行问题分析和确定,确定实际问题的目标,明确模型的设计要求。
其次,进行数学模型的构思,建立模型的数学结构,把握系统的各种元素之间的联系,构建一个恰当的数学模型,以反映实际问题客观存在的现象。
之后,进行模型计算,利用计算机对模型中涉及的参数进行计算,得出数学模型的结果,并对计算结果进行分析。
最后,应用模型结果,分析数学模型的解,形成合理的结论,根据模型分析的结论,
提出有效的改进方法,并确定结果的可靠性,从而针对模型提出有效的决策。
总的来说,数学建模的过程主要分为:问题分析、模型构思、模型计算和结果应用四
个步骤。
针对实际问题,从宏观到微观,最终建立一个带有可衡量参数的客观准确的数学
模型,从而帮助决策者指导决策和优化。
简述数学建模的主要过程
数学建模是一种将实际问题抽象成数学模型并进行推理和求解
的过程。
以下是数学建模的主要过程:
1. 问题定义:明确问题的特点、背景和目的。
2. 数据收集:收集与问题相关的数据,包括数据集、样本、图表等。
3. 数学建模:将问题抽象成数学模型,建立数学方程和符号表示。
4. 模型验证:验证模型是否符合问题的特点,是否具有可信度和
可靠性。
5. 求解求解器:使用数学建模工具或软件,根据建立的数学模型
进行计算和推理。
6. 结果解释:解释结果的含义和影响,并提出相应的建议和决策。
7. 模型改进:发现和改进模型,以提高其准确性和实用性。
数学建模的主要目标是建立一个准确、可靠和有效的数学模型,
以解决实际问题并促进决策制定。
如何做数学建模范文数学建模是一门综合运用数学知识与方法,对复杂实际问题进行分析、理论研究和预测的学科。
它在现代科学研究以及工程技术和经济领域具有重要的应用价值。
下面将详细介绍数学建模的过程及方法。
第一步:问题设定数学建模的第一步是问题设定,确定需要解决的问题是什么。
需要明确问题的背景,目标和约束条件。
对于一个复杂问题,可以将其分解为多个子问题,逐步推进。
第二步:问题分析在问题设定的基础上,进行问题分析,将问题细化,梳理问题的关键因素,确定需要研究的问题方面和已知条件。
这一步需要对问题有深入的理解和思考,通过分析问题的本质,找出问题的关键点和难点。
第三步:模型建立在问题分析的基础上,进行模型建立。
数学建模常用的模型包括数学方程模型、几何模型、概率模型等。
根据问题特点和需求,选择恰当的模型。
数学方程模型是最常用的模型之一、通过建立数学方程将问题中的因素和变量进行描述,使问题转化为求解方程的问题。
常见的数学方程模型包括线性模型、非线性模型、差分方程模型等。
几何模型适用于需要研究物体形状、结构、动态等问题。
通过几何模型可以描述物体的位置、形状、大小、运动等特征,通过几何推理等方法进行分析和求解。
概率模型适用于研究随机事件和变量的问题。
通过概率模型可以描述事件之间的关系、发生概率等,通过概率统计的方法进行求解。
在建立模型的过程中,需要合理假设和抽象,简化问题,使问题能够用数学方法来描述和分析。
同时还需要选择合适的变量和参数,确定数学公式和方程。
这一步需要对问题有深入的理解和数学知识的运用。
第四步:模型求解在模型建立的基础上,进行模型求解。
根据建立的模型,通过数学计算和算法求解模型,得出问题的解。
在模型求解过程中,需要运用数值计算、符号计算、优化算法等方法。
数学建模常用的求解方法有数值解和解析解。
数值解是使用计算机进行数值计算的方法,通过模拟和近似的方式求解模型。
解析解是使用数学方法直接求解模型,得出问题解的解析表达式。
数学建模的⼀般步骤数学建模的⼀般步骤建⽴数学模型与其说是⼀门技术,不如说是⼀门艺术。
成功建⽴⼀个好的模型,就如同完成⼀件杰出的艺术品,是⼀种复杂的创造性劳动。
正因为如此,这⾥介绍的步骤只能是⼀种⼤致上的规范。
1.模型准备:在建模前应对实际背景有尽可能深⼊的了解,明确所要解决问题的⽬的和要求,收集必要的数据。
归纳为⼀句话:深⼊了解背景,明确⽬的要求,收集有关数据。
2.模型假设:在充分消化信息的基础上,将实际问题理想化、简单化、线性化,紧紧抓住问题的本质及主要因素,作出既合情合理,⼜便于数学处理的假设。
归纳为⼀句话:充分消化信息,抓住主要因素,作出恰当假设。
3.模型建⽴:①⽤数学语⾔描述问题。
②根据变量类型及问题⽬标选择适当数学⼯具。
③注意模型的完整性与正确性。
④模型要充分简化,以便于求解;同时要保证模型与实际问题有⾜够的贴近度。
正确翻译问题,合理简化模型,选择适当⽅法。
4.模型求解:就复杂⼀些的实际问题⽽⾔,能得到解析解更好,但更多情形是求数值解。
对计算⽅法与应⽤软件掌握的程度,以及编程能⼒的⾼低,将决定求解结果的优化程度及精度。
掌握计算⽅法,应⽤数学软件,提⾼编程能⼒。
5.模型检验与分析:模型建⽴后,可根据需要进⾏以下检验分析。
①结果检验:将求解结果“翻译”回实际问题中,检验模型的合理性与适⽤性。
②敏感性分析:分析⽬标函数对各变量变化的敏感性。
③稳定性分析:分析模型对参数变化的“容忍”程度。
④误差分析:对近似计算结果的误差作出估计。
概括地说,数学建模是⼀个迭代的过程,其⼀般步骤可⽤流程图表⽰:数学建模论⽂的撰写及格式撰写数学建模论⽂和通常完成数学建模竞赛的答卷是类似的, 都是在完成了⼀个数学建模问题的全部过程后, 把所作的⼯作进⾏⼩结, 以有清楚定义的格式写出解法论⽂,⽤于交流或给有关部门、⼈员汇报。
数学建模论⽂的结构:⼀份完整的答卷应包含以下内容:论⽂题⽬;摘要;问题的重述;模型的假设、符号约定和名词解释;模型的建⽴、模型的求解、模型的结果和检验;模型的评价和改进;参考⽂献;附录。
浅谈数学建模的步骤数学建模由以下六个步骤完成:1)建模准备:要考虑实际问题的背景,明确建模的目的,掌握必要的数据资料,分析问题所涉及的量的关系,弄清其对象的本质特征。
2)模型假设:根据实际问题的特征和建模的目的,对问题进行必要的简化,并用精确的语言进行假设,选择有关键作用的变量和主要因素。
3)建立模型:根据模型假设,着手建立数学模型,将利用适当的数学工具,建立各个量之间的定量或定性关系,初步形成数学模型,要尽量采用简单的数学工具。
4)模型求解:建立数学模型是为了解决实际问题,对建立的数学模型进行数学上的求解,包括解方程、图解、定理证明、逻辑推理等。
5)模型分析:对模型求解得到的结果进行数学上的分析,有时是根据问题的性质,分析各变量之间的依赖关系或稳定性态,有时则根据所得的结果给出数学上的预测,有时则是给出数学上的最优决策或控制。
6)模型检验:模型分析的结果返回到实际问题中去检验,用实际问题的数据和现象等来检验模型的真实性,合理性和适用性。
模型只有在被检验,评价,确认基本符合要求后,才能被接受,否则需要修改模型。
数学建模的分析方法主要有以下三种:①图像分析法:通过作图,根据图像中的数量关系来建立问题的数学模型。
②关系分析法:通过寻找关键量之间的数量关系来建立的数学模型。
③列表分析法:通过列表的方式来探索规律,从而建立问题的数学模型。
四、把构建数学建模意识与培养学生创造性思维过程统一起来。
在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。
由此,我认为培养学生创造性思维的过程有三点基本要求。
第一,对周围的事物要有积极的态度;第二,要敢于提出问题;第三,善于联想,善于理论联系实际。
因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。
它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。
结合身边实际生活中的例子,说明数学建模的一般过
程
数学建模的一般过程如下:
1. 确定问题:确定现实生活中的问题或挑战,例如,如何设计一个能耗较低的建筑物。
2. 收集数据和信息:了解问题所涉及的各种因素,例如,建筑用电的各个部分的耗电量,建筑物的结构和材料等。
3. 建立模型:使用数学工具和方法建立数学模型来描述和分析问题。
例如,使用建筑物能耗模型将建筑物内部温度、气候条件、设备使用时间等因素考虑在内,并对建筑物的能耗进行建模。
4. 解决模型:使用数学工具和方法解决建立的模型,得出结论和解决方案。
例如,使用数学模型分析建筑物内不同部分的能耗比例,并在此基础上制定减少能耗的方案。
5. 评估结果:对问题的解决方案进行评估,并确定需要进一步改进的方面。
例如,对建筑物能耗模型进行评估,评估其准确性和实用性,并确定需要进一步完善模型的方面。
举个例子,如果想设计一个减少能耗的建筑物,可以采用数学建模的方法来解决问题。
首先需要收集关于建筑物能耗的各种数据和信息,包括建筑物的结构、材料、设备使用时间等。
然后建立一个数学模型来描述建筑物内部的温度变化和设备使用,从而计算出建筑物的能量消耗。
接下来,可以使用这个模型分析建筑物内不同部分的能耗比例,找出能耗较高的部分,并制定减少能耗的方案。
最后评估模型的准确性和实用性,并确定需要进一步完善模型的方面。
这样,通过数学建模的方法就可以有效地解决实际生活中的问题。
数学建模通俗来讲就是利用数学方法针对具体问题建立数学模型的过程,我将通过以下两点为大家介绍:一、数学建模的步骤:1、模型准备:明确赛题的类别2、模型假设:在特定场景下利用合理的假设进行简化和规范,进而达到某种目的3、模型建立:利用算法对特定问题建立数学模型4、模型求解:重视求解的中间过程,要放数据,最好对数据进行预处理,要对模型的关键参数进行求解,列结果5、模型分析:也叫结果分析,一是浅层分析看结果说话,把结果直接说出来,另一种需要深层分析,把得出的结果解释到实际的生活当中6、模型检验:可行性,正确性,误差,精度等7、模型应用:有没有可推广性(可有可无)二、数学建模解决的问题类型1、数据处理:A:插值拟合:对数据进行补全和基本趋势的分析B:小波分析、聚类分析(高斯混合聚类、K-均值聚类):主要是用于诊断数据异常值的剔除C:主成分分析、线性判别分析、局部保留投影等:主要用于多维数据的降维处理,减少数据冗余D:均值、方差分析、协方差分析等统计方法:主要用于对数据的截取或者特征选择2、关联与分析:A:灰色关联分析(用于样本点数据较少)B:典型相关分析:那些因变量之间联系比较紧密3、分类与判别:A:距离聚类:常用于坐标点的分类B:关联性聚类C: 层次、密度等聚类D:贝叶斯判别:统计判别方法E:费舍尔判别:训练的样本较少F:模糊识别:分类的数据点比较少4、评价与决策:A:模糊综合评价:评价优、良、中、差,不能排序B:主成分分析法:评价多个对象的水平并排序,指标间关联性很强C:层次分析法:做决策,通过指标,综合考虑做决定D:数据包络分析法:优化问题,对各省发展状况进行评判、E:秩和比综合评价法:评价各个对象并排序,指标间关联性不强F:神经网络评价:适用于多指标非线性关系明确的评价G:优劣解距离法(TOPSIS法)H:投影寻踪综合评价法:揉合多种算法,比如遗传算法、最优化理论I:方差分析、协方差分析等·方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少;(1992年作物生长的施肥问题)J:协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲以及初始情况。
数学建模的几个过程:模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,在次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。
算法:模型求解,需要预先设计好由已知数据计算问题的运算顺序。
求解思路:1.树立明确的数量观念,“胸中有数”,认真地注意事物的数量方面及其变化规律。
2.提高逻辑思维能力,思路清晰,条理分明,有条不紊地处理头绪纷繁的各项工作。
3.数学上的推导要求每一个正负号、每一个小数点都不能含糊敷衍。
4.数学上追求的是最有用(广泛)的结论、最低的条件(代价)以及最简明的证明。
5.领会由实际需要出发、到建立数学模型、再通过模型求解、结果分析和结论推广到解决实际问题的全过程,提高他们运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。
6.调动探索精神和创造力,更加灵活和主动,改善所知的数学结论、改进证明的思路和方法、发现不同的数学领域或结论之间的内在联系、拓展数学知识的应用范围以及解决现实问题等方面,显露出自己的聪明才智。
7.具有某种数学上的直觉和想象力,包括几何直观能力,能够根据所面对的问题的本质或特点,八九不离十地估计到可能的结论,为实际的模型求解提供借鉴。
8.通过数学建模的训练,增强拼搏精神和应变能力,能通过不断分析矛盾,从表面上一团乱麻的困难局面中理出头绪,最终解决问题。
结合生活中的例子说明数学建模的一般过程数学建模是指利用数学工具和方法解决实际问题的过程。
它可分为建立数学模型、求解模型以及对模型结果的验证和分析三个主要阶段。
下面将以应用数学建模的其中一个例子,道路交通流量预测为例,说明数学建模的一般过程。
第一阶段:建立数学模型在道路交通流量预测的问题中,我们首先需要收集和整理相关的数据。
这些数据可以包括道路的长度、车道数量、交叉口的数量、车辆类型及其速度等。
然后,我们需要根据这些数据建立数学模型。
在这个例子中,我们可以选取瓶颈理论为数学模型,其中道路的通行能力是瓶颈,而车辆流量则是需要预测的结果。
瓶颈理论中,通行能力的计算可以基于车辆密度、车速和车辆类型等因素,因此我们需要定义这些变量之间的关系,并利用数学公式建立起准确的数学模型。
第二阶段:求解模型在第一阶段中,我们已经成功建立了数学模型。
接下来,我们需要求解模型,即在模型的基础上进行数值计算,得到具体的结果。
在道路交通流量预测的例子中,我们需要根据瓶颈理论模型中的车辆密度、车速和车辆类型等参数,结合实际数据进行计算。
这一阶段需要利用数学工具和方法,例如微积分和线性代数等,进行计算和优化。
通过求解模型,我们可以得到道路交通流量的预测结果。
第三阶段:验证和分析模型结果在第二阶段中,我们已经得到了道路交通流量的预测结果。
然而,为了验证模型的准确性和可靠性,我们还需要对模型结果进行验证和分析。
在这个例子中,我们可以与实际的交通状况进行对比,看看预测的结果是否与实际情况相符。
如果预测结果与实际情况相符,那么我们可以认为模型是有效的。
否则,我们需要对模型进行修正和改进。
同时,我们还需要对模型的灵敏度和稳定性进行分析,以评估模型的可靠性。
整个数学建模过程是一个循环迭代的过程。
在每个阶段中,我们都需要进行反馈和调整,以达到更准确和可靠的结果。
例如,在建立数学模型的阶段中,我们可能需要对变量的选择和关系进行修正;在求解模型的阶段中,我们可能需要调整优化算法和参数;在验证和分析模型结果的阶段中,我们可能需要对模型进行进一步的修正和改进。
请用简练的语言全面的描述数学建模的过程和数学模型的
特点。
数学建模是一种用数学语言描述客观事物的过程,是数学应用的一个重要的方面。
它可以帮助我们更好地理解和解决实际问题,也可以帮助我们更深入地探索客观事物的本质。
数学建模的过程和数学模型的特点,有助于我们更有效地发展数学研究。
数学建模的过程,包括了几个重要环节。
首先,要进行问题分析,全面了解客观事物,确定要解决的问题,量化关键变量,并分析它们之间的关系。
然后,要建立合理的简化模型。
人们可以考虑假设和约定,从而将问题简化为可以解决的数学模型。
建模完成后,要进行数学推导。
可以运用正式方法,如数学分析、概率论、统计等,将模型解决成可供实际应用的形式。
最后,要进行模型验证和检验,检验模型能否再现客观事物,从而做出解决问题的专业决策。
数学模型有不同的特点,可以根据模型的复杂程度和解决问题的能力来进行分类。
简单模型比较容易理解,但不能完全模拟实际状况。
复杂模型可以模拟实际情况更为真实,但要求对客观事物有更深入的了解,且数学推导复杂,模型需要进行更多的检验和验证。
此外,数学模型还具有可复制性和可相互比较的特点,可以用来比较不同策略的有效性,从而提升决策所支持的质量。
总之,数学建模是一个复杂的过程,要想构建出有意义的数学模型,必须充分理解客观事物,进行认真全面的分析,并结合合理的假设和约定,设计出一个合理的简化模型。
这种模型要具备可复制性、
可比较性以及能够有效预测客观事物的特点。
数学建模的过程和数学模型的特点,有助于我们更有效地发展数学研究。
数学建模的基本方法与步骤数学建模是利用数学方法和技术解决现实问题的过程,它在各个领域都有广泛的应用。
本文将介绍数学建模的基本方法与步骤,帮助读者了解数学建模的过程,并能进行基本的数学建模工作。
一、问题定义数学建模的第一步是明确问题。
在这一步中,研究者需要对问题进行细致的分析和思考,确保对问题的理解准确和全面。
问题定义阶段需要回答以下问题:1. 问题的背景与目标:了解问题背景,明确问题的目标和约束条件。
2. 变量和参数的设定:确定问题涉及的变量和参数,并对它们进行定义和量化。
二、建立数学模型在问题定义的基础上,数学建模的下一步是建立数学模型。
数学模型是对实际问题进行抽象和简化的表示,它通常包括以下要素:1. 假设和逻辑关系:建立数学模型需要进行一定的假设和逻辑推理,将实际问题转化为数学可解决的形式。
2. 数学表达式:使用数学语言表示问题的关系和约束。
3. 符号和符号含义:为模型中的符号和参数设定符号,并明确其具体含义和单位。
三、数学求解建立数学模型后,下一步是对模型进行求解。
数学求解的过程中,可以使用各种数学方法和技术,如微积分、概率论、优化方法等。
数学求解的关键是选择合适的方法,并进行正确的计算和分析。
四、模型验证和评估在模型求解后,需要对模型进行验证和评估。
验证模型是否符合实际情况,评估模型的可行性和效果。
模型验证和评估的方法包括:1. 数据对比:将模型的结果与实际数据进行对比,评估模型的准确性和可靠性。
2. 灵敏度分析:通过调整模型中的参数和变量,评估模型对输入的敏感程度。
3. 合理性分析:通过与实际领域专家的讨论,评估模型的合理性和可行性。
五、模型应用与解释模型应用是将建立的数学模型应用到具体问题中的过程。
在这一步中,需要将模型的结果与实际问题相结合,进行解释和分析,并从模型中得出结论和建议。
模型应用的关键是将数学模型的结果转化为实际问题的解决方案。
总结:数学建模是一个复杂的过程,需要经验和专业知识的支持。
简述数学建模的主要过程
数学建模是将实际问题抽象为数学模型,并运用数学方法解决问题的过程。
主要包括问题的确定、模型的建立、模型的求解和模型的检验与应用等几个步骤。
首先,数学建模的第一步是问题的确定。
在这一步骤中,需要明确问题的背景和目标,并对问题进行合理的界定。
需要了解问题所处的环境和条件,确定问题的限制和约束,明确问题需要解决的准确目标。
这步是数学建模的基础,直接影响整个建模过程的质量。
接下来,数学建模的第二步是模型的建立。
在这一步骤中,需要根据问题的特点和要求,选择合适的数学工具和方法,将实际问题抽象成一个数学模型。
模型的建立需要从多个方面考虑,包括问题中的变量、因素之间的关系、相互作用效应等。
常用的模型包括数学方程模型、优化模型、控制模型等。
模型的建立需要根据实际情况进行合理的简化和假设。
首先,需要确定模型的输入和输出变量,并建立它们之间的关系。
其次,需要确定模型中的参数和初始条件,并对其进行估计和设定。
再次,需要根据问题的性质和目标,选择适合的数学方法和算法,对模型进行求解。
然后,数学建模的第三步是模型的求解。
在这一步骤中,需要通过数学计算和分析方法,对建立的数学模型进行求解。
常用的求解方法包括数值求解方法、解析求解方法和优化算法等。
数值求解方法是通过计算机进行数值计算的方法,主要包括差分法、有限元法、动态规划等。
解析求解方法是通过数学分析的方法,推导出问
题的解析表达式,然后计算解析解。
优化算法是通过寻找能够使目标函数
达到最优值的参数组合的方法,包括线性规划、非线性规划、整数规划等。
在模型求解过程中,可能会出现数值不稳定、收敛困难等问题,需要
不断调整和改进算法,以获得更为准确的结果。
模型求解时还需要考虑实
际问题的特点,如随机性、不确定性等,并给出相应的策略和控制手段。
最后,数学建模的第四步是模型的检验与应用。
在这一步骤中,需要
对求解得到的模型进行验证和检验,看是否符合实际情况,并进行合理性
和可行性的评估。
模型的检验主要包括模型参数的敏感性分析、模型的稳定性分析、模
型解的可行性和合理性检验等。
这些分析可以通过对模型的误差分析、模
型结果的敏感性分析、模型的对比和验证等方法进行。
模型应用的过程通常分为两个阶段:初步应用和进一步应用。
初步应
用是指将建立的模型应用到实际问题中,获得初步的应用结果,并与实际
问题进行比较。
进一步应用是在初步应用的基础上,对模型进行改进和优化,使模型更精确、更适用于实际问题,为实际问题提供更好的支持和指导。
模型的应用可以通过软件工具进行实现,如编程语言、数学建模软件等。
同时,也需要结合实际需求和问题的特点,对模型的结果进行解释和
分析,并提出相应的建议和决策。
总之,数学建模是一个复杂而有挑战性的过程,需要合理抽象问题、
建立有效模型、进行准确求解、进行严格检验和有效应用。
这个过程需要
数学、统计、计算机等多学科的知识和方法的综合应用,通过不断思考和
探索,解决实际问题,促进科学的发展。