微波技术基础实验指导书
- 格式:doc
- 大小:1.08 MB
- 文档页数:43
实验一微波常规测量系统的熟悉与调整一、实验目的1、了解常用微波常规测量系统的组成,认识常用微波元件,熟悉其特性、在系统中的作用及使用方法。
2、熟悉常用微波仪器的调整和使用方法。
二、实验原理1、实验系统简介图1-1 常规微波测量系统微波常规测量系统如图1-1所示。
系统中的仪器和主要元件作用如下:(1)、信号源:产生微波信号。
常用的简易信号发生器,包括速调管振荡器、速调管电源和调制器。
速调管振荡器产生并输出需要的连续或调制信号,速调管电源供给速调管振荡器所需各组稳压电源,调制器产生方波调制信号(重复频率一般为1000Hz ),对速调管振荡器进行方波调制。
标准信号发生器主要有速调管和体效应管两类,在包含上述功能的基础上增加了输出幅度调节器(可变衰减器)以及频率计等。
(2)、频率与功率监视部分:由正向接入的定向耦合器从主通道中耦合出一部分能量,通过对该部分信号的监测,确定其信号源的频率并监视输出功率的稳定性,标准信号源往往附有监测系统。
(3)、隔离器:是一种铁氧体器件,用于消除负载反射对信号源的影响。
理想的隔离器只允许信号由源向负载单方向通过(即对入射波衰减为零)。
而全部吸收由负方载向源的反射功率(即对反射波衰减为无穷大)。
利用其单向传输特性,既保证了信号的正常传输,又防止反射波进入信号源影响其输出功率和振荡频率的稳定。
实用的隔离器正向衰减为零点几分贝,反向衰减为几十分贝。
在没有隔离器时,可用固定衰减器代替。
此时,对正向、反向信号有同样衰减。
(4)、衰减器:分固定衰减器和可变衰减器两种。
为电平元件,用来调节输出功率的大小。
调整可变衰减器的衰减量,可以控制到达负载的功率,使指示器有适度的指示。
固定衰减器也可以用定向耦合器代替。
(5)、测量线:用来测量负载在传输线上造成的驻波分布,确定驻波系数、驻波最小点位置和波导波长等,以便计算各种待测参数。
(6)、指示器:指示检波电流的大小,对连续波信号、常用微安表、光点检流计等指示器。
微波技术实验指导书微波技术实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。
2.学会测量设备的使用。
二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2. 学习使用测量线四、基本原理:图1.1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。
常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。
本实验采用DH1121A型3cm固态信号源。
2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。
它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。
它具有极高的灵敏度和极低的噪声电平。
表头一般具有等刻度及分贝刻度。
要求有良好的接地和屏蔽。
选频放大器也叫测量放大器。
3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。
4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。
衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。
实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。
一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。
五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。
微波技术基础实验指导书电子信息工程学院微波技术基础实验课程组编2013.02实验一 微波测量系统的认识与调试一、实验目的与要求应用所学微波技术的有关理论知识,理解微波测量系统的工作原理,掌握调整和使用微波信号源的方法,学会使用微波测量系统测量微波信号电场的振幅。
了解有关微波仪器仪表,微波元器件的结构、原理和使用方法。
二、实验内容1.掌握下列仪器仪表的工作原理和使用方法三厘米标准信号发生器(YM1123)、三厘米波导测量线(TC26)、选频放大器(YM3892)。
2.了解下列微波元器件的原理、结构和使用方法波导同轴转换器(BD20-9)、E-H 面阻抗双路调配器(BD20-8)、测量线(TC26)和可变短路器(BD20-6)等。
三、实验原理本实验的微波测试系统的组成框图如图一所示图 1它主要由微波信号源、波导同轴转换器、E-H 面阻抗双路调配器、测量线和选频放大器主要部分组成。
下面分别叙述各部分的功能和工作原理,其它一些微波元器件我们将在以后的实验中一一介绍。
1.微波信号源(YM1123)1.1基本功能1.1.1提供频率在7.5~12.5GHz 范围连续可调的微波信号。
1.1.2该信号源可提供“等幅”的微波信号,也可工作在“脉冲”调制状态。
本系统实验中指示器为选频放大器时,信号源工作在1KHz “”方波调制输出方式。
信号源波导同轴转换器 单螺钉调配器 功率探头数字功率计 微波频率计 E-H 面调配器魔T定向耦合器 H 面弯波导 晶体检波器 测量线 选频放大器 可变衰减器1.2工作原理1.2.1本信号源采用体效应振荡器作为微波振荡源。
体效应振荡器采用砷化镓体效应二极管作为微波振荡管。
振荡系统是一个同轴型的单回路谐振腔。
微波振荡频率的范围变化是通过调谐S型非接触抗流式活塞的位置来实现的,是由电容耦合引出的功率输出。
1.2.2本信号源采用截止式衰减器调节信号源输出功率的强弱。
截止式衰减器用截止波导组成,其电场源沿轴线方向的幅度是按指数规律衰减。
实验一 微波发送系统电路组成及介绍一、实验目的1、了解射频前端发射器的基本结构与主要设计参数。
2、利用实验模组的实际测量了解射频前端发射器的特性。
二、原理分析微波电视传输系统是一套短距离、点对点的微波电视发送和接收系统,它将现场摄得的电视视频、音频信号以微波方式传送,再向电视中心站或有线电视站发送。
三、实验框图四、实验设备五、主要技术指标1. 一路电视图像信号和一路拌音信号。
系统可多路组合使用;2. 传输距离优于4km;(开阔无阻挡)图1-1微波电视传输系统方框图3. 工作频率S波段(2.1-2.7GHz),频率点可由用户选定;4. 发射机输出功率≥100mW;10 ;5. 频率稳定度:5×67. 视频输入/输出电平:1V(75Ω);8.视频调制方式:FM9. 音频输入/输出电平:2.2V(p-p) (600Ω不平衡);10.音频调制方式:FM-FM11.频带宽度:27MHz12. 微分增益:≤±3%;13. 微分相位:≤±2°;14. 工作电源:发射机:+12V一体化电池可充电电池连续工作10小时以上;六、实验步骤和方法⑴如图所示,接好视频信号发生器和微波调制器的发射支路,如有可能测量微波发射频谱特性。
⑵将接收支路连接好,在图像监视器上应能看到较大的调频雪花噪声颗粒。
⑶对接受机进行调谐,选择频道,首先调出图像信号,然后对伴音信号进行调谐,是伴音信号清晰悦耳。
⑷如图所示,按微波数字信号传输系统方框图进行连接,发射端接上数字信号发生器,接受端接上示波器观察接收数字信号波形。
七、实验预习要求1、预习放大器、滤波器、混频器和功率放大器的原理的理论知识。
2、预习放大器、滤波器、混频器和功率放大器的设计原理。
八、实验报告要求1、画出实验系统的连接方框图并叙述实验原理。
2、调谐不同的频段,观察输出端实验现象。
3、写出实验的心得体会。
实验二 微波接收系统电路组成及介绍一、实验目的1、了解射频前端发射器的基本结构与主要设计参数。
ElettrologiaOscillazioni e onde elettromagneticheOptica ondulatoria con microondeDIMOSTRAZIONE E ANALISI DI INTERFERENZA, DIFFRAZIONE E POLARIZZAZIONE DELLE MICROONDEUE3060300 03/18 UDFig. 1: Disposizione per la misurazione nella diffrazione delle microonde da doppia fendituraBASI GENERALIL’ottica ondulatoria considera la luce come onda trasver-sale ed elettromagnetica e ne spiega così l’interferenza, la diffrazione e la polarizzazione. Anche le microonde sono onde elettromagnetiche e presentano gli stessi fenomeni. La loro lunghezza d’onda è tuttavia notevol-mente maggiore di quella della luce visibile. Pertanto per esperimenti di ottica ondulatoria con microonde è possi-bile utilizzare oggetti di diffrazione e griglie di polarizza-zione, la cui struttura interna è riconoscibile a occhio nudo.Nell’esperimento, viene analizzata la diffrazione di microonde della lunghezza d’onda λ su una doppia fenditura, con una distanza tra le fenditure d di diversi centimetri. Si ottiene la distribuzione dell’intensità tipica della diffrazione da doppia fenditura (vedere la Fig. 5) con massimi al di sotto degli angoli αm , che soddisfano la condizione(1) ...,,,m ,dm 210sin m ±±=λ⋅=α L’intensità massima viene misurata esattamente quando il ricevitore si trova dietro il ponte centrale e non può venire irradiato direttamente dal trasmettitore. Questo fenomeno può essere spiegato mediante l’interferenza de lle onde separate dalle due fenditure e costituisce una prova significativa della natura ondulatoria delle microonde.Ruotando il ricevitore nella direzione del fascio, si dimostra la polarizzazione lineare delle microonde irradiate. Allineando in maniera incrociata trasmettitore e ricevitore, l’intensità misura-ta diminuisce fino a zero. Se nel percorso dei raggi si inseri-sce a meno di 45° una griglia di polarizzazione, il ricevitore riceve nuovamente un’onda, anche sedi ampiezza inferiore. La griglia fa passare la componente del vettore E della mi-croonda in arrivo, che oscilla parallelamente alla griglia di polarizzazione. Da qui a sua volta viene misurata la compo-nente che oscilla parallelamente al ricevitore.ELENCO DEGLI STRUMENTI1 Set microonde 9,4 GHz@230V 1009951 (U8493600-230) oppure1 Set microonde 10,5 GHz@115V 1009950 (U8493600-115) 1 Multimetro analogicoEscola 30 1013526 (U8557330)1 Paio di cavi di sicurezza peresperimenti 75 cm, rosso/blu 1017718 (U13816)MONTAGGIO∙Inserire la guida corta nella guida lunga (Fig. 2).∙Portare il sistema delle guide in posizione 0° (Fig. 3).∙Regolare il supporto della piastra sul quadrante, come mostrato in Fig. 3 e fissare con la vite senza testa.∙Impostare il trasmettitore a 170 mm sulla guida corta;impostare il ricevitore a 400 mm sulla guida lunga. Posi-zionare il trasmettitore e il ricevitore in modo che siano paralleli in orizzontale.∙Collegare il trasmettitore al jack “Sender” e il ricevitore al jack “Receiver” dell’apparecchio.∙Collegare il multim etro analogico al jack da 4 mm “Volt-meter” e selezionare 3 V di tensione continua come ran-ge di misurazione.Il multimetro analogico indica il segnale amplificato del ricevi-tore come tensione continua proporzionale (se la modulazio-ne è disattivata).∙Disattivare l’altoparlante e impostare il …Modulator“ su …0“.∙Collegare l’apparecchio alla rete elettrica utilizzando l’alimentatore a spina in dotazione: sarà subito pronto per l’utilizzo.∙Per amplificare il segnale del ricevitore, agire sul regola-tore …Amplification“ fino a che il multimetro analogico indi-cherà il valore massimo pari a 3 V. ESECUZIONEDiffrazione su doppia fenditura∙Spostare il trasmettitore in posizione 250 mm. Posiziona-re il trasmettitore e il ricevitore in posizione parallela in verticale.∙Bloccare la piastra con la doppia fenditura a metà della fessura del supporto della piastra, utilizzando la vite di fissaggio. Fig. 2: Inserimento della guida corta nella guida lungaFig. 3: Posizione 0° del sistema delle guideNotaFra il trasmettitore e la piastra con doppia fenditura si formano delle onde stazionarie.∙Piegare il trasmettitore leggermente a destra o sinistra, per consentire al multimetro analogico di visualizzare un valore massimo.∙Adeguare l’amplificazione del seg nale del ricevitore in modo che il multimetro analogico possa indicare nuova-mente 3 V.∙Tenere fermi con una mano la guida lunga e il ricevitore.Con l’altra mano, girare in senso anti-orario la guida cortae il trasmettitore, in modo che l’indicatore sulla guidalunga sia posizionato sul quadrante a 65°. Bloccare il trasmettitore in modo da mantenere la sua posizione sul-la guida. Inserire nella tabella 1 il valore dell’angolo a −65°.∙Leggere la tensione dal multimetro analogico e inserire il valore corrispondente nella tabella 1.∙Ripetere la misurazione con stadi di 2,5° fino a 0° e avanzando fino a +65°, ruotando la guida corta con il trasmettitore, in senso orario. Inserire tutti i valori nella tabella 1.Polarizzazione∙Preparare la configurazione in us cita (v. “Montaggio”).∙Posizionare il trasmettitore, il ricevitore e la griglia di polarizzazione come mostrato nelle Figg. 4a – f; di volta in volta, osservare le indicazioni del multimetro analogicoe annotare i dati rilevati.Fig. 4a: Disposizione parallela di trasmettitore e ricevitore Fig. 4b: Disposizione incrociata di trasmettitore e ricevitoreFig. 4c: Griglia di polarizzazione disposta in orizzontale fra il trasmettitore e il ricevitore disposti in orizzontale inparalleloFig. 4d: Griglia di polarizzazione disposta in verticale fra il trasmettitore e il ricevitore disposti in orizzontale inparalleloFig. 4e: Griglia di polarizzazione disposta in obliquo fra il trasmettitore e il ricevitore disposti in orizzontale inparalleloFig. 4f: Griglia di polarizzazione disposta in obliquo fra il trasmettitore e il ricevitore disposti incrociatiESEMPIO DI MISURAZIONETab. 1: Diffrazione delle microonde su doppia fenditura. Ten-sioni rilevate a seconda dell’angolo di rotazioneANALISIDiffrazione su doppia fenditura ∙Sottrarre dalle tensioni rilevate U (Tab. 1) eventualmente l’Offset (in questo caso: 0,30 V), (2) off '0,30V U U U U =-=-, normalizzare al valore a α = 0°,(3) max max off '2,95V 0,30V 2,65V U U U =-=-=, e rappresentare graficamente i valori risultanti U ´ / U ´max a seconda dell’angolo α (Fig. 5). ∙Identificare i valori massimi con l’attribuzione della diffra-zione corrispondente m e inserirli nella tabella 2 insieme agli angoli αm .∙Per ognuno, calcolare il sinusoidale dell’angolo αm e inserirlo nella tabella 2.Tab. 2: Posizione dei massimi di intensità in funzionedell’ordine di diffrazione m∙Riportare gli angoli αm dei massimi di diffrazione in un diagramma sin αm – m inversamente rispetto all’ordine di diffrazione m (Fig. 6).I valori misurati si trovano su una retta di origine, il cui incre-mento a corrisponde al quoziente λ/d, in base all’equazione (1). Con una distanza tra fenditure d = 10,5 cm, risulta con la lunghezza d'onda λ e la frequenza f delle microonde:(4) 80,30210,5cm 3,17cm m310s 9,5GHz 3,17cma a d dc f λ=⇔λ=⋅=⋅=⇒⋅===⋅λ. Il valore coincide fino all’1% con il valore nominale f = 9,4 GHz.Fig. 5: Distribuzione dell’intensità nella diffrazione dellemicroonde da doppia fenditura. Le linee tratteggiate facilitano la visualizzazione.Fig. 6: Posizione dei massimi di intensità in funzione dell’ordine di diffrazione m PolarizzazioneSe il trasmettitore e il ricevitore sono posizionati in parallelo (Fig. 4a), il multimetro analogico indica come tensione mas-sima, con disposizione incrociata, (Fig. 4b) lo zero. Le microonde trasmesse sono onde trasversali a polarizzazione lineare.Se la griglia di polarizzazione è posizionata in orizzontale fra il trasmettitore e il ricevitore a loro volta in orizzontale e paralle-lo (Fig. 4c), il multimetro analogico indica come tensione massima, con disposizione verticale, (Fig. 4d) lo zero. La griglia di polarizzazione agisce da filtro di polarizzazione.Se la griglia di polarizzazione è disposta in obliquo fra il tras-mettitore e il ricevitore a loro volta in parallelo (Fig. 4e) o in-crociati (Fig. 4f), il multimetro analogico indica delle tensioni comprese fra lo zero e la tensione massima. La griglia fa passare la componente del vettore E della microonda in arri-vo, che oscilla parallelamente alla griglia di polarizzazione. Da qui a sua volta viene misurata la componente che oscilla parallelamente al ricevitore.3B Scientific GmbH, Rudorffweg 8, 21031 Amburgo, Germania, 。
微波技术实验指导书1实验要求一、预习要求:实验前必须充分预习,完成指定的预习任务。
1.认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的计算。
2.复习实验中所用各仪器的使用方法及注意事项。
3.熟悉实验任务,完成各实验“预习要求”中指定的内容,写好预习报告。
二、实验要求:1.使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。
2.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。
找出原因、排除故障后,经指导教师同意再继续实验。
3.在进行微波测试时,终端尽量不要开口,以防止微波能量泄露。
4.实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波形、现象)。
所纪录的实验结果经指导教师审阅签字后再拆除实验线路。
5.实验结束后,必须关断电源,并将仪器、设备、工具等按规定整理。
6.实验后每个同学必须按要求独立完成实验报告并按时上交。
实验一、微波传输线频率和波长的测量一、实验目的1.学会使用基本微波器件。
2.了解微波振荡源的基本工作特性和微波的传输特性。
3.学习利用吸收式测量频率和波长的方法;4.掌握用测量线来测量波长和频率的方法。
二、实验原理1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波传输线,并用TE10波型。
波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。
2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。
当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。
微波技术基础实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。
2.学会测量设备的使用。
二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2.学习使用测量线四、基本原理:图1。
1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。
常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。
本实验采用DH1121A型3cm固态信号源。
2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。
它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。
它具有极高的灵敏度和极低的噪声电平。
表头一般具有等刻度及分贝刻度。
要求有良好的接地和屏蔽。
选频放大器也叫测量放大器。
3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。
4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。
衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。
实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。
一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。
五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。
《微波技术》实验指导书第一章《微波技术实验》教学大纲课程编号:06080703213 课程属性:专业必修课学时:12学时学分:1学分开课学期:第五学期先修课程:高频电路适用专业:通信工程课程简介:《微波技术实验》是一门实践性都很强的专业必修课。
本课程主要是使用ADS、HFSS等设计软件进行微波电路的设计与仿真,使用微波测试仪器进行微波特性参数的测量及微波通信系统的组装、调试。
通过该实验课的基本训炼,使学生初步具备微波实验基本知识,掌握常用微波测试仪器、器件的原理和使用方法,掌握常见微波系统的测量方法和常用微波特性参数的测量,具备初步的处理实验故障的能力。
一、实验项目设置及学时分配二、实验内容及教学要求实验项目1:标量网络分析仪的构成及电压驻波比的测试1、教学内容(1)标量网络分析仪的构成原理。
(2)频谱仪的基本操作。
(3)电压驻波比、回波损耗等概念。
(4)使用标量网络分析仪进行电压驻波比测试方法。
2、教学目标(1)掌握频谱仪校准、信号跟踪源参数的设置过程。
(2)掌握使用标量网络分析仪进行电压驻波比测试方法。
(3)掌握插损校准与端口损耗校准的方法。
实验项目2:微波定向耦合器的原理与测试1、教学内容(1)定向耦合器的每个端口的含义。
(2)耦合度、隔离度的定义。
(3)定向耦合器的分类与基本原理。
(4)耦合度、隔离度、驻波比的测试方法。
2、教学目标(1)掌握耦合度、隔离度的概念。
(2)了解定向耦合器的分类与基本原理。
(3)掌握耦合度、隔离度、驻波比的测试原理。
实验项目3:用ADS软件设计阻抗匹配网络1、教学内容阻抗匹配网络的设计原理。
(1)/4(2)并联单端短路微带线匹配网络的设计原理。
(3)并联单端开路微带线匹配网络的设计原理。
(4)ADS软件的基本操作方法。
(5)使用ADS软件进行阻抗匹配网络设计。
2、教学目标(1)了解ADS的基本操作。
(2)理解阻抗匹配网路的设计原理。
(3)熟练掌握使用ADS设计阻抗匹配网路。
实验要求一、预习要求:实验前必须充分预习,完成指定的预习任务。
1.认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的计算。
2.复习实验中所用各仪器的使用方法及注意事项。
3.熟悉实验任务,完成各实验“预习要求”中指定的内容,写好预习报告。
二、实验要求:1.使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。
2.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。
找出原因、排除故障后,经指导教师同意再继续实验。
3.在进行微波测试时,终端尽量不要开口,以防止微波能量泄露。
4.实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波形、现象)。
所纪录的实验结果经指导教师审阅签字后再拆除实验线路。
5.实验结束后,必须关断电源,并将仪器、设备、工具等按规定整理。
6.实验后每个同学必须按要求独立完成实验报告并按时上交。
实验一、微波传输线频率和波长的测量一、实验目的1.学会使用基本微波器件。
2.了解微波振荡源的基本工作特性和微波的传输特性。
3.学习利用吸收式测量频率和波长的方法;4.掌握用测量线来测量波长和频率的方法。
二、实验原理1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波型。
波传输线,并用TE10波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。
2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。
当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。
实验一 微波基础计算器与MWO 软件熟悉一、 实验目的1. 掌握传输线(长线)基本理论;2. 熟练掌握Smith 圆图的工作原理;3. 熟练使用微波技术基础计算器计算单枝节线匹配。
4. 熟悉MWO 软件界面和基本操作。
二、 实验原理微波技术基础计算器是以微波计算为基础的进行专业计算的工具。
实现了微波技术基础理论中长线(传输线)理论、Smith 圆图、网络理论等部分的计算。
此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith 圆图的绘制;任意长线和负载的单枝节匹配;双口网络S 、Z 、Y 、A 参数的相互转换。
1、长线理论基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么?)电压波与电流波(入射与反射)关系:()()()1()()()[]ββββ+--+-+--+-=+=+=+=-j z j zj z j z V z V z V z V e V e I z I z I z V e V e Z 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数β和特性阻抗Z 0。
传输线理论三套参量:输入阻抗Z in ,反射系数Γ,驻波参量(驻波系数ρ和最小距离l min )三套参量间的换算关系:000tan()()()tan()()l in l Z jZ l V z Z z Z Z jZ l I z ββ+==+ 00()()()()()j in in Z z Z V z z e Z z Z V z θ-+-Γ==Γ=+ max min min min 11(0)442g ggl V V l l ρλλλθπ+Γ==-Γ=+≤≤三套参量同时一个单位圆内表示1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面;2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动3)驻波系数在反射系数复平面上也是同心圆,4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。
微波的技术实验指导书(⼆)实验⼀三厘⽶波导测量系统⼀、系统结构框图图1-1 三厘⽶波导测量系统备注:三厘⽶隔离器⽤在精密测量中,⽽在⼀般测量中可以不加,因为在YM1123中有⼀个隔离器。
本章后续的六个实验均是基于该结构展开的,下⾯将对结构中的仪器进⾏⼀⼀介绍。
⼆、仪器、器件介绍本套系统主要⽤于测量微波在波导中传输时的⼀些基本参数,如波导波长、反射系数、阻抗及功率等。
主要⽤到的仪器为:YM1123微波信号发⽣器、波导测量线、⼩功率计、频率计、选频放⼤器、波导功率探头以及各种波导元件。
下⾯分别进⾏介绍:(⼀)YM1123微波信号发⽣器YM1123微波信号发⽣器是⼀款固态信号源,主要基于某些半导体材料(如砷化镓)的体效应来实现振荡的,具有功率⼤、稳定可靠等特性。
整体结构由⾼频部分、调制器部分、功率显⽰部分(对100uW的功率作相对指⽰)、频率显⽰部分及衰减显⽰部分、⼯作状态控制部分、电源部分六⼤件组成,其中⾼频部分负责产⽣7.5GH z~12.4GHz的微波信号,调制部分负责产⽣⼀系列脉冲信号,采⽤PIN调制器来实现微波信号的脉冲幅度调制。
其⾯板调节控制机构如下所⽰:1. ⾯板调节控制机构(1)电源开关位置。
(2)⼯作状态开关:按移动键可改变⼯作状态,指⽰灯也相应改变。
⼯作状态有:等幅(=,⽤于测量校准衰减器在100uW时0dB定标)、内调制(分⽅波和脉冲两种)、外调制(外输⼊脉冲信号,具有极性变换功能)及外整步。
(3)“调谐”旋钮调节可改变输出频率。
(4)“调零”旋钮调节可改变电表电⽓调零。
(5)“衰减调节”旋钮可控制输出功率⼤⼩。
反时针调节,信号输出增⼤,衰减显⽰减⼩;顺时针调节,信号输出减⼩,衰减显⽰增⼤。
(6)“衰减调零”为100uW基准0dB校准。
(7)“×1、×10”开关:调制信号重复频率开关。
(8)“重复频率”旋钮调节可改变调制信号重复频率。
(9)“脉宽”旋钮调节可改变调制信号脉冲宽度。
微波实验微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特点图1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。
(北京大华无线电仪器厂)5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。
微波技术试验报告姓名:学号:指导教师:秦月梅时间:实验一 短路线、开路线、匹配负载S 参量的测量一、实验目的1、通过对短路线、开路线的S 参量S 11的测量,了解传输线开路、短路的特性。
2、通过对匹配负载的S 参量S 11及S 21的测量,了解微带线的特性。
二、实验原理S 参量网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。
微波频段通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量,例如[Y]、[Z],电压驻波比及反射损耗等。
一个二端口微波元件用二端口网络来表示,如图1-1所示。
图中,a 1,a 2分别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口“2”向外的反射波。
对于线性网络,可用线性代数方程表示。
b 1=S 11a 1+S 12a 2 (1-1) b 2=S 21a 1+S 22a 2 写成矩阵形式:⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡a a S S S S b b 212212211121 (1-2)式中S 11,S 12,S 21,S 22组成[S]参量,它们的物理意义分别为 S 11=11a b 02=a “2”端口外接匹配负载时,“1”端口的反射系数 S 21=12a b 02=a “2”端口外接匹配负载时,“1”端口至“2”端口的传输系数 S 12=21a b 01=a “1”端口外接匹配负载时,“2”端口至“1”端口的传输系数 S 22=22a b 01=a “2”端口外接匹配负载时,“1”端口的反射系数对于多端口网络,[S]参量可按上述方法同样定义,对于互易二端口网络,S12=S21,则仅有三个独立参量。
三、实验仪器及装置图1模组编号:RF2KM1-1A (OPTN/SHORT/THRU CAL KIT) 2模组内容:3 RF2000测量主机:一台4 PC机一台,BNC连接线若干四、实验内容及步骤(一)开路线(MOD-1A)的S11测量(1)将RF2000与PC机通过RS232连接,接好RF2000电源,开机。
微波实验项目实验八.系统调整:认知测试系统各器件仪器功能及使用方法频率检查:掌握吸收式频率计使用方法λg (波导波长)测试:验证λg与λ理论公式实验九.阻抗测量:了解测量阻抗的方法实验十.衰减测量:掌握功率比较法及高频替代法技术定向耦合器性能测试:运用掌握的知识,进行微波器件性能的测量实验十一.角锥天线测量:了解角锥天线的特征及测试,掌握天线场基本知识功率测量应用:运用已学知识,扩展测量应用YS937/939微波实验指导微波测试系统基本连接图YS937系列YS939系列信号源改成YS1125信号发生器(8.6~9.6GHz),连接系统相同。
信号源隔离器频率计可变衰减器选频放大器测量线匹配负载短路板功率计可变短路器测量面信号源YS1124YS1125实验八系统调整,频率检查,波导波长测量内容1.系统调整,频率检查一、实验目的1.了解测试系统的组成及正确使用方法2.了解微波信号源的工作方式和信号检测3.用吸收式频率计测量工作频率f二、原理简述1.探针电路调谐:当波导中存在不均匀性或负载不匹配时,波导中将出现驻波。
测量驻波特性的仪器为驻波测量线(简称测量线)。
探针调节的方法是将探针穿透深度放在适当位置(通常在1.5~2mm,出厂时已调整并加锁定套)。
然后调节探头的调谐活塞(侧立小园盘)使选放指示最大,调谐的过程就是减小探针反射对驻波图形的影响和提高测量系统灵敏度的过程,这是减小驻波测量误差的关键,必须认真调整。
另外当改变信号发生器频率或探针插入深度时,由于探针电纳Yp相应改变,必须重新进行探针调谐。
2.信号源方波调制及选频放大器功能利用:为了便于观察及分析信号量化,在微波信号源中调制1kHz方波,经检波后输入到选频放大器中(选放相当于1kHz频率,16Hz带宽,0~60dB增益的放大器)。
其表头上有0~1000刻度,电流量(α值)及0~10dB的分贝值及驻波比1~4及4~10二档的刻度值,可不需要计算而直接读出,大大省略了测量步骤。
.微波技术基础实验指导书郭伟陈柯编华中科技大学电信系前言与更早时期定位在波导与场论相比,现代微波工程中占支配地位的内容是分布电路分析。
当今大多数微波工程师从事平面结构元件和集成电路设计,无需直接求助于电磁场分析。
当今微波工程师所使用的基本工具是微波CAD(计算机辅助设计)软件和网络分析仪,而微波技术的教学必须对此给出回应,把重点转移到网络分析、平面电路和元器件以及有源电路设计方面。
微波技术仍总离不开电磁学(许多较为复杂的CAD软件包要使用严格的电磁场理论求解),而学生仍将从揭示事物的本质中受益(诸如波导模式和通过小孔耦合),但是把重点改变到微波电路分析和设计上这一点是不容置疑的。
微波与射频(RF)技术已蔓延到了各个方面。
在商业等领域,更是如此,其现代应用包括蜂窝电话、个人通信系统、无线局域数据网、车载毫米波防撞雷达、用于广播和电视的直播卫星、全球定位系统(GPS)、射频识别标识(identification tagging)、超宽频带无线通信和雷达系统以及微波环境遥感系统。
防卫系统继续大量地依靠微波技术用于无源和有源测向、通信以及武器操控系统。
这样的业务发展态势意味着,在可预见的将来,在射频和微波工程方面不存在缺少挑战性的课题;同时对于工程师们,显然需要领悟微波技术的基本原理,同样需要把这些知识应用于实际感兴趣问题的创造能力。
本微波技术基础教学实验的设置,就是为了使学生通过实验更多地获得有关微波器件的基本构成、工作原理、模拟分析、测试仪器和测量技能方面的理性和感性认识,真正掌握时域和频域、传输线、微波电路等基本的概念,并学会使用重要的微波测试仪器。
实验一矢量网络分析仪的使用及传输线的测量一实验目的1.学习矢量网络分析仪的基本工作原理;2.初步掌握AV3620矢量网络分析仪的操作使用方法;3.掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数;4.通过测量认知1/4波长传输线阻抗变换特性。
二实验原理1. 矢量网络分析仪的工作原理现代微波工程中占支配地位的是应用网络分析方法将微波电路看作是微波网络,用散射参数(S参数)来描述微波电路的性能。
S参数表达的是功率波,是用入射功率波和反射功率波的方式定义微波网络的输入输出关系,因此两端口网络S参数的测量需要涉及功率波在两个端口的反射和传输。
而现代微波工程中测量微波电路S参数最常用的设备就是矢量网络分析仪,它是一种可以测量微波信号幅度和相位的仪器。
通过测量S参数,矢量网络分析仪可测得微波电路和器件的反射特性和传输特性,其主要组成部分包括合成信号源、S 参数测试装置、幅相接收机和显示部分。
矢量网络分析仪的信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。
图1-1 说明了测试信号通过待测器件(DUT)后的响应。
图1-1 DUT对信号的响应以我们现在使用的AV3620矢量网络分析仪为例,其原理框图如图1-2 所示:合成信号源产生30k~3GHz 的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。
图1-2 AV3620 型矢网整机原理框图AV3620矢网的工作原理如下,由内置合成信号源产生30k~3GHz 的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S 参数测试装置进行分离,R、A、B 三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和锁相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz 的中频信号中,此中频信号经A/D 变换器转换为数字信号,嵌入式计算机和数字信号处理器(DSP)从数字信号中提取被测网络的幅度信息和相位信息,通过比值运算求出被测网络的S 参数,最后把测试结果以图形或数据的形式显示在液晶屏幕上。
图1-3 AV3620 型矢网整机内部结构框图◆合成信号源:由30k~3GHz YI-G 振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。
◆测试装置:由定向耦合器和开关构成,用于分离反射信号和入射信号。
◆接收机:由取样/混频器、中频处理和数字信号处理等部分组成,用于信号的下变频及中频数字信号处理。
◆显示:由图形处理器、高亮度LCD 显示器、逆变器组成,用于字符和图形的高亮度、高速显示。
2. AV3620矢量网络分析仪简介2.1 结构特征我们实验使用的是四十一所生产的一体化矢量网络分析仪AV3620,本节将介绍AV3620的前面板和后面板的基本按键与接口的设置说明。
图1-4 AV3620矢网前面板图1. 前面板a) LCD 液晶显示器(1)AV3620 采用高亮度、8.4 英寸LCD 显示器,能迅速、清晰地显示测量曲线、数据、光标、极限线、软键菜单等。
b)硬键(2)硬键即前面板按键,在文本中这些键由键名加【】来描述。
如【Preset】c) 通道键(3)该键区共有四个显示通道按键,可以通过分别按下这四个键来选择显示通道。
d) 数字小键盘(4)数字小键盘可以用来键入具体数值,在结束数字输入时可使用输入键或软键给数字选择适当的单位,同时也可使用前面板旋钮来调节参数值,或用“↑”“↓”步进键来逐步地改变参数值。
e)旋钮键(5)该旋钮为旋转脉冲发生器,通过旋转该旋钮可以改变设置的参数。
f) 复位键(6)按下此键将使网络仪复位到工厂复位状态或已改动并存储过的用户复位状态。
g)仪器状态键区(7)仪器状态键区共有五个按键,分别是System、Local、Copy、Save/Recall、Seq,能设定整机系统功能,包括仪器功能预置、保存/调用、硬拷贝输出等等。
h) 返回键(8)按下该键将返回上一级命令菜单。
i) 软键 (9)软键为8 个空白键,列在网络仪相对应的屏幕边上。
在本文中,这些键用键名加[ ]来描述。
如:[SWEEP TIME] 。
j) 电源开关 (10)k) 软盘驱动器 (11)2 后面板图1-4提供了后面板的外形图,后面板主要提供外围接口功能。
图1-5 AV3620矢网前后板图2.2 性能指标本节主要介绍AV3620的性能指标及技术参数。
1 频率特性2 源功率3 测试端口平均噪声电平4 接收机损毁电平: 26dBm 或30VDC5 全二端口校准后动态范围6 全二端口校准后系统指标7 显示分辨力8 显示幅度范围和显示相位范围9 测量域AV3620射频一体化矢量网络分析仪可在两种域内进行测量: 频域和时域。
10 测量格式AV3620射频一体化矢量网络分析仪有下列测量格式:a)笛卡尔坐标:对数幅度、线性幅度、相位、群延迟、驻波比、复数参数实部和虚部。
b)史密斯圆图:对数幅度、线性幅度、阻抗 R+jX 或导纳 G+jB 。
c)极坐标:对数幅度、线性幅度、相位、实部和虚部。
11 显示通道和参数AV3620射频一体化矢量网络分析仪有四个可供选择的通道:通道1、通道2、通道3 和通道4,四个通道可同时显示,既可叠加显示,也可分开显示。
每一个通道可独立显示S11、S21、S12 和S22 四个基本S 参数。
12 测量点数AV3620射频一体化矢量网络分析仪每次扫频的测量点数有10 种选择:3、11、21、26、51、 101、201、401、 801 和1601 个点。
在频率列表方式下, 测量点数在 1 到 1601点内任意选择。
13 扫描模式AV3620射频一体化矢量网络分析仪有五种扫描模式:a) LIN FREQ 线性频率模式;b) LOG FREQ 对数频率模式;c) LIST FREQ 频率列表模式;d) POWER SWEEP 功率扫描模式;e) CW TIME 点频时间模式。
14 平均因子平均因子范围: 1 ~ 999 。
15 平滑度平滑度为测量曲线宽度的 0.05%到 20%。
2.3 常用操作说明1)当AV3620开机后,显示屏默认以直角坐标的方式显示,纵轴的参数为所测量的S参数,横轴的参数为频率,默认频率范围为最大频率量程30k~3GHz。
按下【start】键可以设置扫频的起始频率,按下后,显示屏左上方会显示当前起始频率,要改变的话通过按数字键加上相应的单位键【G/n】、【M/u】、【k/m】来设置频率,上面三个单位键分别对应GHz、MHz、kHz。
类似,按【stop】键设置扫频的终止频率,设置方法与起始频率相同。
2)按【power】键设置矢网合成源的功率大小,按下后,显示屏右上方会显示当前功率大小,如果要改变的话,按数字键加上【×1】键设置功率大小,单位是dBm。
注意,由于功率一遍设置为0dBm 以下,所有在数字键前记得按【-】键设置功率dBm数为负数。
3)【measure】键选择测量参数,按下后显示屏的软键菜单会显示[S11]、[S12]、[S21]、[S22]四个待选测试参数,通过按下相应软键来选择要测量的S参数。
4)【format】键选择参数显示格式,按下后显示屏的软键菜单会显示[LOG MAG]、[PHASE]、[DELAY]、[SMITH CHART]、[POLAR]、[LIN MAG]、[SWR] ,分别表示以对数幅度、相位、群延迟、史密斯圆图、极座标、线性幅度、驻波比的形式显示测量参数,通过按下相应软键来选择要显示的测量格式。
5)按下【marker】键就会在显示屏上的测试曲线上显示光标,对应显示屏的软键菜单处会显示光标编号[1]、[2]、[3]、[4]、[5],按下相应软键会显示对应编号的光标,默认会显示1号光标。
通过旋转旋钮键就会移动光标的位置,而在显示屏右上角会显示光标对应位置的频率和测量值。
而通过数字键输入频率值也可以确定光标的位置。
3. 微带传输线的基本结构微带传输线目前是混合微波集成电路和单片微波集成电路使用最多的一种微波平面型传输线。
它可用作光刻程序制作,且容易与其它无源微波电路和有源微波电路器件集成,实现微波部件和系统的集成化。
微带线可以看作是由双导线传输线演变而成的,如图2-1所示。
实际的微带线结构如图2-2所示。
导体带(其宽度为w,厚度为t)和接地板均由导电良好的金属材料(如银,铜,金)构成,导体带与接地板之间填充以介质基片,导体带与接地板的间距为h 。
图1-6 双导线演变成微带线图1-7 微带线的结构及其场分布4. 微带传输线的参数 4.1 特性阻抗若微带线是被一种相对介电常数为εr 的均匀介质所完全包围着,并把准TEM 模当作纯TEM 模看待,并设L 和C 分别为微带线单位长度上的电感和电容,则特性阻抗为z c =C L =Cv p 1相速v p 为v p =LC1=εrv 0但实际上的微带线是含有介质和空气的混合介质系统,因此不能直接套用上面的公式求特性阻抗。