北师大版数学高一必修3教案1.4.1平均数、中位数、众数、极差、方差4.2标准差
- 格式:doc
- 大小:127.50 KB
- 文档页数:8
4.1 平均数、中位数、众数、极差、方差4.2 标准差[学习目标]1.掌握各种基本数字特征的概念、意义以及它们各自的特点.2.要重视数据的计算,体会统计思想.知识点一 众数、中位数、平均数 1.众数、中位数、平均数定义(1)众数:一组数据中重复出现次数最多的数.(2)中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数称为这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )称为这n 个数的平均数.2.三种数字特征与频率分布直方图的关系1.标准差(1)平均距离与标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ),则用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)计算标准差的步骤 ①求样本数据的平均数x ;②求每个样本数据与样本平均数的差x i -x (i =1,2,…,n ); ③求(x i -x )2(i =1,2,…,n );④求s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];⑤求s =s 2,即为标准差. 2.方差标准差的平方s 2叫作方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.题型一 众数、中位数、平均数的简单运用例1 某公司的33名职工的月工资(以元为单位)如下表:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法. 解 (1)平均数是:x =1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元),中位数是1 500元,众数是1 500元. (2)新的平均数是x ′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元),新的中位数是:1 500元,新的众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.反思与感悟 1.众数、中位数及平均数都是描述一组数据集中趋势的量,当一组数据中个别数据较大时,可用中位数描述其集中趋势,当一组数据中有不少数据重复出现时,其众数往往更能反映问题.2.在求平均数时,可采用新数据法,即当所给数据在某一常数a 的左右摆动时,用简化公式:x =x ′+a .跟踪训练1在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表格里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是 1.70;这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m).答 17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m. 题型二 平均数和方差的运用例2 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据为甲:9910098100100103 乙:9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1. (2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.反思与感悟 1.极差、方差与标准差的区别与联系: 数据的离散程度可以通过极差、方差或标准差来描述.(1)极差是数据的最大值与最小值的差,它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.(2)方差则反映了一组数据围绕平均数波动的大小,为了得到以样本数据的单位表示的波动幅度通常用标准差,即样本方差的算术平方根,是样本数据到平均数的一种平均距离. 2.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,质量越稳定.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:10210199981039899乙:110 115 90 85 75 115 110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样.(2)x 甲=17(102+101+99+98+103+98+99)=100;x 乙=17(110+115+90+85+75+115+110)=100;x 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.题型三 数据的数字特征的综合应用例3在一次科技知识竞赛中,两组学生的成绩如下表:次竞赛中的成绩谁优谁劣,并说明理由.解(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组成绩好些.(2)x甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80,x乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4 000=80.s2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,所以乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.反思与感悟要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本例的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.跟踪训练3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.3425.4225.4525.3825.42 25.3925.4325.3925.4025.44 25.4025.4225.3525.4125.39 乙25.4025.4325.4425.4825.48 25.4725.4925.4925.3625.34 25.3325.4325.4325.3225.47 25.3125.3225.3225.3225.48从生产的零件内径的尺寸看,谁生产的质量较高?(结果保留小数点后3位) 解 用计算器计算可得 x 甲≈25.405,x 乙≈25.406; s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40mm),差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径尺寸比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.分类讨论思想例4某班有四个学习小组,各小组人数分别为10,10,x,8,已知这组数据的中位数与平均数相等,求这组数据的中位数.分析 由于x 未知,因此中位数不确定,需讨论.解 该组数据的平均数为14(10+10+x +8)=14(28+x ),中位数是这4个数按从小到大的顺序排列后处在最中间两个数的平均数.(1)当x ≤8时,原数据从小到大排序为x,8,10,10,中位数是9,由14(28+x )=9,得x =8,符合题意,此时中位数是9;(2)当8<x ≤10时,原数据从小到大排序为8,x,10,10,中位数是12(x +10),由14(28+x )=12(10+x ),得x =8,与8<x ≤10矛盾,舍去;(3)当x >10时,原数据从小到大排序为8,10,10,x ,中位数是10,由14(28+x )=10,得x =12,符合题意,此时中位数是10.综上所述,这组数据的中位数是9或10.解后反思 当题目中含有参数,且参数的不同取值影响求解结果时,需对参数的取值分类讨论.1.下列选项中,能反映一组数据的离散程度的是() A .平均数B .中位数 C .方差D .众数 答案 C解析 由方差的定义,知方差反映了一组数据的离散程度.2.一组样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 等于()A .21B .22C .20D .23 答案 A解析 根据题意知,中位数22=x +232,则x =21.3.一次选拔运动员的测试中,测得7名选手中的身高(单位:cm)分布的茎叶图如图所示.记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,则x 等于()A .5B .6C .7D .8 答案 D解析 由题意知,10+11+0+3+x +8+9=7×7,解得x =8.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 答案0.1解析x -=4.7+4.8+5.1+5.4+5.55=5.1,则方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.5.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7(2)2解析 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)∵s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序. 2.利用直方图求数字特征: (1)众数是最高的矩形的底边的中点. (2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.。
《数据的数字特征》教学设计一、教学背景分析在初中学生已经学习过了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
二、教学目标1知识与技能(1)能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息。
(2)通过实例理解数据标准差的意义和作用,学会计算数据的标准差。
2过程与方法在实际问题中,可以学会用合适的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。
3情感、态度与价值观通过对现实生活和其他学科中统计问题的分析和解决,体会用数学知识解决现实生活及各学科问题的方法,认识数学的重要性。
三、教学重难点重点:能够计算数据的标准差,并理解掌握各个统计量的计算和意义作用。
难点:根据给定的数据,合理地选择统计量表示数据。
四、教学过程1、复习回顾利用一些实际生活的数据统计图片让学生回顾条形统计图、折线统计图、扇形统计图和茎叶图,并对他们适用的范围和作用掌握2、新知引人数据的特征除了利用统计图表外,还可以利用一些统计量来表示,比如:平均数、中位数、众数和极差、方差、标准差等来表示。
问题1:什么是平均数?它的意义是什么?解析:平均数就是一组数据的平均,代表该组数的平均水平。
设有n 个数据1 ,2, …,n,则这组数据的平均数为:问题2:什么是中位数?它的意义是什么?解析:中位数是一组数据按照从小到大顺序排列时处于中间位置的数(或中间两个数的平均数)当一组数据中的个别数据变动较大时,可用中位数来描述其集中趋势 问题3:什么是众数?它的意义是什么?解析:众数是一组数据中出现次数最多的数.反映了数据的集中趋势问题4:什么是极差?它的意义是什么?解析:极差是一组数据中最大数与最小数之间的差.反映该组数据差异情况 问题5:什么是方差?它的意义是什么?解析:方差是一组数据中所有数与平均数的差的平方和的平均数.反映了数据的波动情况方差越大,数据的离散程度越大;方差越小,1,2,…,n ,这组数据的方差为: 问题6:什么是标准差?它的意义是什么?解析:标准差就是一组数据中所有数与平均数的差的平方和的平均数的算术平方根可以刻画数据的稳定程度3、巩固新知例1:这是本届世界杯第一轮比赛结果,计算该届世界杯一场比赛进球数的平均数、nx x x x n+++= 21nx x x x x x s n 222212)()()(-++-+-= 1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] S =中位数、众数、极差、方差及标准差。
§1.5数据的数字特征一、教学背景分析:在初中阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征.二、教学目标:1、能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力.2、通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.三、教学重、难点教学重点:平均数、中位数、众数、极差、方差、标准差的计算、意义和作用.教学难点:根据问题的需要选择适当的数字特征来表达数据的信息.四、设计思路1、教法构想:本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差、标准差的计算、意义和作用.通过具体的实例,让学生理解数字特征的意义,并能选择适当的数字特征来表达数据的信息.2、学法指导:学生自主探究,交流合作,教师归纳总结相结合.五、教学实施(一)、 导入新课提出问题:1.高一年级1班和2班的男生在100米短跑测试后, 两个班各随机抽取10名男生, 成绩如下(单位:秒):问哪个班男生100米短跑平均水平高一些?2.对划艇运动员甲、乙两人在相同的条件下进行6次测试, 测得他 们最大速度(m/s)的数据如下:试比较这两名划艇运动员谁更优秀?(学生思考交流). 教师点出课题:数据的数字特征 (二)、推进新课 Ⅰ、新知探究提出问题:1、什么叫平均数?有什么意义?2、什么叫中位数?有什么意义?3、什么叫众数?有什么意义?4、什么叫极差?有什么意义?5、什么叫方差?有什么意义?6、什么叫标准差?有什么意义? 讨论结果:1、一组数据的和与这组数据的个数的商称为这组数据的平均数.数据12,,,n x x x 的平均数为12nx x x x n+++=.平均数对数据有“取齐”的作用,代表该组数据的平均水平.2、一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据的中位数是唯一的,反映了数据的集中趋势.3、一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势.4、一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.5、方差是样本数据到平均数的平均距离,一般用2s 表示,通常用公式2222121[()()()]n s x x x x x x n=-+-++-来计算.反映了数据的离散程度.方差越大,数据的离散程度越大.方差越小数据的离散程度越小. 6、标准差等于方差的正的平方根,即s =描述一组数据围绕平均数的波动程度的大小. Ⅱ、应用示例例1 某公司员工的月工资情况如表所示:(1)、分别计算该公司员工月工资的平均数、中位数、和众数. (2)、公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经计算可以得出:该公司员工月工资的平均数为1373元,中位数为800元,众数为700元.(2)、公司经理为了显示本公司员工的收入高,采用平均数;而税务官希望取中位数,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数,因为每月拿700元的员工最多.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心;当变量是分类变量时,众数往往经常被使用.变式训练:1、下表是某班40名学生参加“环保知识竞赛”的得分统计表:请参照这个表解答下列问题:(1)用含x ,y 的式子表示该班参加“环保知识竞赛”的班平均分f ;(2)若该班这次竞赛的平均分为2.5分,求,x y 的值.解:(1)355940x y f ++=;(2)依题意,有354111{x y x y +=+=解得74{x y ==例2.在上一节中, 从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示. 如图所示:(1)甲、乙两组数据中的中位数、众数、极差分别是多少?(2)你能从左图中分别比较甲、乙两组数据平均数和方差的大小吗? 例3 甲、乙两台机床同时生产直径是40mm的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差. 解:从数据容易得到甲、乙两台机床生产的这10件产品直径的平均.值40()x x mm==乙甲我们分别计算它们直径的标准差:==0.161()s mm甲(39.90.077()=+-=s mm乙由上面的计算可以看出:甲、乙两台机床生产的产品直径的平均值相同,而甲机床生产的产品直径的标准差为0.161mm,比乙机床的标准差0.077mm大,说明乙机床生产的零件更标准些,即乙机床的生产过程更稳定一些.点评:对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度. Ⅲ、知能训练1、下列说法正确的是(D )A.甲、乙两班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样.B.期末考试数学成绩的方差甲班比乙班小,这表明甲班的数学学习情况比乙班好.C.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好.D.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好.2、甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:甲的成绩:乙的成绩:丙的成绩:123s s s 、、分别表示甲、乙、丙三名射箭运动员这次测试成绩的标准差,则有(C )A.123s s s >>B.312s s s >>C.213s s s >>D.231s s s >>3、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是 -3 Ⅳ、拓展提升甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm )问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐? 解:(1)30()x cm =甲,31()x cm =乙 x x ∴<乙甲,即乙种玉米的苗长得高. (2)222222104.2(),128.8()s cm s cm ss ==∴<乙甲乙甲即甲种玉米的苗长得齐.(三)、课堂小结: 本节课通过具体实例探讨和学习了平均数、中位数、众数、极差、方差、标准差的计算、意义和作用,让学生体会所学内容与现实世界的密切联系.(四)、作业: 课本30—31页 习题1—4 1、2. 六、设计体会(教后反思)统计的学习,本质上是统计活动的学习,而不是概念和公式的学习.因此在本节教学设计中所采用的数据和问题情境尽可能来源于实际,充分挖掘学生生活中与数据有关的素材,使他们体会所学内容与现实世界的密切联系.另外,在教学活动中,还要特别加强小组活动的组织与教学,并在活动的过程中引导学生逐步体会统计的作用和基本思想.。
数据的数字特征教学目标1、知识与技能(1)能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息.(2)通过实例理解数据标准差的意义和作用,学会计算数据的标准差.在分析和解决具体实际问题的过程中,学会用恰当的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释.23、情感态度价值观通过对现实生活和其他学科中统计问题的分析和解决,体会用数学知识解决现实生活及各学科问题的方法,认识数学的重要性.教学重点、难点教学重点:理解各个统计量的意义和作用,学会计算数据的标准差.教学难点: 根据给定的数据,合理地选择统计量表示数据.教学设计:(1)教法构想本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差、标准差的计算、意义和作用.通过具体的实例,让学生理解数字特征的意义,并能选择适当的数字特征来表达数据的信息.(2)学法指导学生自主探究,交流合作,教师归纳总结相结合.课时计划:2课时教学过程:一、【情景引入】提出问题:小明开设了一个生产玩具的小工厂,管理人员由小明、他的弟弟和六个亲戚组成.工作人员由五个领工和十个工人组成.工厂经营的很顺利,需增加一个新工人,小亮需要一份工作,应征而来与小明交谈.小明说:“我们这里报酬不错,平均薪金是每周300元.你在学徒期每周75元,不过很快就可以加工资了.”小亮工作几天后找到小明说:“你欺骗了我,我已经找其他工人核对过了,没有一个人的工资超过每周100元,平均工资怎么可能是一周300元呢?”小明说:“小亮啊,不要激动,平均工资是300元,你看,这是一张工资表.”工资表如下:这到底是怎么了?(学生思考交流)教师点出课题:数据的数字特征二、【探求新知】数据的信息除了通过前面介绍的各种统计图表来加以整理和表达之外,还可以通过一些统计量来表述,也就是将多个数据“加工”为一个数值,使这个数值能够反映这组数据的某些重要的整体特征.请大家思考,初中时我们学习了几个统计量?它们在刻画数据时,各有什么样的优点和缺点?请大家结合下面问题的解决,对这个问题进行思考.1、平均数、中位数、众数某公司的33名职工的月工资(单位:元)如下:(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?为什么?(4)公司经理会选取上面哪个数据来代表该公司员工的月工资情况?税务官呢?工会领导呢?通过这个问题的解决,我们应该认识到,各个不同的统计量适用于刻画不同的统计数据,并且有着各自的特点.平均数:一般地,对于N 个数N x x x ,,,21 ,我们把Nx x x N+++ 21叫做这N 个数的算术平均数,简称平均数.平均数是数据的重心,它是反映数据集中趋势的一项指标.它的优点在于:对变量的每一个观察值都加以利用,比起众数与中位数,它会获得更多的信息;但是平均数对个别的极端值敏感,当数据有极端值时,最好不要用均值刻画数据.众数:一组数据中出现次数最多的数据.众数着眼于对各数据出现的次数的考察, 是一组数据中的原数据,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量. 注意:(1)一组数据中的众数有时不只一个,如数据2、3、-1、2、l 、3中, 2和3都出现了2次,它们都是这组数据的众数.(2)如果出现个数一样的数据,或者每个数据都只有一次,那么众数可以 不止一个或者没有.中位数:将一组数据从小到大排列或从大到小排列,处在中间位置上一个数据(或中间两个数据的平均数).中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数据大,对于非对称的数据集,中位数更能实际地描述数据的中心.某些数据的变动对它的中位数影响不大.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势.注意:(1)求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以.(2)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.在同一组数据中,众数、中位数和平均数也各有其特性:(1)中位数与平均数是唯一存在的,而众数是不唯一的;(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可 能相等.如,在数据6、6、6、6、6中,其众数、中位数、平均数都是6. (3)众数和中位数可以代表数据分布的大体趋势,缺点在于并没有对数据中的其它值加以利用.到底用什么统计量来刻画数据,需要结合数据的特点及你想要说明的问题进行选择.不同的人立场不同,会选择不同额统计量来说明他的观点,这也就是我们要对统计结论进行批判性思维的原因. 2、极差、方差甲、乙两台机床同时生产直径是40mm 的零件.为了检验产品的质量,从两台机床生产的零件中各抽取10件进行测量,结果如下:那么,我们可以用哪些数据来刻画数据的离散情况呢?方法1、极差甲:40.2-39.8=0.4(mm ),乙:40.1-39.9=0.2(mm ); 方法2、方差甲:()1022111400.02610i i s x ==-=∑,乙:()1022211400.00610i i s x ==-=∑;方法3、甲:()()404039.84039.840100.14mm -+-++-÷=, 乙:()()4040404039.940100.06mm -+-++-÷=;方法4、甲:()()333404039.84039.840100.005mm -+-++-÷=乙:()()3334040404039.940100.0006mm -+-++-÷=那么,在刻画数据的离散程度时,这个统计量应该满足哪些原则呢?(1)应充分利用所得到的数据,以便提供更确切的信息; (2)仅用一个数值来刻画数据的离散程度;(3)对于不同的数据集,当离散程度大时,该数值也大. 极差是指一组数据内的最大值和最小值之间的差. 极差=最大值—最小值极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度.极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,估算大致范围时用它.极差大的那一组不一定方差大,反过来,方差大的,极差不一定也大. 方差,是一组数据据内,每个数与平均数的差数的平方和.方差是表现数据的离散程度的(波动情况),方差越小,数据的离散程度越小,也就越接近平均值,当要求某问题的稳定程度就用它.计算公式:设在一组数据,,12n x x ,x …中,x -是它们的平均数,则方差为:2222121[()()()]---=-+-+⋯+-n S x x x x x x n3、标准差方差的单位是原始数据单位的平方,而刻画数据离散程度的一种理想度量应该具有与原始数据相同的单位,因而引入标准差,标准差更能反映数据的离散程度.标准差(Standard Deviation ),也称均方差(mean square error ),是各数据偏离平均数的距离的平均数,在概率统计中最常使用作为统计分布程度(statistical dispersion )上的测量.标准差定义为方差的算术平方根,反映组内个体间的离散程度.测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位. 一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别.标准差能反映一个数据集的离散程度.平均数相同的,标准差未必相同.标准差的意义:标准差越高,表示实验数据越离散,也就是说越不精确;反之,标准差越低,代表实验的数据越精确.注:以上各量都带单位. 三、【知识应用】例 甲、乙两名战士在相同条件下各射击靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数; (2)分别求出这两组数据的方差;(3)请根据这两名射击手的成绩画出折线统计图,并估计这两名战士的 射击情况.解:(1)7107768=++++=甲x (环),7105776=++++= 乙x (环)(2)22221[(87)(67)(77)] 3.010=-+-++-=s 甲(环2)22221[(67)(77)(57)] 1.210=-+-++-=s 乙(环2)(3)因为=甲x 乙x ,所以说明甲、乙两名战士的平均水平相当.又因为>甲2s 乙2s ,所以说明甲战士射击情况波动大.故乙战士比甲战士射击情况稳定.四、【课堂练习】1、一家鞋店在一段时间里销售了某种女鞋20双,其中各种尺码的鞋的销量 如表所示:指出这组数据的众数、中位数、平均数.解:30cm ,21cm 的鞋各出现5次,故众数为30cm ,21cm ;求中位数时应注意,在排列数据时应考虑每一个数出现的次数,本题 中共有20514352=+++++个数据,第10位数据为23,第11位 数据是25,故中位数22423+=24(cm) . 平均数为6.2420254215233202281305=⨯+⨯+⨯+⨯+⨯+⨯(cm) 2、下表是某班40名学生参加“环保知识竞赛”的得分统计表:请参照这个表解答下列问题:(1)用含x ,y 的式子表示该班参加“环保知识竞赛”的班平均分f ; (2)若该班这次竞赛的平均分为2.5分,求,x y 的值. 解:(1)355940x y f ++=;(2)依题意,有354111{x y x y +=+=解得74{x y ==3、(2007海南高考,理11)甲、乙、丙三名射箭运动员在某次测试中各 射箭20次,三人的测试成绩如下表: 甲的成绩:乙的成绩:丙的成绩:123s s s 、、分别表示甲、乙、丙三名射箭运动员这次测试成绩的标准差, 则有(C )A.123s s s >>B.312s s s >>C.213s s s >>D.231s s s >>4、课本第31页 练习 五、【课堂小结】本节课通过具体实例探讨和学习了平均数、中位数、众数、极差、方差、标准差的计算、意义和作用,1、一组数据的和与这组数据的个数的商称为这组数据的平均数.数据12,,,n x x x 的平均数为12nx x x x n+++=.平均数对数据有“取齐”的作用,代表该组数据的平均水平.2、一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据的中位数是唯一的,反映了数据的集中趋势.3、一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势.4、一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.5、方差是样本数据到平均数的平均距离,一般用2s 表示,通常用公式2222121[()()()]n s x x x x x x n=-+-++-来计算.反映了数据的离散程度.方差越大,数据的离散程度越大.方差越小数据的离散程度越小.6、标准差等于方差的正的平方根,即s =组数据围绕平均数的波动程度的大小.六、【分层作业】1、课本第23页 习题1—4 1、22、课本第69页 复习参考题一 A 组5、63、创新设计相关内容4、阅读课本第29—30页 利用信息技术计算数字特征。
4.1平均数、中位数、众数、极差、方差4.2标准差●三维目标1.知识与技能(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差.(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.(3)会用样本的基本数字特征估计总体的基本数字特征.(4)形成对数据处理过程进行初步评价的意识.2.过程与方法通过对实例的探究,感知平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差、标准差刻画了一组数据的离散程度,而标准差的单位与原始测量单位相同.3.情感、态度与价值观通过本节课的学习,感受数据的数字特征的意义和作用,从而提高根据问题的需要而选择不同的统计量来表达数据的信息的能力.●重点难点重点:会求一组数据的平均数、方差、标准差.难点:方差、标准差在实际问题中的应用.(教师用书独具)●教学建议本节内容安排在学生学习了抽样方法、统计图表等知识之后,是在初中学习过平均数、中位数、众数、极差、方差等统计量的基础上对数据的数字特征的进一步研究,在教学过程中,要在教师的引导下,充分发挥学生的主体作用,让学生分析案例,对不同的数字特征进行对比,在对比中,发现其差异、明确其特点,体会其作用,并让学生进行交流、总结并适时给出点拨,从而达到会用数字特征解决问题的目的.●教学流程创设问题情境,引出问题⇒引导学生结合初中学过的众数、中位数、平均数、极差、方差的概念感受这五个数字特征⇒教师通过多媒体展示这五个数字特征,通过分组讨论总结求法⇒通过例1的展示及变式训练的强化使学生进一步体会这三个数字特征通过例2及变式训练使学生掌握求方差及标准差的方法,体会方差的应用⇒归纳整理进行课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固所学知识并进行反馈、矫正初中已学过众数、中位数、平均数的概念,你能完成以下填空吗?(1)已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的众数为________,中位数为________,平均数为________.(2)某班50名学生右眼视力的检查结果如下表所示:则该班学生右眼视力的众数为________,中位数为________.【提示】 (1)c b +c 2 2a +2b +3c +d8(2)1.2 0.8刻画一组数据集中趋势的统计量有平均数、中位数和众数.平均数:n 个数x 1,x 2,…,x n ,那么它们的平均数为x =1n(x 1+x 2+…+x n ).中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)称为中位数.众数:一组数据中,出现次数最多的数.甲、乙两名战士在相同条件下各射靶两次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7 乙:6,7,7,8,6,7,8,7,9,51.甲、乙两战士命中环数的平均数x 甲、x 乙各是多少? 【提示】 x 甲=7环;x 乙=7环. 2.由x 甲,x 乙能否判断两人的射击水平? 【提示】 由于x 甲=x 乙,故无法判断.3.观察上述两组数据,你认为哪个人的射击水平更稳定?【提示】 从数字分布来看,甲命中的环数较分散,乙命中的环数较集中,故乙的射击水平更稳定.刻画一组数据离散程度的统计量有极差、方差、标准差.极差:把一组数据中最大值与最小值的差叫作这组数据的极差.极差对极值非常敏感,一定程度上表明了该组数据的分散程度.方差:设一组数据为x 1,x 2,x 3,…,x n ,其平均数为x ,则方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其单位是原始观测数据单位的平方.标准差:它是方差的正的平方根,s =s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其单位与原始测量单位相同.(1)(2)第(1)问中计算出来的平均数能客观地反映该工厂人员的工资水平吗?为什么? 【思路探究】 平均数的计算应为总工资除以总人员,由表可知总工资为 2 200×1+250×6+220×5+200×10+100×1=6 900(元),总人数为1+6+5+10+1=23.【自主解答】 (1)由上表可知:周工资的众数为200元,中位数为220元,平均数为6 90023=300(元).(2)不能.虽然工厂人员的周平均工资为300元,但由表格中所列出的数据可知,只有经理的周工资在300元以上,其余人的周工资都在300元以下,故用平均数不能客观地反映该工厂人员的工资水平.1.由此题可见,平均数受数据中的极端值的影响较大,这时平均数对总体估计的可靠性反而不如众数和中位数.2.如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.据报道,某公司的33名职工的月工资(以元为单位)如下:(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此题谈谈你的看法.【解】 (1)平均数为x =5 500+5 000+3 500×2+3 000+2 500×5+2 000×3+1 500×2033≈2 091(元).中位数为1 500元,众数为1 500元. (2)平均数为x ′=30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×2033≈3 288(元).中位数为1 500元,众数为1 500元.(3)在此问题上,中位数和众数均能反映该公司员工的工资水平,因为该公司少数职工的月工资与大多数职工的月工资差距太大,故平均数不能反映该公司员工的工资水平.甲:8 6 7 8 6 5 9 10 4 7 乙:6 7 7 8 6 7 8 7 9 5 (1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差;(3)根据计算结果,估计一下两名战士的射击情况.【思路探究】 求x 甲、x 乙→求s 2甲,s 2乙→比较x 甲与x 乙,s 2甲与s 2乙→作出分析【自主解答】 (1)x 甲=110(8+6+7+8+6+5+9+10+4+7)=7(环).x 乙=110(6+7+7+8+6+7+8+7+9+5)=7(环).(2)法一 由方差公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]可求得s 2甲=3.0(环2),s 2乙=1.2(环2).法二 由方差公式s 2=1n [(x ′21+x ′22+…+x ′2n )-n x ′2]计算s 2甲,s 2乙,求得s 2甲=3.0(环2),s 2乙=1.2(环2).(3)∵x 甲=x 乙,s 2甲>s 2乙,∴乙战士的射击成绩较稳定.1.准确运用公式计算是本题的难点和关键,本题中两组数据的平均数相同,需比较它们的方差说明它们的波动大小.2.计算方差(标准差)时,由于计算量较大,计算时需保证准确性.一般地,方差(标准差)越小,该组数据波动越小,越稳定.一机床加工直径为100 mm 的零件,该机床在一小时内生产了6件产品并进行测量,测得如下数据(单位:mm):99,100,102,99,100,100.计算上述数据的方差和标准差.【解】 x =100+16(-1+0+2-1+0+0)=100(mm).∵x i -x (i =1,2,…,6)得数据分别为-1,0,2,-1,0,0. ∴(x i -x )2(i =1,2,…,6)得数据分别为1,0,4,1,0,0.所以s 2=16×(1+0+4+1+0+0)=1(mm 2),s =1(mm).对茎叶图结构理解错误致误(2011·北京高考改编)以下茎叶图记录了甲、乙两组各四位同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示图1-4-1如果X =8,求乙组同学植树棵数的平均数和方差.【错解】 当X =8时,由茎叶图可知,乙组同学的植树棵数为8,8,9,0,所以平均数为x =8+8+9+04=254,方差为:s 2=14[(8-254)2+(8-254)2+(9-254)2+(0-254)2]=21116【错因分析】 1.看不懂茎叶图,当X =8时,认为乙组同学的植树棵数为8,8,9,0. 2.对方差公式的应用不熟练,出现计算错误.【防范措施】 1.明确茎叶图的结构特征,分清茎上的数字及叶上的数字代表的几何意义.2.熟记公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]提高运算求解的能力.【正解】 当X =8时,由茎叶图可知,乙组同学的植树棵数为8,8,9,10,所以平均数为x =8+8+9+104=354,方差为:s 2=14[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=1116.1.平均数、中位数及众数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.2.标准差、方差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度就越大.1.已知一组数据为10,20,30,40,40,40,50,60,70,其中平均数、中位数、众数的大小关系为( )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .中位数=众数=平均数【解析】 中位数、众数、平均数均为40. 【答案】 D 2.(2012·山东高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差 【解析】 对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.【答案】 D图1-4-2A .84,4.84B .84,1.6C .85,1.6D .85,4【解析】 由题意知平均分x =84+84+84+86+875=85,s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15×8=1.6.【答案】 C 4.对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下:【解】 他们的平均速度为x 甲=16(27+38+30+37+35+31)=33(m/s),x 乙=16(33+29+38+34+28+36)=33(m/s).他们的平均速度相同,再看方差:s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2] =473(m 2/s 2), s 2乙=16[(-4)2+52+12+(-5)2+32]=383(m 2/s 2). 则s 2甲>s 2乙, 即s 甲>s 乙,故乙的成绩比甲稳定. 所以,选乙参加该项重大比赛更合适.一、选择题1.一组样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 等于( )A .21B .22C .20D .23【解析】 ∵x +232=22,∴x =21.【答案】 A2.运动员参加体操比赛,当评委亮分后,其成绩往往是先去掉一个最高分,去掉一个最低分,再计算剩下分数的平均值,这是因为( )。
温故知新问题1 :在上一节中,从甲乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示如下1°甲乙两组数据的中位数众数极差分别是多少?2°你能从上图中分别比较甲乙两组数据的平均数和方差的大小吗?解:(1)观察茎叶图,我们不难看出:甲城市销售额的中位数为20,众数为10,18,30,极差为53;乙城市销售额的中位数为29,众数为23,34,极差为38.(2)从茎叶图中我们可以看出:甲城市的销售额分布主要在茎叶图的上方且相对较散,而乙城市的销售额分布则相对集中在茎叶图的中部.由此,我们可以估计:甲城市销售额的平均数比乙城市的小,而方差比乙城市的大.通过计算我们得到:甲城市销售额的平均数和方差分别为22.8和210.9,乙城市销售额的平均数和方差分别为28.6和115.2,这与上面的估计是一致的.结合上节课的茎叶图的相关内容,为学生复习巩固初中学习的统计量的内容,提供了材料信息教科书设计了这个问题,自然承接上一节统计图表的内容,并初步发展学生从统计图中获取数字特征的能力.创设情境,讲授新课导入:请大家思考,初中时我们学习了哪些统计量?他们怎样定义的?他们在刻画数据时,各有怎样的优缺点?请大家结合下面问题的解决,对这个问题进行思考?探究学习:问题2:某公司员工的月工资情况如表所示:职务董事长副董事长董事总经理经理管理员职员学生讨论回答过阅读材料,让学生感受数据的数字在活动开始时,建议教师控制“开始”和“停止”之间的时间间隔在20秒以内,并且在增加时间间隔之前,可以先保持“开始”和“停止”之间的时间间隔不变,重复刚才的试验.此时,得到的平均值与确切的时间值应该会更接近,标准差也应该会比第一次的更小.这是因为经历了刚才的活动,学生已经积累了一定的经验,加之时间间隔又没有改变,他们估计的结果应该会比第一次更准确.随后,教师再增加“开始”和“停止”之间的时间间隔,重复试验,并让学生分析自己以及全班同学最后的估计结果.这个活动还可以初步培养学生的估计能力.作业课本P31 习题1-4(1)、(2)思考:“用数据说话”,这是我们经常可以听到的一句话,但数据有时也会被利用,从而产生误导。
.平均数、中位数、众数、极差、方差标准差预习课本~,思考并完成以下问题()什么是平均数、中位数、众数?()什么是极差、方差、标准差?()方差、标准差的计算公式是什么?.平均数、中位数、众数()平均数如果有个数,,…,,那么=,叫作这个数的平均数.()中位数,或中间两数的平均把处于把一组数据按从小到大的顺序排列最中间位置的那个数(数)称为这组数据的中位数.()众数的数称为这组数的众数,一组数据中重复出现次数最多一组数据的众数可以是,一个也可以是多个.[点睛]如果有几个数据出现的次数相同,并且比其他数据出现的次数都多,那么这几个数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数..极差、方差、标准差()极差一组数据中最大值与最小值的差称为这组数据的极差.()方差标准差的平方叫作方差.(-[=)+)+(-…]).+(-其中,是样本数据,是样本容量,是样本平均数.()标准差标准差是样本数据到平均数的一种平均距离,一般用表示.= .[点睛]()标准差、方差描述了一组数据围绕着平均数波动的大小,标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.()标准差、方差为时,表明样本数据全相等,数据没有波动幅度和离散性.()标准差的大小不会超过极差..判断正误.(正确的打“√”,错误的打“×”) ()平均数反映了一组数据的平均水平,任何一个样本数据的改变都会引起平均数的变化.( ) ()一组数据中,有一半的数据不大于中位数,而另一半则不小于中位数,中位数反映了一组数据的中心的情况.中位数不受极端值的影响.( ) ()一组数据的众数的大小只与这组数据中的部分数据有关.( )()数据极差越小,样本数据分布越集中、稳定.( )()数据方差越小,样本数据分布越集中、稳定.( )答案:()√()√()√()√()√.在某次考试中,名同学的得分如下:.则这一组数据的众数和中位数分别为( )....解析:选将所给数据按从小到大排列得,显然众数为,而本组数据共个,中间两位是,它们的平均数为,即中位数为..某学生几次数学测试成绩的茎叶图如图所示,则该学生这几次数学测试的平均成绩为.解析:根据茎叶图提供的信息知,这几次测试成绩为.所以所求的平均成绩为×(++++++)=.答案:.如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为.解析:依题意知,运动员在次比赛中的分数依次为,其平均数为=.由方差公式得=[(-)+(-)+(-)+(-)+(-)]=(++++)=.答案:。
《数据的数字特征》教学设计一、教学背景分析在初中学生已经学习过了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
二、教学目标1.知识与技能(1)能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息。
(2)通过实例理解数据标准差的意义和作用,学会计算数据的标准差。
在实际问题中,可以学会用合适的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。
3.情感、态度与价值观通过对现实生活和其他学科中统计问题的分析和解决,体会用数学知识解决现实生活及各学科问题的方法,认识数学的重要性。
三、教学重难点重点:能够计算数据的标准差,并理解掌握各个统计量的计算和意义作用。
难点:根据给定的数据,合理地选择统计量表示数据。
四、教学过程1、复习回顾利用一些实际生活的数据统计图片让学生回顾条形统计图、折线统计图、扇形统计图和茎叶图,并对他们适用的范围和作用掌握2、新知引人数据的特征除了利用统计图表外,还可以利用一些统计量来表示,比如:平均数、中位数、众数和极差、方差、标准差等来表示。
问题1:什么是平均数?它的意义是什么?解析:平均数就是一组数据的平均,代表该组数的平均水平。
设有n 个数据x1 ,x2, …,xn,则这组数据的平均数为:问题2:什么是中位数?它的意义是什么?解析:中位数是一组数据按照从小到大顺序排列时处于中间位置的数(或中间两个数的平均数).当一组数据中的个别数据变动较大时,可用中位数来描述其集中趋势.问题3:什么是众数?它的意义是什么?解析:众数是一组数据中出现次数最多的数.反映了数据的集中趋势. 问题4:什么是极差?它的意义是什么?解析:极差是一组数据中最大数与最小数之间的差.反映该组数据差异情况.问题5:什么是方差?它的意义是什么?解析:方差是一组数据中所有数与平均数的差的平方和的平均数.反映了数据的波动情况.方差越大,数据的离散程度越大;方差越小,nx x x x n +++= 21数据的离散程度越小.设有n 个数据x1,x2,…,xn ,这组数据的方差为: 问题6:什么是标准差?它的意义是什么?解析:标准差就是一组数据中所有数与平均数的差的平方和的平均数的算术平方根.可以刻画数据的稳定程度.3、巩固新知例1:这是本届世界杯第一轮比赛结果,计算该届世界杯一场比赛进球数的平均数、中位数、众数、极差、方差及标准差。
§4数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差整体设计教学分析在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题.在这个基础上,高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,达到在具体的问题中能根据情况有针对性地选择一些合适的数字特征.三维目标1.能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力.2.通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.重点难点教学重点:平均数、中位数、众数、极差、方差的计算、意义和作用.教学难点:根据问题的需要选择适当的数字特征来表达数据的信息.课时安排1课时教学过程导入新课思路那么怎样判断中国女排和俄罗斯女排的队员谁的身材更为高大?我们分别求出两队球员的平均身高,谁的平均身高数值大,谁的身材就更高大,教师点出课题:数据的数字特征.思路 2.小明开设了一个生产玩具的小工厂,管理人员由小明、他的弟弟和六个亲戚组成.工作人员由五个领工和十个工人组成.工厂经营得很顺利,需要增加一个新工人,小亮需要一份工作,应聘而来与小明交谈.小明说:“我们这里报酬不错,平均薪金是每周300元.你在学徒期每周75元,不过很快就可以加工资了.”小亮工作几天后找到小明说:“你欺骗了我,我已经找其他工人核对过了,没有一个人的工资超过每周100元,平均工资怎么可能是一周300元呢?”小明说:“小亮啊,不要激动,平均工资是300元,你看,这是一张工资表.”工资表如下:人员 小明 小明弟弟 亲戚 领工 工人 周工资 2 400 1 000 250 200 100 人数 1 1 6 5 10 合计2 4001 0001 5001 0001 000这到底是怎么了?教师点出课题:数据的数字特征. 推进新课 新知探究 提出问题1.什么叫平均数?有什么意义? 2.什么叫中位数?有什么意义? 3.什么叫众数?有什么意义? 4.什么叫极差?有什么意义? 5.什么叫标准差?有什么意义? 6.什么叫方差?有什么意义? 讨论结果:1.一组数据的和与这组数据的个数的商称为这组数据的平均数.数据x 1,x 2,…,x n的平均数为x =x 1+x 2+…+x nn.平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.2.一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据中的中位数是唯一的,反映了该组数据的集中趋势.3.一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.4.一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.5.标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用公式s =1n[x 1-x 2+x 2-x 2+…+x n -x 2]来计算.可以用计算器或计算机计算标准差.标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差大,数据的离散程度大;标准差小,数据的离散程度小.标准差的取值范围是[0,+∞).样本数据x 1,x 2,…,x n 的标准差的计算步骤:(1)计算样本数据的平均数,用x 来表示;(2)计算每个样本数据与样本数据平均数的差:x i -x (i =1,2,…,n ); (3)计算x i -x (i =1,2,…,n )的平方;(4)计算这n 个x i -x (i =1,2,…,n )的平方的平均数,即方差;(5)计算方差的算术平方根,即为样本标准差.6.方差等于标准差的平方,即s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],与标准差的作用相同,描述一组数据围绕平均数波动的程度的大小.方差的取值范围是[0,+∞).应用示例思路1(1)分别计算该公司员工月工资的平均数、中位数和众数.(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经过简单计算可以得出:该公司员工的月工资平均数为1 373元,中位数为800元,众数为700元.(2)公司经理为了显示本公司员工的收入高,采用平均数1 373元作为月工资的代表;而税务官希望取中位数800元,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数700元作为代表,因为每月拿700元的员工数最多.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心;当变量是分类变量时,众数往往经常被使用. 变式训练请参照这个表解答下列问题:(1)用含x ,y 的代数式表示该班参加“环保知识竞赛”的班平均分f ; (2)若该班这次竞赛的平均分为2.5分,求x ,y 的值.解:(1)f =3x +5y +5940;(2)依题意,有⎩⎪⎨⎪⎧3x +5y =41,x +y =11,解得⎩⎪⎨⎪⎧x =7,y =4.2.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人(1)该风景区调整前后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?(2)游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一方的说法较能反映整体实际? 解:(1)风景区是这样计算的: 调整前的平均价格: 10+10+15+20+255=16(元),调整后的平均价格:5+5+15+25+305=16(元),因为调整前后的平均价格不变,平均日人数不变, 所以平均日总收入不变. (2)游客是这样计算的: 原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元), 现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元),所以平均日总收入增加了175-160160≈9.4%.(3)游客的说法较能反映整体实际.例2 甲、乙两台机床同时生产直径是40 mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示. 甲机床直径/mm 40.0 39.8 40.1 40.2 39.9 40.0 40.2 39.8 40.2 39.8 乙机床直径/mm40.040.039.940.039.940.1 40.140.140.039.9分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差,并判断哪台机床生产过程更稳定.解:从数据很容易得到甲、乙两台机床生产的这10件产品直径的平均值x 甲=x 乙=40(mm).我们分别计算它们直径的标准差:s 甲=[40-402+39.8-402+…+39.8-402]/10=0.161(mm), s 乙=[40-402+40-402+…+39.9-402]/10=0.077(mm).由上面的计算可以看出:甲、乙两台机床生产的产品直径的平均值相同,而甲机床生产的产品直径的标准差为0.161 mm ,比乙机床的标准差0.077 mm 大,说明乙机床生产的零件要更标准些,即乙机床的生产过程更稳定一些.点评:对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度. 变式训练设有容量为n 的样本x 1,x 2,…,x n ,其标准差为s x ,另有容量为n 的样本y 1,y 2,…,y n ,其标准差为s y ,且y k =3x k +5(k =1,2,…,n ),则下列关系正确的是( ).A .s y =3s x +5B .s y =3s xC .s y =3s xD .s y =3s x +5 答案:B思路2例1 800 800 800 800 800 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 500 1 5001 5001 5001 5001 5001 500(1)计算该公司员工的月工资的平均数、中位数和众数;(2)假如你去这家企业应聘职位,你会如何看待员工的收入情况?分析:(1)根据平均数、中位数和众数的定义可以分别求得;(2)主要根据月工资的平均数来看待员工的收入情况,当然也要考虑中位数和众数.解:(1)公司员工的月工资的平均数为5×800+10×1 000+20×1 200+7×1 500+5×2 000+3×2 50050=1 320(元),中位数为1 200元,众数为1 200元.(2)由于该公司员工的月工资的中位数和众数与平均数比较接近, 所以主要考虑月工资的平均数1 320元作为月工资的代表,这样以该公司月平均工资1 320元与同类企业的工资待遇作比较即可. 点评:大多情况下人们会把眼光仅停留在工资表中的最大与最小值处,把最高工资作为一个单位工资的评价,这是一种错误的评价方式. 变式训练1.已知10个数据:1 203,1 201,1 194,1 200,1 204,1 201,1 199,1 204,1 195,1 199,它们的平均数是( ).A .1 400B .1 300C .1 200D .1 100 答案:C2根据表中提供的信息填空:(1)该公司每人所创的年利润的平均数是__________万元. (2)该公司每人所创的年利润的中位数是__________万元.(3)你认为应该使用平均数和中位数中哪一个来描述该公司每人所创的年利润的一般水平?答案:(1)3.36 (2)2.1 (3)中位数.(1)甲、乙的平均成绩谁较好? (2)谁的各门功课发展较平衡?分析:(1)利用公式计算平均数;(2)计算方差来分析.解:(1)∵x 甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73,∴甲的平均成绩较好.(2)s 2甲=15(142+62+42+162+42)=104,s 2乙=15(72+132+32+72+22)=56,∵s 2甲>s 2乙,∴乙的各门功课发展较平衡.点评:平均数和方差是样本的两个重要数字特征,方差越大,表明数据越分散,相反地,方差越小,数据越集中、稳定;平均数越大表明数据的平均水平越高,平均数越小表明数据的平均水平越低. 变式训练已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( ). A .1 B .2 C .3 D .4解析:∵x =3+5+7+4+65=5,∴方差s 2=15[(5-3)2+(5-5)2+(5-7)2+(5-4)2+(5-6)2]=2.答案:B 知能训练1.下列说法正确的是( ).A .甲、乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样B .期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好C .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好D .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好答案:D2.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是__________分.( ).A .97.2B .87.29C .92.32D .82.86 答案:B3s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ). A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1解析:方法一:计算得x 甲=x 乙=x 丙=8.5,s 21=2520,s 22=2820,s 23=2120,则s 2>s 1>s 3;方法二:可以计算三名运动员成绩的平均数都等于8.5,观察对比三个表格,相比之下丙的环数集中在8.5周围,比甲和乙要稳定,乙的环数比甲更分散,则有s 1>s 3,s 2>s 1.答案:B4.某人射击5次,分别为8,7,6,5,9环,则这个人射击命中的平均环数为__________. 答案:75.华山鞋厂为了了解中学生穿鞋的鞋号情况,对某中学八年级(1)班的20名男生所穿鞋号的统计如下表:鞋号 23.5 24 24.5 25 25.5 26 人数344711那么这20名男生鞋号数据的平均数是__________,中位数是__________,众数是__________,在平均数、中位数和众数中,鞋厂最感兴趣的是__________.答案:24.55 24.5 25 众数6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是__________.答案:-3拓展提升甲 25 41 40 37 22 14 19 39 21 42 乙27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解:(1)∵x 甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x 乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm),∴x 甲<x 乙,即乙种玉米的苗长得高.(2)∵s 2甲=104.2(cm 2),s 2乙=128.8(cm 2),∴s 2甲<s 2乙,即甲种玉米的苗长得齐. 课堂小结本节课学习了平均数、中位数、众数、极差、方差的计算、意义和作用. 作业习题1-4 1,2.设计感想本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差的计算、意义和作用,重在应用.备课资料备选习题1.现有同一型号的汽车50辆.为了了解这种汽车每耗油1 L 所行路程的情况,要从中抽出5辆汽车在同一条件下进行耗油 1 L 所行路程的试验,得到如下数据(单位:km):11,15,9,12,13.则样本方差是( ).A .20B .12C .4D .2解析:可以计算得平均数x =11+15+9+12+135=12,则方差s 2=15[(11-12)2+(15-12)2+(9-12)2+(12-12)2+(13-12)2]=4.答案:C2.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ).A .1B .2C .3D .4解析:由平均数为10,得(x +y +10+11+9)×15=10,整理得x +y =20;又由于方差为2,则15×[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]=2,整理得x 2+y 2-20(x +y )+192=0,所以x 2+y 2=208,则2xy =192.故|x -y |=x -y 2=x 2+y 2-2xy =4.答案:D3.某农科所为寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品试评定哪一品种既高产又稳定.解:∵三个品种的产量的平均数分别为x1=21.0(kg),x2=21.0(kg),x3=20.48(kg),方差为s21=0.572,s22=2.572,s23=3.597 6,∴x1=x2>x3,s21<s22<s23.故第一个品种既高产又稳定.已经算得两个组的平均分数都是80分,请根据你所学过的统计知识,进一步判断这两个组本次竞赛中的成绩哪组更好一些,并说明理由.分析:该题不仅运用了统计的有关基础知识,还考查应用数学的意识,结论具有开放性,从众数、方差、中位数、高分数段以及满分人数全方位进行综合分析、比较,并作出判断.解:分析1:从众数看,甲组成绩的众数是90分,乙组成绩的众数是70分,甲组成绩好一些.分析2:从方差看,s2甲=172,s2乙=256,s2甲<s2乙,甲组成绩较乙组成绩稳定一些.分析3:甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,甲组的成绩总体好一些.分析4:从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,所以乙组成绩在高分段的人数多,同时乙组得满分的人数比甲组多6人,乙组成绩好一些.点评:答案不唯一,只要符合实际数据就行.(设计者:张建国)。