3第三章:立体表面的交线
- 格式:ppt
- 大小:1.17 MB
- 文档页数:18
第三章立体及立体表面交线目的要求:1)掌握平面立体和回转体的投影特性,以及表面取点线的方法2)熟悉立体表面上常见交线的画法(截交线、相贯线)重点难点:1)掌握和熟练运用各种立体的投影特性求解表面取点线的方法2)熟练求解立体表面上截交线和相贯线授课学时:8学时主要作图练习:1)完成平面立体、回转体的三面投影,平面立体、回转体表面找点、找线。
2)单个截平面截棱柱、棱锥后的三面投影。
3)多个截平面(切口)截棱柱、棱锥的三面投影,尤其是长方体截切后的三面投影。
4)单个和多个截平面截切圆柱、圆锥、圆球后的三面投影,尤以带槽的圆柱和圆球为主。
5)圆柱与圆柱相贯、同轴回转体相贯的各种情况作图、综合作图。
6)授课内容:机件形状是多种多样的,经过分析,都是由一些基本几何体所组成。
而几何体又是由一些表面所围成,根据这些表面的性质,几何体可分为两类:平面立体——由若干个平面所围成的几何体,如棱柱、棱锥等。
曲面立体——由曲面或曲面与平面所围成的几何体,最常见的是回转体,如圆柱、圆锥、圆球、圆环等。
用投影图表示一个立体,就是把围成立体的这些平面和曲面表达出来,然后根据可见性判别哪些线是可见的,哪些线是不可见的,把其投影分别画成粗实线和虚线,即可得立体的投影图。
§3-1 平面立体的投影平面立体各表面都是平面图形,各平面图形均由棱线围成,棱线又由其端点确定。
因此,平面立体的投影是由围成它的各平面图形的投影表示的,其实质是作各棱线与端点的投影。
一、棱柱以正六棱柱为例,其顶面、底面均为水平面,它们的水平投影反映实形,正面及侧面投影积聚为一直线。
棱柱有六个侧棱面,前后棱面为正平面,它们的正面投影反映实形,水平投影及侧面投影积聚为一直线。
棱柱的其它四个侧棱面均为铅垂面,水平投影积聚为直线,正面投影和侧面投影为类似形。
图3-1 正六棱柱的投影二、棱锥以四棱锥为例,其底面为一长方形,呈水平位置,水平投影反映底面的实形。
左右两个棱面是正垂面,其正面投影积聚为直线,水平和侧面投影均为类似三角形,前后两个棱面为侧垂面,其侧面投影积聚为直线,水平和正面投影同样为类似的三角形。
学习内容教学方法任务实施(一)相贯线的性质1、相贯线的概念两个基本体相交(或称相贯),表面产生的交线称为相贯线。
本节只讨论最为常见的两个曲面立体相交的问题。
2、相贯线的性质:(1)相贯线是两个曲面立体表面的共有线,也是两个曲面立体表面的分界线。
相贯线上的点是两个曲面立体表面的共有点。
(2)两个曲面立体的相贯线一般为封闭的空间曲线,特殊情况下可能是平面曲线或直线。
求两个曲面立体相贯线的实质就是求它们表面的共有点。
作图时,依次求出特殊点和一般点,判别其可见性,然后将各点光滑连接起来,即得相贯线。
(二)相贯线的画法两个相交的曲面立体中,如果其中一个是柱面立体(常见的是圆柱面),且其轴线垂直于某投影面时,相贯线在该投影面上的投影一定积聚在柱面投影上,相贯线的其余投影可用表面取点法求出。
1、讲解例题(例3-8)如图3-21(a)所示,求正交两圆柱体的相贯线。
分析:两圆柱体的轴线正交,且分别垂直于水平面和侧面。
相贯线在水平面上的投影积聚在小圆柱水平投影的圆周上,在侧面上的投影积聚在大圆柱侧面投影的圆周上,故只需求作相贯线的正面投影。
出示模型辅助讲解。
a)立体图(b)3-21正交两圆柱的相贯线讲授法演示法任务实施边画图边讲解作图方法与步骤。
2、相贯线的近似画法相贯线的作图步骤较多,如对相贯线的准确性无特殊要求,当两圆柱垂直正交且直径有相差时,可采用圆弧代替相贯线的近似画法。
如图3-22所示,垂直正交两圆柱的相贯线可用大圆柱的D/2为半径作圆弧来代替。
图3-22 相贯线的近似画法3、两圆柱正交的类型两圆柱正交有三种情况:(1)两外圆柱面相交;(2)外圆柱面与内圆柱面相交;(3)两内圆柱面相交。
这三种情况的相交形式虽然不同,但相贯线的性质和形状一样,求法也是一样的。
如图3-23所示。
出示模型辅助讲解。
(a)两外圆柱面相交(b)外圆柱面与内圆柱面相交讲授法演示法(c)两内圆柱面相交图3-23两正交圆柱相交的三种情况(三)相贯线的特殊情况两曲面立体相交,其相贯线一般为空间曲线,但在特殊情况下也可能是平面曲线或直线。