六年级奥数8分数应用题
- 格式:doc
- 大小:51.50 KB
- 文档页数:2
一.知识的回顾1.工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.2.有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克. 【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为:()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了(2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。
【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【解析】 方法一:设一队的人数是“1”,那么二队人数是:131134÷=,三队的人数是:141145÷=,345114520++=,因此,一、二、三队之和是:一队人数5120⨯,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51⨯(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人).方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=人(人).【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【解析】 条件可以化为:音乐班的人数是所有班人数的22527=+,美术班的学生人数是所有班人数的337310=+,所以体育班的人数是所有班人数的2329171070--=,所以所有班的人数为295814070÷=人,其中音乐班有2140407⨯=人,美术班有31404210⨯=人.【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的45,甲加工零件数是乙、丙加工零件总数的56,则甲、丙加工的零件数分别为 个、 个.【解析】 把乙加工的零件数看作1,则丙加工的零件数为45,甲加工的零件数为453(1)562+⨯=,由于甲比乙多加工20个,所以乙加工了320(1)402÷-=个,甲、丙加工的零件数分别为340602⨯=个、440325⨯=个. 【例 4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“1”是不同的,这就是所说的单位“1”不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“1”,则单位“1”就统一了.那么王先生的年龄就是四人年龄和的11123=+,李先生的年龄就是四人年龄和的11134=+,赵先生的年龄就是四人年龄和的11145=+(这些过程就是所谓的转化单位“1”).则杨先生的年龄就是四人年龄和的11113134560---=.由此便可求出四人的年龄和:111261*********⎛⎫÷---= ⎪+++⎝⎭(岁),王先生的年龄为:1120403⨯=(岁). 方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的12,乙队筑的路是其他三个队的13,丙队筑的路是其他三个队的14,丁队筑了多少米?【解析】甲队筑的路是其他三个队的12,所以甲队筑的路占总公路长的11=1+23;乙队筑的路是其他三个队的13,所以乙队筑的路占总公路长的11=1+34; 丙队筑的路是其他三个队的14,所以丙队筑的路占总公路长的11=1+45,所以丁筑路为:11112001=260345⎛⎫⨯--- ⎪⎝⎭(米)【例 5】小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【解析】方法一:运完第一次后,还剩下58没运,再运来50块后,已运来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块).方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的57,所以可以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12]24=份,则已运来应是5241075⨯=+份,没运来的7241475⨯=+份,第一次运来9份,所以第二次运来是1091-=份恰好是50块,因此没运来的蜂窝煤有5014700⨯=(块).【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多11113520-=+.即全班共有124020÷=(人).原计划抽14085⨯=(人)参加大扫除.【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【解析】 11204003141⎛⎫÷-=⎪++⎝⎭(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃球比小莉少85,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚的74(=1一73),即两人球数和的114;小刚给小莉24个时,小莉是两人球数和的118(=5888-+),因此24+24是两人球数和的118-114=114.从而,和是(24+24) ÷114=132(个).【巩固】某班一次集会,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数的119+,现在请假人数占总人数的3322+,这个班共有:l÷(3322+-119+)=50(人).【例7】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书的11911019=+,而前二天小明一共读了全书的1131413=+,所以第二天比第一天多读的14页对应全书的111241020-⨯=。
分数应用题1、(例)修一条水渠,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。
两队合作,每天工作6小时,几天可以完成?2、一项工作,甲组3人8天完成,乙组4人7天也能完成。
现在由甲组2人和乙组7人合作,多少天可以完成?3、贷场上有一堆沙子,如果用3辆卡车4天可以运完,用4辆马车5天可以运完,用20辆小板车6天可以运完。
现在用2辆卡车、3辆马车和7辆小板车共同运两天后全改用小板车运,必须在两天内运完。
问:后两天需要多少辆小板车?4、有两个同样的仓库A和B,搬运一个仓库里的贷物,甲需要10小时,乙需要12小时,丙需要15小时。
甲和丙在A仓库,乙在B仓库,同时开始搬运。
中途丙又转向帮助乙搬运。
最后,两个仓库同时搬完,丙帮甲、乙各多少时间?5、(例)一项工程,甲、乙两队合做15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?6、甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的8/15。
甲、乙两队独做各需几天完成?7、某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天。
这件工作先由甲做了若干天,再由乙接着做;再由乙接着做;乙做的天数是甲的3倍,再由丙接着做,丙做的天数是乙的2倍。
终于完成了这一工作。
问总共用了多少天?8、一项工程,甲队独做12天完成。
甲队先做3天后,再由乙队做2天,则能完成这项工程的1/2。
现由甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?9、(例)加工一批零件,甲、乙合做24天可以完成,现在由甲先做16天,然后乙再做12天,还剩下这批零件的2/5没有完成,已知甲每天比乙多加工3个零件,求这批零件共多少个?10、修一段公路,甲队独做要用40天,乙队独做要用24天。
现在两队同时从两端开始工作,结果在距中点750米处相遇,这段公路长多少米?11、制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成,乙车间与丙车间一起做,需8天才能完成。
分数乘除应用题奥数1.把甲乙丙三根木棒插入水池中;三根木棒的长度和为360厘米;甲有3/4在水外;乙有4/7在水外;丙有2/5在水外..水有多深2.小刚有若干本书;小华借走一半加一本;剩下的书小明借走一半加两本;再剩下的书小峰借走一半加三本;最后小刚还剩下两本书;那么小刚原有还剩下两本书;那么小刚原有多少本书3.甲数比乙数多1/3;乙数比甲数少几分之几4.有梨和苹果若干个;梨的个数是全体的5/3少17个;苹果的个数是全体的7/4少31个;那么梨和苹果的个数共多少5.有一个分数;它的分母比分子多4;如果把分子、分母都加上9;得到的分数约分后是9分之7;这个分数是多少6.把一根绳分别折成5股和6股;5股比6股长20厘米;这根绳子长多少米7.小萍今年的年龄是妈妈的1/3;两年前母女的年龄相差24岁..四年后小萍的年龄是多少岁8.有一篮苹果;甲取一半少一个;乙取余下的一半多一个;丙又取余下的一半;结果还剩下一个..如果每个苹果值1元9角8分;那么这篮苹果共值多少元12.把100个人分成四队;一队人数是二队人数的4/3倍;一队人数是三队人数的5/4倍;那么四队有多少人13.足球赛门票15元一张;降价后观众增加了一半;收入增加了五分之一;每张门票降价多少元14.甲、乙、丙三人共同加工一批零件..甲比乙多加工零件20个;丙加工的零件是乙加工零件的4/5;甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个18.某校六年级共有152人;选出男生的1/11和5名女生去参加科技小组;则剩下的男女生人数刚好相等;六年级男女生各有多少人19.林林倒满一杯纯牛奶;第一次喝了1/3;然后加入豆浆;将杯子斟满并搅拌均匀;第二次;林林又喝了1/3;继续用豆浆将杯子斟满并搅拌均匀;重复上述过程;那么第四次后;林林共喝了一杯纯牛奶总量的多少用分数表示20.有一根1米长的木条;第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去;最后一次去掉上次余下木条的1/10..问:这根木条最后还剩下多长21.某小学一至六年级共有780人..在参加数学兴趣学习的学生中;恰有17分之8是六年级的学生;有23分之9是五年级的学生;那么;该校没有参加数学兴趣小组的学生有几人22.用甲、乙两种糖配成什锦糖;如果用3份甲种糖和2份乙种糖配成的1千克什锦糖;比用2份和3份乙种糖配成的1千克什锦糖贵1.32元;那么1千克甲种糖比1千克乙种糖贵多少元呢23.今有苹果95个;分给甲、乙两班同学吃..甲班分到的苹果有2/9是坏的;其他是好的;乙班分到的苹果有3/16是坏的;其他是好的..甲、乙两班分到的好苹果共有多少个24.一满杯水溶入10克糖;搅匀后喝去3分之2;添入6克糖;加满水;又搅匀;再喝去3分之2;添入6克糖;加满水;搅匀后;喝去3分之2;喝去之后杯里还剩下多少糖25.一份材料;甲单独打完要3小时;以单独打完要5小时;甲乙两人合作打完要多少小时26.打扫多功能教师;甲组同学1/3小时可以打扫完;乙组同学1/4小时可以打扫完;如果甲、乙合做;多少小时能打扫完整个教室27.一项工程;甲队单独做需要18天;乙独做15天完成;现决定由甲、乙二人共同完成;但中途甲有事请假四天;那么完成任务时甲实际做了多少天答案:1. 设水深xcm;则甲长4x;乙长7x/3;丙长5x/34x+7x/3+5x/3=360 x=45 水有45cm深2. 考点:逆推问题.分析:本题需要从问题出发;一步步向前推;小刚剩的2本书加上3本就是小明借走后的一半;那么就可以求出小明借走后的数量;同理可以求出小华借走后的数量;进而可求小明原有的数量.解答:解:小峰未借前有书:2+3÷1-1/2 =10本;小明未借之前有: 10+2÷1-1/2 =24本;小刚原有书: 24+1÷1-1/2 =50本.答:小明原有书50本.故答案为:50.3. 乙数是单位“1”;甲数是:1+1/3=4/3 乙数比甲数少: 1/3÷4/3=1/44. 解:设总数有35X个那么梨有35X3/5-17=21X-17个苹果有35X4/7-31=20X-31个20X-31+21X-17=35X 41X-48=35X 6X=48 X=8所以梨有21×6-17=109个苹果有20×6-31=89个5. 设分子为X;分母为X+4;则;X+9/X+13=7/9;解之;得X=5答:该分子为5/96. 这根绳子长20÷1/5-1/6=600cm7. 解:设小萍今年X岁;则妈妈今年3X岁3X-2=X-2+24 3X=X+24 2X=24 X=12最终答案:12+4=16岁8. 丙又取其余的一半;结果还剩一个;说明丙取前是1+1=2个乙取余下的一半多一个;则乙取前是2+12=6个甲取其中的一半少一个;则甲取前时6-12 = 10个因此;原来有10个下面是解题过程:设这袋苹果原来X个;则甲取走苹果的个数为X/2-1乙取走苹果的个数为X-X/2+1/2+1丙取走苹果的个数也是剩余的个数为:总数-甲取走-乙取走;即X-X/2+1-X-X/2+1/2-1/2=1 解方程得X=1012.设第一队为1;第二队为3/4;第三队为4/5;则三队和为1+3/4+4/5=51/20;可知;第一队人数应为20的倍数..第一队为20时;20+15+16+49=100;第一队为40时;40+30+32>100 舍去..所以;20+15+16+49=100为唯一解;即:第四队有49人..ps:也可将第一队设为k人;三队之和=51k / 20 ;显见;k应为20的倍数..只有k=20时有解.. 13.观众增加一倍;即原来只有一个人来看;现在是两个人来看.. 收入增加1/5;即现在两个人的总票价比原来一个人时单人票价多1/5;为151+1/5=18元平均每人18/2=9元比原来降低了15-9=6元降低了6/15=40%答:解:15-15×1+1 /5 ÷1+1 /2=15-15×6 /5 ÷3 /2=15-15×6/ 5 ×2 /3=15-15×4/ 5=15-12=3元答:一张门票降价是3元.故填:3.点评:此题关键是找准单位“1”;找准单位“1”对应的量;求单位“1”;用除法;告诉单位“1”;求单位“1”的几分之几;用乘法.降价前假设有10名观众;收入为L=15×10=150元现在有15人;降x元;15-x×15=150×1+1/5225-15x=18015x=45x=3;降价3元..14.设:甲加工x个;乙加工x-20;丙加工4/5x-205/6x-20+4/5x-20=x x=60乙加工=60-20=40丙加工=40×4/5=3218.男生有x人;女生有152-x10/11x=152-x-5 x=77男生77人;女生75人19.第一次1/3搅匀之后又是1/3;那么这次是2/31/3=2/9;剩下1-1/3-2/9=4/9再均匀之后1/3;那么这次是4/91/3=4/24;剩下4/9-4/27=8/27再均匀之后1/3;那么这次是8/271/3=8/81;剩下8/27-8/81=16/81那么一共喝了1-16/81=65/8120.11-1/51-1/61-1/7……1-1/100=4/55/66/7……99/100=4/100=1/2521.因为人数必须是整数;17和23的最小公倍数是391;所以参加兴趣小组的人数是391人没参加兴趣小组的人数=780-391=389人22.此题可以用赋值法第一次用3千克甲和2千克乙配成的什锦糖5千克第二次用2千克甲和3千克乙配成的什锦糖5千克则第一次比第二次总共贵1.32×5=6.6元第一次减去第二次;就是1kg甲种糖比1kg乙种糖贵的钱数即1kg甲种糖比1kg乙种糖贵1.32×5=6.6元23.根据“甲班分到的苹果有2/9是坏的”可以推测甲班分到苹果的个数是9的倍数;同理可推测乙班分到苹果的个数是16的倍数..设甲班分到9a个;乙班分到16b个;则;当a、b都是整数时;a=7;b=2即甲班分到9×7=63个;乙班分到16×2=32个.甲好苹果的个数:63×7/9=49个乙有好苹果的个数:32×13/16=26个甲、乙两班分到的好苹果共有:49+26=75个24.第一次喝去2/3;剩10×1-2/3=10/3克糖..再加6克糖得28/3克糖..加满水再喝去2/3;剩28/3×1-2/3=28/9克糖..再加6克糖得82/9克糖..加满水再喝去2/3;最后剩82/9×1-2/3=82/27克糖..25.甲每小时打1/3篇 1÷3=1/3乙每小时打1/5篇 1÷5=1/5一起打 1÷1/3+1/5=1÷8/15=15/8=1 7/8 小时26.设打扫多功能教室工作总量为X甲的速度为3X;乙的速度为4X共同打扫只需:X/3X+4X=1/7小时27.甲请假四天所以就相当于乙做4天;然后合作甲1天作1/18;乙是1/15;以乙4天作4/15;有1-4/15=11/15合作一天完成1/18+1/15=11/90;以甲做了11/15÷11/90=6天。
分数应用题奥数六年级一、基础分数应用题。
1. 一桶油,第一次用去(1)/(5),第二次比第一次多用去20千克,还剩下16千克,这桶油有多少千克?- 解析:设这桶油有x千克。
第一次用去(1)/(5)x千克,第二次用去(1)/(5)x + 20千克,可列出方程x-(1)/(5)x-((1)/(5)x + 20)=16。
化简得x-(2)/(5)x-20 = 16,(3)/(5)x=16 + 20,(3)/(5)x=36,解得x = 60千克。
2. 有一袋米,第一周吃了(2)/(5),第二周吃了12千克,还剩6千克。
这袋米原有多少千克?- 解析:设这袋米原有x千克。
第一周吃了(2)/(5)x千克,则x-(2)/(5)x-12 = 6。
化简得(3)/(5)x=18,解得x = 30千克。
3. 某工厂计划生产一批零件,第一天生产了总数的(1)/(5),第二天生产了450个,这时已经生产的个数与剩下个数的比是3:7。
这批零件一共有多少个?- 解析:已经生产的个数与剩下个数的比是3:7,那么已生产的占总数的(3)/(3 + 7)=(3)/(10)。
设这批零件一共有x个,则(1)/(5)x+450=(3)/(10)x。
移项得(3)/(10)x-(1)/(5)x = 450,(1)/(10)x=450,解得x = 4500个。
二、单位“1”转换的分数应用题。
4. 甲、乙、丙三人合做一批零件,甲做的是乙、丙所做总数的(1)/(2),乙做的是甲、丙总数的(1)/(3),丙做了600个。
这批零件有多少个?- 解析:甲做的是乙、丙所做总数的(1)/(2),那么甲做的占总数的(1)/(1 +2)=(1)/(3);乙做的是甲、丙总数的(1)/(3),那么乙做的占总数的(1)/(1+3)=(1)/(4)。
所以丙做的占总数的1-(1)/(3)-(1)/(4)=(5)/(12)。
设这批零件有x个,则(5)/(12)x = 600,解得x=1440个。
六年级奥数分数应用题练习1.一桶油, 第一次用去, 正好是4升, 第二次用去这桶油的, 还剩多少升?2.某工厂计划生产一批零件, 第一次完成计划的, 第二次完成计划的, 第三次完成450个, 结果超过计划的, 计划生产零件多少个?3.王师傅四天做完一批零件, 第一天和第二天共做了54个, 第二、第三和第四天共做了90个, 已知第二天做的个数占这批零件的。
这批零件一共多少个?4.六(1)班男生的一半和女生的共16人, 女生的一半和男生的共14人。
六(1)班共有学生多少人?5.甲、乙、丙、丁四人共植树60棵。
甲植树的棵数是其余三人的, 乙植树的棵数是其余三人的, 丙植树棵数是其余三人的, 丁植树多少棵?6.五(1)班原计划抽调的人参加“义务劳动”, 临时又有两人主动参加, 使实际参加劳动的人数是余下人数的, 原计划抽调多少人参加“义务劳动”?7、玩具厂三个车间共同做一批玩具。
第一车间做了总数的, 第二车间做了1600个, 第三车间做的个数是一、二车间总和的一半, 这批玩具共有多少个?8、有五个连续偶数, 已知第三个数比第一个数与第五个数的和的多18, 这五个偶数的和是多少?9、甲、乙两组共有54人, 甲组人数的与乙组人数的相等, 甲组比乙组少多少人?10、一个长方形的周长是130厘米。
如果长增加, 宽减少, 得到新的长方形的周长不变。
求原来长方形的长、宽各是多少?11.学校图书馆原有文艺书和科技书共5400本, 其中科技书比文艺书少, 最近又买来一批科技书, 这时科技书和文艺书本数的比是9 : 10。
图书馆买来科技书多少本?12、甲、乙两人原来的钱数的比是3 : 4, 后来甲给乙50元, 这时甲的钱数是乙的。
甲、乙原来各有多少元钱?13、甲、乙两种商品的价格比是7 :3, 如果它们的价格分别上涨70元, 那么, 它们的价格之比是7 :4。
甲商品原来的价格是多少元?14.一个最简分数的分子、分母之和为49, 分子加上4, 分母减去4后, 得到新的分数可以约简为, 求原来的分数。
第8讲 转化单位“1”(三)一、知识要点解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。
二、精讲精练【例题1】有两筐梨。
乙筐是甲筐的53,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的7/9。
甲、乙两筐梨共重多少千克?练习1:1、某小学低年级原有少先队员是非少先队员的31,后来又有39名同学加入少先队组织。
这样,少先队员的人数是非少先队员的87。
低年级有学生多少人?2、王师傅生产一批零件,不合格产品是合格产品的191,后来从合格产品中又发现了2个不合格产品,这时算出产品的合格率是94%。
合格产品共有多少个?【例题2】某学校原有长跳绳的根数占长、短跳绳总数的83。
后来又买进20根长跳绳,这时长跳绳的根数占长、短跳绳总数的127。
这个学校现有长、短跳绳的总数是多少根?练习2:1、阅览室看书的同学中,女同学占53,从阅览室走出5位女同学后,看数的同学中,女同学占74,原来阅览室一共有多少名同学在看书?2、一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中有奶糖多少千克?【例题3】有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩长度的53,每段布用去多少米?1、有两根塑料绳,一根长80米,另一根长40米,如果从两根上各剪去同样长的一段后,短绳剩下的长度是长绳剩下的72,两根绳各剪去多少米?2、今年父亲40岁,儿子12岁,当儿子的年龄是父亲的125时,儿子多少岁?3、仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数时面粉的43,仓库里原有大米和面粉各多少袋?【例题4】某商店原有黑白、彩色电视机共630台,其中黑白电视机占51,后来又运进一些黑白电视机。
这时黑白电视机占两种电视机总台数的30%,问:又运进黑白电视机多少台?1、书店运来科技书和文艺书共240包,科技书占61。
分数应用题分数应用题是指用分数表示倍数关系的实际问题.分析解答时需要弄清量率对应的关系,尤其当单位“1”确定之后,如何建立已知条件与所求问题间的量率对应关系, 对解决问题更为重要.在分析解答分数问题时,为了清晰地体现对应思想,常常采用画线段图的方法,使量率间的对应关系较为直观地反映出来.在解答逆向运用量率对应关系的分数问题时, 常常将表示单位“1”的量设为x,列方程解答,以使化逆为顺.例1:(1)修路队修一条路,第一天修了全长的13,第二天修了余下的13,还剩150米没有修,这条路全长多少米?(2)某届数学竞赛初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1516,不是小学高年级组的占总人数的12.那么小学中年级组参赛人数是多少名?例2:(1)有甲、乙两筐香蕉,如果从甲筐取出10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐余下的310比乙筐余下的13多5千克.甲、乙两筐各有香蕉多少千克?(2)小强和小林共有邮票400多张.如果小强给小林一些邮票,小强的邮票就比小林的少619;如果小林给小强同样多的邮票,则小林的邮票就比小强的少617.小强、小林各原有几张邮票?随堂练习11、(1)春风百货商店运到一批玩具,按原(出厂)价加上运费、营业费和利润出售,运费是原价的16,营业费与利润的和是原价的19,已知售价是161元,求出厂价多少元?(2)某中学初中共780人,该校去数学奥校学习的学生中,恰好有817是初一的学生,有923是初二的学生.那么该校初中学生中,没去奥校学习的有多少人?2、(1)小红和小娅共折了100只千纸鹤,折完后,小红将自己所折千纸鹤的16给了小娅,这时小娅的千纸鹤数量变为小红的13,那么小娅折了几只千纸鹤?(2)一堆水果分装两袋,从甲袋取走12,从乙袋取走12千克,则两袋所剩水果重量相等;这时如果从乙袋余下的水果中再取走12,则乙袋中还剩下乙袋原来重量的13.原来这堆水果共重多少千克?例3:(1)食堂运来一批大米,第一天吃了全部的25,第二天吃了余下的13,第三天又吃了余下的34,这时还剩下15千克.食堂运来大米多少千克?(2)小明买了一本故事书,第一天看了这本书的15,第二天看了余下的13多10页,已知剩下的比第一天看的多35页,那么这本故事书一共有多少页?(3)妈妈买了一些苹果,第一天吃去13又13个,第二天吃去剩下的14又14个,第三天吃去再剩下的13又13个,这时剩下3个苹果.问妈妈买了多少个苹果?每天各吃了几个苹果?。
20 道六年级奥数题一、分数应用题1. 一桶油,第一次用去这桶油的1/4,第二次用去余下的2/3,还剩10 千克,这桶油原来有多少千克?解:把这桶油原来的重量看作单位“1”。
第一次用后剩下 1 - 1/4 = 3/4,第二次用去余下的2/3,即用去了3/4×2/3 = 1/2,此时还剩 1 - 1/4 - 1/2 = 1/4,对应10 千克,所以这桶油原来有10÷1/4 = 40 千克。
二、比例问题2. 甲、乙两数的比是3:4,乙、丙两数的比是5:6,求甲、丙两数的比。
解:甲:乙= 3:4 = 15:20,乙:丙= 5:6 = 20:24,所以甲:丙= 15:24 = 5:8。
三、工程问题3. 一项工程,甲单独做12 天完成,乙单独做18 天完成,现在甲、乙合作,中途甲休息了几天,结果共用了9 天完成,甲休息了几天?解:设甲休息了x 天。
乙工作了9 天,完成的工作量是1/18×9 = 1/2。
甲工作了(9 - x)天,完成的工作量是1/12×(9 - x)。
两人完成的工作量之和为单位“1”,可列方程1/12×(9 - x)+1/2 = 1,解得x = 3。
四、行程问题4. 甲、乙两车同时从A、B 两地相对开出,相遇时甲、乙两车所行路程的比是5:4,已知甲每小时行45 千米,乙行完全程要8 小时,A、B 两地相距多少千米?解:相遇时时间相同,路程比等于速度比,所以乙的速度是45×4/5 = 36 千米/小时。
两地距离为36×8 = 288 千米。
五、浓度问题5. 在浓度为10%的盐水中加入20 克盐,浓度变为12%,原来盐水有多少克?解:设原来盐水有x 克。
可列方程(x×10% + 20)÷(x + 20)= 12%,解得x = 800。
六、图形问题6. 一个圆形花坛的周长是25.12 米,在花坛周围修一条宽1 米的小路,求小路的面积。
六年级奥数8 姓名
1、(例)足球门票15元一张,降价后观众增加一倍,收入增加
51,问一张门票降价多少元?
2、五年级三个班的人数相等。
一班的男生人数和二班女生人数相等,三班的男生是全部男生的5
2,全部女生人数占全年级人数的几分之几?
3、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?
4、某幼儿园中班的小朋友平均身高115厘米,黄其中男孩比女孩多
51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?
5、(例)一辆汽车从甲地开往乙地,如果把车速提高
51,可以比原来时间提前1小时到达;如果以原速行驶120千米后,再将速度提高
41,则可提前40分钟到达。
那么甲、乙两地相距多少千米?
6、汽车从A 地到B 地,如果速度比预定的每小时慢5千米,到达的时间比预定的多
81;如果速度比预定的增加31,到达的时间比预定的早1小时。
求A 、B 之间的路程。
7、王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低
51,结果比原计划推迟20分钟完成任务。
这批零件有多少个?
8、一支解放军部队从驻地乘车赶往某地抗洪抢险,如果车速比原来提高
91,就可以比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高
31,就可比预定时间提前30分钟赶到。
这支解放军部队的行程是多少千米?
9、(例)甲书架上的书是乙书架上的
65,两个书架上各借出154本后,甲书架上的书是乙书架上的74,甲、乙两书架上原有书各多少本?
10、一轮船从甲港开往乙港,第一天行了全程的
21多16千米,第二天行的路程是第一天的8
7, 这时离乙港还有15千米,甲、乙两港之间的距离是多少?
11、某无线电厂有两个仓库。
第一仓库储存的电视机是第二仓库的3倍。
如果从第一仓库取出30台存入第二仓库,则第二仓库就是第一仓库的
94。
两个仓库原来各有电视机多少台?
12、某工厂第一车间的人数比第二车间的人数的
54少30人。
如果从第二车间调10人到第一车间,则第一车间的人数就是第二车间的
43。
求原来每个车间的人数。
13、(例)阅览室看书的学生中,男生比女生多10人,后来男生减少41,女生减少6
1,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?
14、某小学去年参加无线电小组的同学比参加航模小组的同学多5人。
今年参加无线电小组的同学减少1/5,参加航模小组的人数减少1/10,这样两个组的同学一样多。
去年两个小组共有多少人?
15、某校有学生465人,其中女生的2/3比男生的4/5少20人,男生比女生少多少人?
16、某车间昨天生产的甲种零件比乙种零件多700个。
今天生产的甲种零件比昨天少10
1,生产的乙种零件比昨天增加20
3,两种零件共生产了2065个。
昨天两种零件共生产了多少个?
17、(例)单独完成某项工程,甲、乙、丙三人分别需10小时、15小时、20小时,开始三人一起干,后因工作需要,甲中途调走了,结果共用了6小时完成了这项工作。
问甲实际工作了多少小时?
18、甲、乙合做一件工作要15天才能完成,现在甲、乙合做10天后,再由乙做6天,还剩下这件工作的101,甲单独完成这件工作要多少天?
19、某工程,甲队单独做24天完成,乙队单独做30天完成。
甲、乙两队合做8天后,余下的工作由丙队单独做,又做了6天才完成。
问这项工程由丙队单独做需几天完成?
20、一项工程,甲队独做20天完成,乙队独做30天完成。
现由两队一起做,其间甲队休息了3天,乙队也休息了若干天,这样从开始到工程完成共用了16天。
问乙队休息了多少天?。