2020年辽宁省朝阳市中考数学试题及答案.doc
- 格式:doc
- 大小:343.00 KB
- 文档页数:11
辽宁省朝阳市2020年中考数学试卷一、选择题(共10题;共20分)1.的绝对值是()A. B. 7 C. D.2.如图所示的主视图对应的几何体是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.计算的结果是()A. 0B.C.D.5.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于,则这种品牌衬衫最多可以打几折?()A. 8B. 6C. 7D. 96.某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A. 300,150,300B. 300,200,200C. 600,300,200D. 300,300,3007.如图,四边形是矩形,点D是BC边上的动点(点D与点B、点C不重合),则的值为()A. 1B.C. 2D. 无法确定8.如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为()A. -12B. -42C. 42D. -219.某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A. B.C. D.10.如图,在正方形中,对角线相交于点O,点E在BC边上,且,连接AE 交BD于点G,过点B作于点F,连接OF并延长,交BC于点M,过点O作交DC于占N,,现给出下列结论:① ;② ;③ ;④ ;其中正确的结论有()A. ①②③B. ②③④C. ①②④D. ①③④二、填空题(共6题;共6分)11.在全国上下众志成城抗疫情、保生产、促发展的关键时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位将“580亿元”用科学记数法表示为________元.12.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是,方差分别是:,这两名同学成绩比较稳定的是________(填“甲”或“乙”).13.已知关于x、y的方程的解满足,则a的值为________.14.抛物线与x轴有交点,则k的取值范围是________.15.如图,点是上的点,连接,且,过点O作交于点D,连接,已知半径为2,则图中阴影面积为________.16.如图,动点P从坐标原点出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点,第2秒运动到点,第3秒运动到点,第4秒运动到点…则第2068秒点P所在位置的坐标是________.三、解答题(共9题;共93分)17.先化简,再求值:,其中.18.如图所示的平面直角坐标系中,的三个顶点坐标分别为,请按如下要求画图:( 1 )以坐标原点O为旋转中心,将顺时针旋转90°,得到,请画出;( 2 )以坐标原点O为位似中心,在x轴下方,画出的位似图形,使它与的位似比为.19.由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A 网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,m的值是________,D对应的扇形圆心角的度数是________;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.20.某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.21.为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是,第二组乘公交车,速度是,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号)22.如图,以AB为直径的经过的顶点C,过点O作交于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使.(1)求证:EC是的切线(2)若的半径是3,,求CE的长.23.某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x (元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:(1)直接写出y与x的关系式________;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.24.如图,在中,,M是AC边上的一点,连接BM,作于点P,过点C作AC的垂线交AP的延长线于点E.(1)如图1,求证:;(2)如图2,以为邻边作,连接GE交BC于点N,连接AN,求的值;(3)如图3,若M是AC的中点,以为邻边作,连接GE交BC于点M,连接AN,经探究发现,请直接写出的值.25.如图,抛物线与x轴交于点A,点B,与y轴交于点C,抛物线的对称轴为直线,点C坐标为.(1)求抛物线表达式;(2)在抛物线上是否存在点P,使,如果存在,求出点P坐标;如果不存在,请说明理由;(3)在(2)的条件下,若点P在x轴上方,点M是直线BP上方抛物线上的一个动点,求点M到直线BP的最大距离;(4)点G是线段AC上的动点,点H是线段BC上的动点,点Q是线段AB上的动点,三个动点都不与点重合,连接,得到,直接写出周长的最小值.答案解析部分一、选择题1.【解析】【解答】的绝对值是,故答案为:C.【分析】根据绝对值的定义求解即可.2.【解析】【解答】A:的主视图为,故此选项错误;B:的主视图为,故此选项正确;C:的主视图为,故此选项错误;D:的主视图为,故此选项错误;答案故答案为:B【分析】根据主视图是在正面内得到的由前向后观察物体的视图,逐一判断即可.3.【解析】【解答】A. ,故不正确;B. ,故不正确;C. ,正确;D. ,故不正确;故答案为:C.【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则、合并同类项逐项计算即可.4.【解析】【解答】解:原式=== .故答案为:B.【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.5.【解析】【解答】设可以打x折出售此商品,由题意得:240 ,解得x 6,故答案为:B【分析】根据售价-进价=利润,利润=进价利润率可得不等式,解之即可.6.【解析】【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是;平均数是,故答案为:D.【分析】分别根据众数,中位数的概念和平均数的求法计算即可.7.【解析】【解答】解:如图,过点D作交AO于点E,四边形是矩形故答案为:A.【分析】过点D作交AO于点E,由平行的性质可知,等量代换可得的值.8.【解析】【解答】解:∵当x=0时,,∴A(0,4),∴OA=4;∵当y=0时,,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE =∠BAO.在△AOB和△BEC中,,∴△AOB≌△BEC,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C点坐标为(-7,3),∵点A在反比例函数的图象上,∴k=-7×3=-21.故答案为:D.【分析】利用一次函数解析式,由y=0求出对应的x的值,可得到点B的坐标,即可求出OB的长;过点C 作CE⊥x轴于E,利用垂直的定义及正方形的性质,去证明AB=BC,∠CBE =∠BAO;再利用AAS证明△AOB≌△BEC,利用全等三角形的对应边相等,可求出BE,OE的长,即可得到点C的坐标;然后利用待定系数法求出k的值。
辽宁省朝阳市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -0.5的倒数是()A . -2B . 0.5C . 2D . -0.52. (2分) (2016七上·黄陂期中) 下列单项式中,与ab2是同类项的是()A . ﹣ ab2B . a2b2C . 2a2bD . 3ab3. (2分)连接海口、文昌两市的跨海大桥,近日获国家发改委批准建设,该桥估计总投资1 460 000 000。
数据1 460 000 000用科学记数法表示应是()A . 146×107B . 1.46×109C . 1.46×1010D . 0.146×10104. (2分)(2017·温州模拟) 如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A .B .C .D .5. (2分)(2018·南山模拟) 下列说法正确的是()A . 要了解人们对“低碳生活”的了解程度,宜采用普查方式B . 一组数据5,5,6,7的众数和中位数都是5C . 必然事件发生的概率为100%D . 若甲组数据的方差是3.4,乙组数据的方差是1.68,则甲组数据比乙组数据稳定6. (2分) (2020八上·相山期末) 在平面直角坐标系中,点M(2,-3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分) (2019九上·句容期末) 下列关于二次函数y=-x2-2x+3说法正确的是()A . 当时,函数最大值4B . 当时,函数最大值2C . 将其图象向上平移3个单位后,图象经过原点D . 将其图象向左平移3个单位后,图象经过原点8. (2分)下列命题中,正确的命题是()A . 两条对角线相等的四边形是矩形B . 两条角线互相垂直且相等的四边形是正方形C . 两条对角线相互垂直的四边形是菱形D . 两条对角线互相平分的四边形是平行四边形9. (2分)(2017·海南) 如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A . 14B . 16C . 18D . 2010. (2分)为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)若x,y为实数,且y=++.求x+y的值________.12. (1分)(2017·沭阳模拟) 如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是________ 边形.13. (1分) (2017七下·湖州月考) 如图,∠1=80°,∠2=100°,∠3=76°.则∠4的度数是________.14. (1分)(2016·文昌模拟) 如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=________cm.15. (1分)(2018·镇江) 已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是________.16. (1分)在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0 , b0 ,c0 ,记为G0=(a0 , b0 , c0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为Gn=(an , bn , cn).小明发现:若G0=(4,8,18),则游戏永远无法结束,那么G2015= ________三、解答题 (共4题;共30分)17. (5分)(2016·钦州) 计算:|﹣8|+(﹣2)3+tan45°﹣.18. (5分)(2018·南岗模拟) 先化简,再求代数式(1﹣)÷ 的值,其中x=2cos30°﹣tan45°.19. (5分)如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.20. (15分)如图,已知一次函数y1=kx+b的图象与反比例函数y= 的图象的两个交点是A(﹣2,﹣4),C(4,n),与y轴交于点B,与x轴交于点D.(1)求反比例函数y= 和一次函数y1=kx+b的解析式;(2)连接OA,OC,求△AOC的面积;(3)根据图象,直接写出y1>y2时x的取值范围.四、实践应用题 (共4题;共30分)21. (10分)(2017·西安模拟) 某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛).游戏规则如下:在两个不透明的盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两个球都是白球,乙胜,否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.根据上述规则回答下列问题:(1)从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?(2)该游戏公平吗?请用列表或树状图等方法说明理由.22. (10分)已知点A(m1 , n1),B(m2 , n2)(m1<m2)在一次函数y=kx+b的图象上.(1)若n1﹣n2+ (m1﹣m2)=0,求k的值;(2)若m1+m2=3b,n1+n2=kb+4,b>2.试比较n1和n2的大小,并说明理由.23. (5分)如图,已知在△ABC中,AB=AC=2,sin∠B=, D为边BC的中点,E为边BC的延长线上一点,且CE=BC.联结AE,F为线段AE的中点.求:线段DE的长;24. (5分) (2016八上·桂林期末) 如图,已知线段a,h(a>h),求作等腰三角形ABC,使AB=AC=a,底边BC上的高AD=h(保留作图痕迹,不要求写出作法).五、推理论证题 (共1题;共10分)25. (10分)如图,在平面直角坐标系中,O为坐标原点,点N的坐标为(20,0),点M在第一象限内,且OM=10,sin∠MON= .求:(1)点M的坐标;(2)cos∠MNO的值.六、拓展探索题 (共1题;共15分)26. (15分)(2019·宿迁) 如图,抛物线交轴于、两点,其中点坐标为,与轴交于点 .(1)求抛物线的函数表达式;(2)如图①,连接,点在抛物线上,且满足 .求点的坐标;(3)如图②,点为轴下方抛物线上任意一点,点是抛物线对称轴与轴的交点,直线、分别交抛物线的对称轴于点、 .请问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共30分)17-1、18-1、19-1、20-1、20-2、20-3、四、实践应用题 (共4题;共30分) 21-1、21-2、22-1、22-2、23-1、24-1、五、推理论证题 (共1题;共10分)25-1、25-2、六、拓展探索题 (共1题;共15分)26-1、26-2、26-3、。
2020年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−13的绝对值是()A. 13B. −13C. 3D. −32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a2C. 5a−3a=2aD. (−ab2)2=−a2b44.一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. 16B. 13C. 12D. 236.不等式组{3+x>12x−3≤1的整数解的个数是()A. 2B. 3C. 4D. 57. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−508. 一个零件的形状如图所示,AB//DE ,AD//BC ,∠CBD =60°,∠BDE =40°,则∠A 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图,矩形ABCD 的顶点D 在反比例函数y =kx (x >0)的图象上,点E(1,0)和点F(0,1)在AB 边上,AE =EF ,连接DF ,DF//x 轴,则k 的值为( )A. 2√2B. 3C. 4D. 4√210. 如图,二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,则以下四个结论中:①abc >0,②2a +b =0,③4a +b 2<4ac ,④3a +c <0.正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.12.分解因式:ab2−9a=______.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是______.(填“甲”或“乙”)14.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是______.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径MN的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为______.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是______.17. 一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为______cm . 18. 如图,∠MON =45°,正方形ABB 1C ,正方形A 1B 1B 2C 1,正方形A 2B 2B 3C 2,正方形A 3B 3B 4C 3,…,的顶点A ,A 1,A 2,A 3,…,在射线OM 上,顶点B ,B 1,B 2,B 3,B 4,…,在射线ON 上,连接AB 2交A 1B 1于点D ,连接A 1B 3交A 2B 2于点D 1,连接A 2B 4交A 3B 3于点D 2,…,连接B 1D 1交AB 2于点E ,连接B 2D 2交A 1B 3于点E 1,…,按照这个规律进行下去,设△ACD 与△B 1DE 的面积之和为S 1,△A 1C 1D 1与△B 2D 1E 1的面积之和为S 2,△A 2C 2D 2与△B 3D 2E 2的面积之和为S 3,…,若AB =2,则S n 等于______.(用含有正整数n 的式子表示)三、解答题(本大题共8小题,共96.0分)19. 先化简,再求值:(x −1−x 2x+1)÷xx 2+2x+1,其中x =3.20. 某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有______人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)23.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?24.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交26.如图,抛物线y=ax2+94于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;),点M在抛物线上,点N在直线BC上.当(3)在(2)的条件下,点F的坐标为(0,72以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.答案和解析1.【答案】A【解析】解:|−13|=13.故选:A.依据绝对值的性质求解即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.【答案】C【解析】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a4b2,故D错误.故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.【答案】D【解析】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23. 故选:D .根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】C【解析】解:解不等式3+x >1,得:x >−2, 解不等式2x −3≤1,得:x ≤2, 则不等式组的解集为−2<x ≤2,所以不等式组的整数解有−1、0、1、2这4个, 故选:C .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】B【解析】解:∵AB//DE ,AD//BC , ∴∠ABD =∠BDE ,∠ADB =∠CBD ,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°−∠ADB−∠ABD=80°,故选:B.根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF//x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=√2,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=√2,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),(x>0)的图象上,∵矩形ABCD的顶点D在反比例函数y=kx∵k=4.则k的值为4.故选:C.过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.【答案】B【解析】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,=1,即−b2a所以b=−2a,所以b+2a=0,所以②正确;③因为抛物线与x轴有2个交点,所以Δ>0,即b2−4ac>0,所以b2−4ac+4a>4a,所以4a+b2>4ac+4a,所以③错误;④当x=−1时,y<0,即a−b+c<0,因为b=−2a,所以3a+c<0,所以④正确.所以正确的个数是②④2个.故选:B.①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;=1,可得b=−2a,进而可以判断;②根据抛物线对称轴是直线x=1,即−b2a③根据抛物线与x轴有2个交点,可得Δ>0,即b2−4ac>0,进而可以判断;④当x=−1时,y<0,即a−b+c<0,根据b=−2a,可得3a+c<0,即可判断.本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.11.【答案】4.5×108【解析】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.【答案】a(b+3)(b−3)【解析】解:原式=a(b2−9)=a(b+3)(b−3),故答案为:a(b+3)(b−3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.13.【答案】乙【解析】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2=>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义.14.【答案】k >−1【解析】解:∵关于x 的一元二次方程x 2−2x −k =0有两个不相等的实数根, ∴△=(−2)2+4k >0, 解得k >−1. 故答案为:k >−1.根据判别式的意义得到△=(−2)2+4k >0,然后解不等式即可.此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】12【解析】解:∵AB =5,AC =8,AF =AB , ∴FC =AC −AF =8−5=3, 由作图方法可得:AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△AFD 中 {AB =AF∠BAD =∠FAD AD =AD, ∴△ABD≌△AFD(SAS), ∴BD =DF ,∴△DFC 的周长为:DF +FC +DC =BD +DC +FC =BC +FC =9+3=12. 故答案为:12.直接利用基本作图方法结合全等三角形的判定与性质进而得出BD =DF ,即可得出答案. 此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.【答案】66°【解析】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°−60°=48°,∵AE=AF,∴∠AE=∠AFE=12×(180°−48°)=66°,故答案为:66°.根据正五边形和电视背景下的性质得到∠EAF=108°−60°=48°,根据等腰三角形的性质即可得到结论.本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.【答案】(3√3+3)或(3√3−3)【解析】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B=AEAB =12,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG=BHcos30∘=2√3,∴CG=BC−BG=6−2√3,∵AB//CD,∴∠GCF=∠B=30°,∴CF=CG⋅cos30°=(6−2√3)×√32=3√3−3,∴DF=DC+CF=6+3√3−3=(3√3+3)cm;②如图2,BE=AE=3,同理可得DF=3√3−3.综上所述:则DF的长为(3√3+3)或(3√3−3)cm.故答案为:(3√3+3)或(3√3−3).根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.【答案】149×4n−1【解析】解:设△ADC的面积为S,由题意,AC//B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴S△ADCS△B1B2D =(ACB1B2)2=14,∴S△B1B2D=4S,∵CDDB1=ACB1B2=12,CB1=2,∴DB1=43,同法D 1B 2=83, ∵DB 1//D 1B 2, ∴DEEB 2=DB 1D1B 2=12,∴S △DB 1E =4S3, ∴S 1=S +4S 3=7S 3,∵△A 1C 1D 1∽△ACD , ∴S △A 1C 1D 1S △ACD=(A 1C 1AC)2=14, ∴S △A 1C 1D 1=4S , 同法可得,S △D 1B 1E 1=16S 3, ∴S 2=4S +16S 3=28S 3=7S 3×4,…S n =7S 3×4n−1,∵S =12×2×23=23, ∴S n =149×4n−1.故答案为:149×4n−1.设△ADC 的面积为S ,利用相似三角形的性质求出S 1,S 2,…S n 与S 的关系即可解决问题.本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.19.【答案】解:(x −1−x 2x+1)÷xx 2+2x+1=[(x −1)(x +1)x +1−x 2x +1]⋅(x +1)2x =x 2−1−x 2x +1⋅(x +1)2x=−x+1x,当x =3时,原式=−3+13=−43.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60【解析】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60−9−15−12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×2460=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是812=23.(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设B种书架的单价为x元,根据题意,得600x+20=480x.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15−m)≤1400.解得m≤10.答:最多可购买10个A种书架.【解析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15−m)个,根据题意列出不等式并解答.本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.【答案】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=AMCM,∴AM=CM⋅tan∠ACM=60×√33=20√3(米),答:大桥主架在桥面以上的高度AM为20√3米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=BMCM,∴MB=CM⋅tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20√3≈50(米)答:大桥主架在水面以上的高度AB约为50米.【解析】(1)根据正切的定义求出AM ;(2)根据正切的定义求出BM ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式是y =kx +b(k ≠0),{12k +b =50014k +b =400,得{k =−50b =1100, 即y 与x 之间的函数关系式为y =−50x +1100; (2)由题意可得,w =(x −10)y =(x −10)(−50x +1100)=−50(x −16)2+1800,∵a =−50<0∴w 有最大值∴当x <16时,w 随x 的增大而增大, ∵12≤x ≤15,x 为整数, ∴当x =15时,w 有最大值,∴w =−50(15−16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【解析】(1)根据题意和表格中的数据,可以求得y 与x 之间的函数关系式; (2)根据题意,可以得到w 与x 的函数关系式,然后根据二次函数的性质,可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.【答案】(1)证明:连接OD ,∵OC =OD , ∴∠OCD =∠ODC , ∵AC 是直径, ∴∠ADC =90°, ∵∠EDA =∠ACD ,∴∠ADO +∠ODC =∠EDA +∠ADO , ∴∠EDO =∠EDA +∠ADO =90°, ∴OD ⊥DE , ∵OD 是半径,∴直线DE 是⊙O 的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB,AC∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF,AD∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,∵在Rt△ABF中,∴BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°−∠DBC∠CBH=90°−∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2−BH2=98,∴BD=7√2.【解析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF 即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.本题考查切线的判定和性质,圆周角定理,圆内接四边形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,AB,∴OE=OA=12∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,AB,∴OD=OA=12∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图1,延长ED到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°−∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO−∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,ME,OD⊥ME,∴OD=12∵OE=1ME,2∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长ED到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°−90°−90°−∠OBE−∠BAD=360°−∠OBE=360°−∠OAM−∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°−∠OAM−∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=1ME,∠DOE=90°,2BC=2√2,在Rt△BCE中,CE=√22过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°−∠ACD−∠ACB−∠BCE=180°−45°−60°−45°= 30°,CE=√2,∴EH=12根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,DE=2√7,∴OD=√22②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°,CE=√2,∴EH=12根据勾股定理得,CH=√6,∴DH=CD−CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.【解析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,五边形的内角和,判断出∠DAM=∠DCE是解本题的关键.26.【答案】解:(1)∵抛物线y=ax2+94x+c经过点A(−1,0),C(0,3),∴{a−94+c=0c=3,解得:{a=−34c=3,∴抛物线的解析式为:y=−34x2+94x+3;(2)如图1,过点C作CE//x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),∵C(0,3),∴DH =−34t 2+94t , ∵点B 是y =−34x 2+94x +3与x 轴的交点,∴−34x 2+94x +3=0,解得x 1=4,x 2=−1,∴B 的坐标为(4,0),∴OB =4,∴−34t 2+94t3=t 4, 解得t 1=0(舍去),t 2=2,∴点D 的纵坐标为:−34t 2+94t +3=92,则点D 坐标为(2,92);(3)设直线BC 的解析式为:y =kx +b ,则{4k +b =0b =3,解得:{k =−34b =3, ∴直线BC 的解析式为:y =−34x +3,设N(m,−34m +3),分两种情况:①如图2,以DF 为边,N 在x 轴的上方时,四边形DFNM 是平行四边形,∵D(2,92),F(0,72),∴M(m +2,−34m +4),代入抛物线的解析式得:−34(m +2)2+94(m +2)+3=−34m +4,解得:m =±√63,∴N(√63,3−√64)或(−√63,3+√64);②如图3,以DF为边,N在x轴的下方时,四边形DFMN是平行四边形,同理得:M(m−2,−34m+2),代入抛物线的解析式得:−34(m−2)2+94(m−2)+3=−34m+2,解得:m=4±√663,∴N(4+√663,−√664)或(4−√663,√664);综上,点N的坐标分别为:(√63,3−√64)或(−√63,3+√64)或(4+√663,−√664)或(4−√663,√664).【解析】(1)把点A(−1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=−34x+3,设N(m,−34m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、平行四边形的性质以及解一元二次方程,解题的关键是:(1)根据点A、C的坐标,利用待定系数法求出二次函数解析式;(2)利用相似三角形可解决问题;(3)分N在x轴的上方和下方两种情况,表示M和N两点的坐标,确定关于m的一元二次方程.。
辽宁省朝阳市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·临沭期末) 如果,那么a、b两个有理数一定是()A . 都等于0B . 一正一负C . 相等D . 相等或互为相反数2. (2分)(2017·西华模拟) 如图,CB平分∠ECD,AB∥CD,AB与EC交于点A.若∠B=40°,则∠EAB的度数为()A . 50°B . 60°C . 70°D . 80°3. (2分) (2016七上·连城期末) 1500万(即15000000)这个数用科学记数法可表示为()A . 1.5×105B . 1.5×106C . 1.5×107D . 1.8×1084. (2分)(2014·镇江) 一个圆柱如图放置,则它的俯视图是()A . 三角形B . 半圆C . 圆D . 矩形5. (2分)(2012·茂名) 下列调查中,适宜采用全面调查(普查)方式的是()A . 对一批圆珠笔使用寿命的调查B . 对全国九年级学生身高现状的调查C . 对某品牌烟花爆竹燃放安全的调查D . 对一枚用于发射卫星的运载火箭各零部件的检查6. (2分) (2016九上·卢龙期中) 式子在实数范围内有意义,则x的取值范围是()A . x<1B . x≥1C . x≤﹣1D . x>17. (2分) (2017七下·邵东期中) 方程组:,由②﹣①,得正确的方程是()A . 3x=10B . x=5C . 3x=﹣5D . x=﹣58. (2分)如图,直线a,b被直线c所截,a∥b,∠1=130°,则∠2的度数是()A . 130°B . 60°C . 50°D . 40°9. (2分)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x米,则下面所列方程正确的是()A . =B . -20=C . -=20D . +=2010. (2分) (2016九上·平定期末) 如图,正比例函数y1=k1x的图象与反比例函数y2= 的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A . x<-2或x>2B . x<-2或0<x<2C . -2<x<0或0<x<2D . -2<x<0或x>2二、填空题 (共5题;共5分)11. (1分)(2017·抚州模拟) 分解因式:ab﹣a2=________.12. (1分)当m=________时,xm﹣2•xm+3=x9成立.13. (1分) (2018九上·金华期中) 农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小金妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小金随意吃了一个,则吃到红豆棕的概率为________.14. (1分) (2018九上·南昌期中) 如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k的最小整数值是________.15. (1分) (2017八下·萧山期中) 一个多边形的内角和是它的外角的和的2倍,这个多边形的边数是________三、解答题 (共8题;共92分)16. (5分)(2012·深圳) 计算:|﹣4|+ ﹣﹣cos45°.17. (5分)(2017·槐荫模拟) 求不等式组的解集并把解集表示在数轴上.18. (12分) (2018九上·灵石期末)(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为________.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.19. (15分) (2020九上·莘县期末) 某化工材料经销公司购进一种化工原料若干千克价格为每千克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100在销售过程中,每天还要支付其他费用450元。
2020年辽宁省朝阳市中考数学试题(word 版含答案)数 学 试 卷一、选择题〔以下各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面表格内,每题3分,共24分〕 1.2的倒数的相反数是〔 〕A .12B .12-C .2D .2- 2.如图,AB CD ∥,假设20A ∠=°,35E ∠=°,那么∠C等于〔 〕 A .20° B .35° C .45° D .55°3.某市水质检测部门2018年全年共监测水量达28909.6万吨.将数字28909.6用科学记数法〔保留两位有效数字〕表示为〔 〕 A .42.810⨯B .42.910⨯C .52.910⨯D .32.910⨯4.以下运算中,不正确的选项是〔 〕 A .3332a a a +=B .235a a a =· C .329()a a -=D .3222a a a ÷=〕 .6.以下事件中,属于不确定事件的有〔 〕①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员 A .①②③ B .①③④ C .②③④ D .①②④7.以下讲法中,正确的选项是〔 〕 A .假如a b c d b d ++=,那么a cb d= B 3C .当1x <D .方程220x x +-=的根是2112x x =-=,8.以下命题中,不正确的选项是〔 〕A .n 边形的内角和等于(2)180n -·° B .边长分不为345,,,的三角形是直角三角形 C .垂直于弦的直径平分弦所对的两条弧 D .两圆相切时,圆心距等于两圆半径之和二、填空题〔每题3分,共24分〕9.如图是某地5月上旬日平均气温统计图,这些气温数据的众数是__________,中位数是__________,极差是__________.A BC D EF 〔第2题图〕〔第9题图〕 A . B . C . D .10.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥于点F .假设2BC =,那么DE DF +=_____________.11.如图是小明从学校到家里行进的路程S 〔米〕与时刻t 〔分〕的函数图象.观看图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走的快,其中正确的有___________〔填序号〕.12.如图,AC 是汽车挡风玻璃前的刮雨刷.假如65cm AO =,15cm CO =,当AC 绕点O 旋转90°时,那么刮雨刷AC 扫过的面积为____________cm 2.13.菱形的一个内角为60°,一条对角线的长为条对角线的长为______________.14.如图,正比例函数y =与反比例函数ky x=〔0k ≠〕的图象在第一角限内交于点A ,且2AO =,那么k =____________.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部〔点O 〕20米的A 处,那么小明的影长为___________米.16.以下是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________. 三、〔每题8分,共16分〕17.先化简,再求值:2112x x x x x ⎛⎫++÷- ⎪⎝⎭,其中1x =.F EB CDA〔第10题图〕10 20〔第11题A O C ′CA ′〔第12题图〕〔第14题图〕 O AMB 〔第15题图〕18.在1010⨯的网格纸上建立平面直角坐标系如下图,在Rt ABO △中,90OAB ∠=°,且点B 的坐标为(34),.〔1〕画出OAB △向左平移3个单位后的111O A B △,写出点1B 的坐标;〔2〕画出OAB △绕点O 顺时针旋转90°后的22OA B △,并求点B 旋转到点2B 时,点B 通过的路线长〔结果保留π〕四、〔每题10分,共20分〕19.袋中装有除数字不同其它都相同的六个小球,球上分不标有数字1,2,3,4,5,6. 〔1〕从袋中摸出一个小球,求小球上数字小于3的概率;〔2〕将标有1,2,3数字的小球取出放入另外一个袋中,分不从两袋中各摸出一个小球,求数字之和为偶数的概率.〔要求用列表法或画树状图求解〕〔第18题图〕20.如图,O ⊙是Rt ABC △的外接圆,点O 在AB 上,BD AB ,点B 是垂足,OD AC ∥,连接CD .求证:CD 是O ⊙的切线.五、〔每题10分,共20分〕 21.在改革开放30年纪念活动中,某校学生会就同学们对我国改革开放30年所取得的辉煌成就的了解程度进行了随机抽样调查,并将调查结果绘制成如下图的统计图的一部分.依照统计图中的信息,解答以下咨询题:〔1〕本次抽样调查的样本容量是___________.调查中〝了解专门少〞的学生占_________%;〔2〕补全条形统计图;〔3〕假设全校共有学生1300人,那么该校约有多少名学生〝专门了解〞我国改革开放30年来取得的辉煌成就?〔4〕通过以上数据分析,请你从爱国教育的角度提出自己的观点和建议.D B A OC 〔第20题图〕不了解10% 10%专门了差不多了解了解专门少不了解 了解专门差不多了专门了解 了解程度22.海峡两岸实现〝三通〞后,某水果销售公司从台湾采购苹果的成本大幅下降.请你依照两位经理的对话,运算出该公司在实现〝三通〞前到台湾采购苹果的成本价格.六、〔每题10分,共20分〕23.一艘小船从码头A动身,沿北偏东53°方向航行,航行一段时刻到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求现在小船与码头之间的距离〔2 1.43 1.7≈,≈〝三通〞前买台湾苹果的成本价格是今年的2倍同样用10万元采购台湾苹果,今年却比〝三通〞前多购买了2万公斤B AC53°23°22°北北〔第23题图〕24.某学校打算租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.〔1〕求出y 〔元〕与x 〔辆〕之间的函数关系式,指出自变量的取值范畴;〔2〕假设该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试咨询预支的租车费用是否能够结余?假设有结余,最多可结余多少元?七、〔此题12分〕25.如图①,在梯形ABCD 中,CD AB ∥,90ABC ∠=°,60DAB ∠=°,2AD =,4CD =.另有一直角三角形EFG ,90EFG ∠=°,点G 与点D 重合,点E 与点A 重合,点F 在AB 上,让EFG △的边EF 在AB 上,点G 在DC 上,以每秒1个单位的速度沿着AB 方向向右运动,如图②,点F 与点B 重合时停止运动,设运动时刻为t 秒. 〔1〕在上述运动过程中,请分不写出当四边形FBCG 为正方形和四边形AEGD 为平行四边形时对应时刻t 的值或范畴;〔2〕以点A 为原点,以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴,建立如下图③的坐标系.求过A D C ,,三点的抛物线的解析式;〔3〕探究:延长EG 交〔2〕中的抛物线于点Q ,是否存在如此的时刻t 使得ABQ △的面积与梯形ABCD 的面积相等?假设存在,求出t 的值;假设不存在,请讲明理由.D 〔G 〕CBFA 〔E 〕 图①DCB F A E G图③ 〔第25题图〕八、〔此题14分〕26.如图①,点A ',B '的坐标分不为〔2,0〕和〔0,4-〕,将A B O ''△绕点O 按逆时针方向旋转90°后得ABO △,点A '的对应点是点A ,点B '的对应点是点B .〔1〕写出A ,B 两点的坐标,并求出直线AB 的解析式; 〔2〕将ABO △沿着垂直于x 轴的线段CD 折叠,〔点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合〕如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为〔0x ,〕,CDE △与ABO △重叠部分的面积为S .i 〕试求出S 与x 之间的函数关系式〔包括自变量x 的取值范畴〕;ii 〕当x 为何值时,S 的面积最大?最大值是多少?iii 〕是否存在如此的点C ,使得ADE △为直角三角形?假设存在,直截了当写出点C 的坐标;假设不存在,请讲明理由.009年辽宁朝阳市初中升学考试 数学参考答案及评分标准二、填空题〔每题3分,共24分〕9.26,26,4 10 11.①②④ 12.1 000π 13.2或6 14 15.5 16.101200〔原一列数可化为22、34、46、58、……〕 17.〔此题总分值8分〕解:原式=221212x x x x x+--÷ ···································································· 〔2分〕 =12(1)(1)x xx x x ++- ················································································· 〔4分〕=21x -. ································································································ 〔6分〕 〔第26题图〕将1x =代入上式得原式== ······························· 〔8分〕 18.〔此题总分值8分〕解:〔1〕画图 ············································〔1分〕1(04)B , ·····················································〔3分〕〔2〕画图 ··················································〔5分〕 35OB == ···································〔6分〕 ∴点B 旋转到点2B 时,通过的路线长为25π5π42⨯⨯=. ············································································································· 〔8分〕 19.〔此题总分值10分〕 解:〔1〕小于3的概率2163P == ······························································ 〔4分〕························ 〔8分〕 从表或树状图中能够看出其和共有9种等可能结果,其中是偶数的有4种结果,因此和为偶数的概率49P =····················································································· 〔10分〕 20.〔此题总分值10分〕 证明:连接CO ························································································ 〔1分〕OD AC COD ACO CAO DOB ∴∠=∠∠=∠∥., ······································ 〔3分〕 ACO CAO COD DOB ∠=∠∴∠=∠ ···················································· 〔6分〕 又OD OD OC OB ==,.COD BOD ∴△≌△ ················································································ 〔8分〕 90OCD OBD ∴∠=∠=°OC CD ∴⊥,即CD 是O ⊙的切线 ··························································· 〔10分〕 21.〔此题总分值10分〕 〔1〕50,50 ···························································································· 〔4分〕 〔2〕补图略 ···························································································· 〔6分〕 〔3〕130010%130⨯=人.〔4〕由统计图可知,不了解和了解专门少的占60%,由此能够看出同学们对国情的关注不够.建议:加强国情教育、爱国教育等.此题答案不惟一,只要观点正确,建议合理即可.······················ 〔10分〕答:该校约有130名学生专门了解我国改革开放30年来所取得的辉煌成就.········ 〔8分〕 22.〔此题总分值10分〕解:设该公司今年到台湾采购苹果的成本价格为x 元/公斤································· 〔1分〕〔第18题图〕 14 5 6 5 6 7 24 5 6 6 7 8 34 5 6 7 8 9开始树状图如下和:依照题意列方程得100000100000200002x x += ······································································· 〔5分〕 解得 2.5x = ···························································································· 〔7分〕 经检验 2.5x =是原方程的根. ···································································· 〔8分〕 当 2.5x =时,25x = ··············································································· 〔9分〕答:实现〝三通〞前该公司到台湾采购苹果的成本价格为5元/公斤. ··············· 〔10分〕 23.〔此题总分值10分〕解:由题意知:532330BAC ∠=-︒=︒° ····················································· 〔1分〕232245C ∠=+︒=︒° ·············································································· 〔3分〕 过点B 作BD AC ⊥,垂足为D ,那么CD BD = ··········································· 〔4分〕 10BC =cos 45107.0CD BC ∴=︒==· ················································· 〔6分〕5 1.4 1.711.9tan30BC AD ====⨯⨯≈°11.97.018.919AC AD CD ∴=+=+=≈ ··················································· 〔9分〕 答:小船到码头的距离约为19海里 ···························································· 〔10分〕24.〔此题总分值10分〕〔1〕280(6)200801200(06)y x x x x =+-⨯=+≤≤ ································· 〔4分〕〔2〕能够有结余,由题意知80120016504530(6)240x x x +⎧⎨+-⎩≤≥ ······································ 〔6分〕解不等式组得:5458x ≤≤∴预支的租车费用能够有结余. ·································································· 〔8分〕 x 取整数 x ∴取4或5800k => y ∴随x 的增大而增大.∴当4x =时,y 的值最小.其最小值48012001520y =⨯+=元∴最多可结余1650-1520=130元 ······························································· 〔10分〕25.〔此题总分值12分〕〔1〕当4t =-FBCG 为正方形. ··········································· 〔1分〕 当0t <≤4时,四边形AEGD 为平行四边形. ·············································· 〔2分〕 〔2〕点D 、C的坐标分不是〔〕,〔5 ········································ 〔4分〕 抛物线通过原点O 〔0,0〕∴设抛物线的解析式为2y ax bx =+将D 、C 两点坐标代入得255a b a b ⎧+=⎪⎨+=⎪⎩解得a b ⎧=⎪⎪⎨⎪=⎪⎩··························································· 〔6分〕 ∴抛物线的解析式为25y x =-+ ····················································· 〔7分〕 〔3〕点Q 在抛物线上,∴点2Q x x ⎛+ ⎝,过点Q 作QM x ⊥轴于点M ,又(50)B ,那么21522ABQ S AB QM x ==△··=212+··················································································· 〔8分〕又1(45)2ABCD S =+=四边形························································ 〔9分〕令212+=EG 的延长线与抛物线交于x 轴的上方269x x ∴-+= 解得3x = ···································································· 〔10分〕当3x =时,935y =-+=960tan 605MQ QEM EM ∠=∴===°,°. ··································· 〔11分〕 96355t ∴=-=〔秒〕.即存在如此的时刻t ,当65t =秒时,AQB △的面积与梯形ABCD 的面积相等. 〔12分〕 26.〔此题总分值14分〕解:〔1〕(02)(40)A B ,,, ········································································· 〔2分〕设直线AB 的解析式y kx b =+,那么有240b k b =⎧⎨+=⎩ 解得122k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为122y x =-+ ···························································· 〔3分〕 〔2〕i 〕①点E 在原点和x 轴正半轴上时,重叠部分是CDE △. 那么1111(4)22222CDE S CE CD BC CD x x ⎛⎫===--+ ⎪⎝⎭△·· 21244x x =-+ 当E 与O 重合时,12242CE BO x ==∴<≤ ··········································· 〔4分〕 ②当E 在x 轴的负半轴上时,设DE 与y 轴交于点F ,那么重叠部分为梯形CDFO . OFE OAB △∽△1122OF OA OF OE OE OB ∴==∴=, 又42OE x =-1(42)22OF x x ∴=-=- 213222224CDFO x S x x x x ⎡⎤⎛⎫∴=-+-+=-+ ⎪⎢⎥⎝⎭⎣⎦四边形· ······································ 〔5分〕 当点C 与点O 重合时,点C 的坐标为(0,0)02x ∴<< ····························································································· 〔6分〕 综合①②得22124(24)432(02)4x x x S x x x ⎧-+<⎪⎪=⎨⎪-+<<⎪⎩≤ ··············································· 〔7分〕 ii 〕①当24x <≤时,221124(2)44S x x x =-+=- ∴对称轴是4x = 抛物线开口向上,∴在24x <≤中,S 随x 的增大而减小∴当2x =时,S 的最大值=21(24)14⨯-= ················································· 〔8分〕 ②当02x <<时,22334424433S x x x ⎛⎫=-+=--+ ⎪⎝⎭ ∴对称轴是43x = 抛物线开口向下∴当43x =时,S 有最大值为43·································································· 〔9分〕 综合①②当43x =时,S 有最大值为43 ····················································· 〔10分〕 iii 〕存在,点C 的坐标为302⎛⎫ ⎪⎝⎭,和502⎛⎫ ⎪⎝⎭, ···················································· 〔14分〕附:详解:①当ADE △以点A 为直角顶点时,作AE AB ⊥交x 轴负半轴于点E , AOE BOA △∽△12EO AO AO BO ∴== 21AO EO =∴=∴点E 坐标为〔1-,0〕∴点C 的坐标为302⎛⎫ ⎪⎝⎭, ②当ADE △以点E 为直角顶点时同样有AOE BOA △∽△12OE OA AO BO == 1(10)EO E ∴=∴,∴点C 的坐标502⎛⎫ ⎪⎝⎭, 综合①②知满足条件的坐标有302⎛⎫ ⎪⎝⎭,和502⎛⎫ ⎪⎝⎭,. 以上仅提供本试题的一种解法或解题思路,假设有不同解法请参照评分标准予以评分.。
辽宁省朝阳市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2016八上·射洪期中) 下列各式中,正确的是()A .B . =2C . =﹣4D .2. (2分)下列命题的逆命题不正确的是()A . 平行四边形的对角线互相平分B . 两直线平行,内错角相等C . 等腰三角形的两个底角相等D . 对顶角相等3. (2分) (2020八上·大洼期末) 下列运算正确的是()A . 5a2-2a2=3B . a2÷a=a2C . a2•a3=a6D . (-ab)2=a2b24. (2分) (2018九下·湛江月考) 光的速度约为30万公里每秒,30万用科学记数法表示为()A . 3×105B . 3×106C . 3×107D . 3×1085. (2分)(2017·揭西模拟) 下面四个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .6. (2分)如图所示为某几何体的示意图,则该几何体的主视图应为()A .B .C .D .7. (2分)化简等于()A . 1B . xyC .D .8. (2分)下列各命题中,是真命题的是()A . 已知a2=b2 ,则a=bB . 若x+y>0,则x>0,y>0C . 一条直线截另外两条直线所得到的同位角相等D . 两条对角线相等的梯形是等腰梯形9. (2分)(2018·潮州模拟) 下列说法错误的是()A . 抛物线y=﹣x2+x的开口向下B . 两点之间线段最短C . 角平分线上的点到角两边的距离相等D . 一次函数y=﹣x+1的函数值随自变量的增大而增大10. (2分) (2015八下·临沂期中) 如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A 与点D重合,给出下列判断:①EF是△ABC的中位线;②△DEF的周长等于△ABC周长的一半;③若四边形AEDF是菱形,则AB=AC;④若∠BAC是直角,则四边形AEDF是矩形,其中正确的是()A . ①②③B . ①②④C . ②④D . ①③④11. (2分) (2017九下·莒县开学考) 从-1、-2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是()A .B .C .D .12. (2分) (2019七下·杭锦旗期中) 如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。
辽宁省朝阳市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) |-6|的相反数是()A . -6B . -C .D . 62. (2分)下列计算中,错误的是()A . 5a3﹣a3=4a3B . 2n•3n=6n+nC . (a﹣b)3•(b﹣a)2=(a﹣b)5D . ﹣a2•(﹣a)3=a53. (2分)某区在一次扶贫助残活动中,共捐款136 000元.将136 000元用科学记数法表示为()A . 1.36x106元B . 0.136x106元C . 13.6x105元D . 1.36x105元4. (2分)(2016·潍坊) 如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A .B .C .D .5. (2分) (2017七下·江阴期中) 以下列各组线段为边,能组成三角形的是()A . 2cm、2cm、4cmB . 8cm、6cm、3cmC . 2cm、6cm、3cmD . 11cm、4cm、6cm6. (2分)(2019·河池) 某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A . 53,53B . 53,56C . 56,53D . 56,567. (2分) (2018九上·黑龙江期末) 已知x1、x2是关于x的一元二次方程x2-(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2 ,则m的值是()A . -1B . 3C . 3或-1D . -3或18. (2分)已知反比例函数,下列结论中,不正确的是()A . 图象必经过点(1,2)B . y随x的增大而减少C . 图象在第一、三象限内D . 若x>1,则y<2二、填空题 (共8题;共8分)9. (1分)分解因式:(2a﹣1)2﹣a2=________10. (1分) (2019八下·温州期中) 某射击运动员射击10次的成绩统计如下:成绩(环)5678910次数(次)232111则这10次成绩的中位数为________环.11. (1分)(2017·郯城模拟) 分式方程的解为________.12. (1分) (2019八上·武汉月考) 一个多边形的内角和等于1800°,它是________边形.13. (1分)关于x的不等式组的解集是________14. (1分) (2019九上·通州期末) 已知底面半径为4cm,母线长为12cm的圆锥,则它的侧面展开图的圆心角为________15. (1分) (2015九上·山西期末) 如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD=10,BD =5,AE=6,则CE的长为________。
2020年辽宁省朝阳市中考数学试题(word版含答案)2020年辽宁省朝阳市中考数学试题(word 版含答案)数学试卷⼀、选择题〔以下各题的备选答案中,只有⼀个是正确的,请将正确答案的序号填⼊下⾯表格内,每题3分,共24分〕 1.2的倒数的相反数是〔〕A .12B .12-C .2D .2- 2.如图,AB CD ∥,假设20A ∠=°,35E ∠=°,那么∠C等于〔〕 A .20° B .35° C .45° D .55°3.某市⽔质检测部门2018年全年共监测⽔量达28909.6万吨.将数字28909.6⽤科学记数法〔保留两位有效数字〕表⽰为〔〕 A .42.810?B .42.910?C .52.910?D .32.910?4.以下运算中,不正确的选项是〔〕 A .3332a a a +=B .235a a a =· C .329()a a -=D .3222a a a ÷=〕.6.以下事件中,属于不确定事件的有〔〕①太阳从西边升起;②任意摸⼀张体育彩票会中奖;③掷⼀枚硬币,有国徽的⼀⾯朝下;④⼩明长⼤后成为⼀名宇航员 A .①②③ B .①③④ C .②③④ D .①②④7.以下讲法中,正确的选项是〔〕 A .假如a b c d b d ++=,那么a cb d= B 3C .当1x <D .⽅程220x x +-=的根是2112x x =-=,8.以下命题中,不正确的选项是〔〕A .n 边形的内⾓和等于(2)180n -·° B .边长分不为345,,,的三⾓形是直⾓三⾓形 C .垂直于弦的直径平分弦所对的两条弧 D .两圆相切时,圆⼼距等于两圆半径之和⼆、填空题〔每题3分,共24分〕9.如图是某地5⽉上旬⽇平均⽓温统计图,这些⽓温数据的众数是__________,中位数是__________,极差是__________.A BC D EF 〔第2题图〕〔第9题图〕 A . B . C . D .10.如图,ABC △是等边三⾓形,点D 是BC 边上任意⼀点,DE AB ⊥于点E ,DF AC ⊥于点F .假设2BC =,那么DE DF+=_____________.11.如图是⼩明从学校到家⾥⾏进的路程S 〔⽶〕与时刻t 〔分〕的函数图象.观看图象,从中得到如下信息:①学校离⼩明家1000⽶;②⼩明⽤了20分钟到家;③⼩明前10分钟⾛了路程的⼀半;④⼩明后10分钟⽐前10分钟⾛的快,其中正确的有___________〔填序号〕.12.如图,AC 是汽车挡风玻璃前的刮⾬刷.假如65cm AO =,15cm CO =,当AC 绕点O 旋转90°时,那么刮⾬刷AC 扫过的⾯积为____________cm 2.13.菱形的⼀个内⾓为60°,⼀条对⾓线的长为条对⾓线的长为______________.14.如图,正⽐例函数y =与反⽐例函数ky x=〔0k ≠〕的图象在第⼀⾓限内交于点A ,且2AO =,那么k =____________.15.如图,路灯距离地⾯8⽶,⾝⾼1.6⽶的⼩明站在距离灯的底部〔点O 〕20⽶的A 处,那么⼩明的影长为___________⽶.16.以下是有规律排列的⼀列数:325314385,,,,……其中从左⾄右第100个数是__________.三、〔每题8分,共16分〕17.先化简,再求值:2112x x x x x ??++÷-,其中1x =.F EB CDA〔第10题图〕10 20〔第11题A O C ′CA ′〔第12题图〕〔第14题图〕 O AMB 〔第15题图〕18.在1010?的⽹格纸上建⽴平⾯直⾓坐标系如下图,在Rt ABO △中,90OAB ∠=°,且点B 的坐标为(34),.〔1〕画出OAB △向左平移3个单位后的111O A B △,写出点1B 的坐标;〔2〕画出OAB △绕点O 顺时针旋转90°后的22OA B △,并求点B 旋转到点2B 时,点B 通过的路线长〔结果保留π〕四、〔每题10分,共20分〕19.袋中装有除数字不同其它都相同的六个⼩球,球上分不标有数字1,2,3,4,5,6.〔1〕从袋中摸出⼀个⼩球,求⼩球上数字⼩于3的概率;〔2〕将标有1,2,3数字的⼩球取出放⼊另外⼀个袋中,分不从两袋中各摸出⼀个⼩球,求数字之和为偶数的概率.〔要求⽤列表法或画树状图求解〕〔第18题图〕20.如图,O ⊙是Rt ABC △的外接圆,点O 在AB 上,BD AB ,点B 是垂⾜,OD AC ∥,连接CD .求证:CD 是O ⊙的切线.五、〔每题10分,共20分〕 21.在改⾰开放30年纪念活动中,某校学⽣会就同学们对我国改⾰开放30年所取得的辉煌成就的了解程度进⾏了随机抽样调查,并将调查结果绘制成如下图的统计图的⼀部分.依照统计图中的信息,解答以下咨询题:〔1〕本次抽样调查的样本容量是___________.调查中〝了解专门少〞的学⽣占_________%;〔2〕补全条形统计图;〔3〕假设全校共有学⽣1300⼈,那么该校约有多少名学⽣〝专门了解〞我国改⾰开放30年来取得的辉煌成就?〔4〕通过以上数据分析,请你从爱国教育的⾓度提出⾃⼰的观点和建议.D B A OC 〔第20题图〕不了解10% 10%专门了差不多了解了解专门少不了解了解专门差不多了专门了解了解程度22.海峡两岸实现〝三通〞后,某⽔果销售公司从台湾采购苹果的成本⼤幅下降.请你依照两位经理的对话,运算出该公司在实现〝三通〞前到台湾采购苹果的成本价格.六、〔每题10分,共20分〕23.⼀艘⼩船从码头A动⾝,沿北偏东53°⽅向航⾏,航⾏⼀段时刻到达⼩岛B处后,⼜沿着北偏西22°⽅向航⾏了10海⾥到达C处,这时从码头测得⼩船在码头北偏东23°的⽅向上,求现在⼩船与码头之间的距离〔2 1.43 1.7≈,≈〝三通〞前买台湾苹果的成本价格是今年的2倍同样⽤10万元采购台湾苹果,今年却⽐〝三通〞前多购买了2万公⽄B AC53°23°22°北北〔第23题图〕24.某学校打算租⽤6辆客车送⼀批师⽣参加⼀年⼀度的哈尔滨冰雕节,感受冰雕艺术的魅⼒.现有甲、⼄两种客车,它们的载客量和租⾦如下表.设租⽤甲种客车x 辆,租车总费⽤为y 元.〔1〕求出y 〔元〕与x 〔辆〕之间的函数关系式,指出⾃变量的取值范畴;〔2〕假设该校共有240名师⽣前往参加,领队⽼师从学校预⽀租车费⽤1650元,试咨询预⽀的租车费⽤是否能够结余?假设有结余,最多可结余多少元?七、〔此题12分〕25.如图①,在梯形ABCD 中,CD AB ∥,90ABC ∠=°,60DAB ∠=°,2AD =,4CD =.另有⼀直⾓三⾓形EFG ,90EFG ∠=°,点G 与点D 重合,点E 与点A 重合,点F 在AB 上,让EFG △的边EF 在AB 上,点G 在DC 上,以每秒1个单位的速度沿着AB ⽅向向右运动,如图②,点F 与点B 重合时停⽌运动,设运动时刻为t 秒.〔1〕在上述运动过程中,请分不写出当四边形FBCG 为正⽅形和四边形AEGD 为平⾏四边形时对应时刻t 的值或范畴;〔2〕以点A 为原点,以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴,建⽴如下图③的坐标系.求过A D C ,,三点的抛物线的解析式;〔3〕探究:延长EG 交〔2〕中的抛物线于点Q ,是否存在如此的时刻t 使得ABQ △的⾯积与梯形ABCD 的⾯积相等?假设存在,求出t 的值;假设不存在,请讲明理由.D 〔G 〕CBFA 〔E 〕图①DCB F A E G图③〔第25题图〕⼋、〔此题14分〕26.如图①,点A ',B '的坐标分不为〔2,0〕和〔0,4-〕,将A B O ''△绕点O 按逆时针⽅向旋转90°后得ABO △,点A '的对应点是点A ,点B '的对应点是点B .〔1〕写出A ,B 两点的坐标,并求出直线AB 的解析式;〔2〕将ABO △沿着垂直于x 轴的线段CD 折叠,〔点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合〕如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为〔0x ,〕,CDE △与ABO △重叠部分的⾯积为S .i 〕试求出S 与x 之间的函数关系式〔包括⾃变量x 的取值范畴〕;ii 〕当x 为何值时,S 的⾯积最⼤?最⼤值是多少?iii 〕是否存在如此的点C ,使得ADE △为直⾓三⾓形?假设存在,直截了当写出点C 的坐标;假设不存在,请讲明理由.009年辽宁朝阳市初中升学考试数学参考答案及评分标准⼆、填空题〔每题3分,共24分〕9.26,26,4 10 11.①②④ 12.1 000π 13.2或6 14 15.5 16.101200〔原⼀列数可化为22、34、46、58、……〕 17.〔此题总分值8分〕解:原式=221212x x x x x+--÷ ···································································· 〔2分〕 =12(1)(1)x xx x x ++- ················································································· 〔4分〕=21x -. ································································································ 〔6分〕〔第26题图〕将1x =代⼊上式得原式== ······························· 〔8分〕 18.〔此题总分值8分〕解:〔1〕画图 ············································〔1分〕1(04)B , ·····················································〔3分〕〔2〕画图 ··················································〔5分〕 35OB == ···································〔6分〕∴点B 旋转到点2B 时,通过的路线长为25π5π42=. ············································································································· 〔8分〕 19.〔此题总分值10分〕解:〔1〕⼩于3的概率2163P == ······························································ 〔4分〕························ 〔8分〕从表或树状图中能够看出其和共有9种等可能结果,其中是偶数的有4种结果,因此和为偶数的概率49P =····················································································· 〔10分〕 20.〔此题总分值10分〕证明:连接CO ························································································ 〔1分〕OD AC COD ACO CAO DOB ∴∠=∠∠=∠∥., ······································ 〔3分〕 ACO CAO COD DOB ∠=∠∴∠=∠ ···················································· 〔6分〕⼜OD OD OC OB ==,.COD BOD ∴△≌△ ················································································ 〔8分〕 90OCD OBD ∴∠=∠=°OC CD ∴⊥,即CD 是O ⊙的切线 ··························································· 〔10分〕 21.〔此题总分值10分〕〔1〕50,50···························································································· 〔4分〕〔2〕补图略···························································································· 〔6分〕〔3〕130010%130?=⼈.〔4〕由统计图可知,不了解和了解专门少的占60%,由此能够看出同学们对国情的关注不够.建议:加强国情教育、爱国教育等.此题答案不惟⼀,只要观点正确,建议合理即可.······················ 〔10分〕答:该校约有130名学⽣专门了解我国改⾰开放30年来所取得的辉煌成就.········ 〔8分〕 22.〔此题总分值10分〕解:设该公司今年到台湾采购苹果的成本价格为x 元/公⽄································· 〔1分〕〔第18题图〕 14 5 6 5 6 7 24 5 6 6 7 8 34 5 6 7 8 9开始树状图如下和:依照题意列⽅程得100000100000200002x x += ······································································· 〔5分〕解得 2.5x = ···························································································· 〔7分〕经检验 2.5x =是原⽅程的根. ···································································· 〔8分〕当 2.5x =时,25x =··············································································· 〔9分〕答:实现〝三通〞前该公司到台湾采购苹果的成本价格为5元/公⽄. ··············· 〔10分〕 23.〔此题总分值10分〕解:由题意知:532330BAC ∠=-?=?° ····················································· 〔1分〕232245C ∠=+?=?° ·············································································· 〔3分〕过点B 作BD AC ⊥,垂⾜为D ,那么CD BD = ···········································〔4分〕 10BC =cos 45107.0CD BC ∴=?==· ················································· 〔6分〕5 1.4 1.711.9tan30BC AD ====??≈°11.97.018.919AC AD CD ∴=+=+=≈ ··················································· 〔9分〕答:⼩船到码头的距离约为19海⾥ ···························································· 〔10分〕24.〔此题总分值10分〕〔1〕280(6)200801200(06)y x x x x =+-?=+≤≤ ································· 〔4分〕〔2〕能够有结余,由题意知80120016504530(6)240x x x +??+-?≤≥ ······································ 〔6分〕解不等式组得:5458x ≤≤∴预⽀的租车费⽤能够有结余. ·································································· 〔8分〕 x 取整数 x ∴取4或5800k => y ∴随x 的增⼤⽽增⼤.∴当4x =时,y 的值最⼩.其最⼩值48012001520y =?+=元∴最多可结余1650-1520=130元 ······························································· 〔10分〕25.〔此题总分值12分〕〔1〕当4t =-FBCG 为正⽅形. ··········································· 〔1分〕当0t <≤4时,四边形AEGD 为平⾏四边形.·············································· 〔2分〕〔2〕点D 、C的坐标分不是〔〕,〔5 ········································ 〔4分〕抛物线通过原点O 〔0,0〕∴设抛物线的解析式为2y ax bx =+将D 、C 两点坐标代⼊得255a b a b ?+=??+=??解得a b ?==··························································· 〔6分〕∴抛物线的解析式为25y x =-+ ····················································· 〔7分〕〔3〕点Q 在抛物线上,∴点2Q x x ?+ ?,过点Q 作QM x ⊥轴于点M ,⼜(50)B ,那么21522ABQ S AB QM x ==△··=212+··················································································· 〔8分〕⼜1(45)2ABCD S =+=四边形························································ 〔9分〕令212+=EG 的延长线与抛物线交于x 轴的上⽅269x x ∴-+= 解得3x = ···································································· 〔10分〕当3x =时,935y =-+=960tan 605MQ QEM EM ∠=∴===°,°. ··································· 〔11分〕 96355t ∴=-=〔秒〕.即存在如此的时刻t ,当65t =秒时,AQB △的⾯积与梯形ABCD 的⾯积相等.〔12分〕 26.〔此题总分值14分〕解:〔1〕(02)(40)A B ,,, ········································································· 〔2分〕设直线AB 的解析式y kx b =+,那么有240b k b =??+=? 解得122k b ?=-?=? ∴直线AB 的解析式为122y x =-+ ···························································· 〔3分〕〔2〕i 〕①点E 在原点和x 轴正半轴上时,重叠部分是CDE △.那么1111(4)22222CDE S CE CD BC CD x x ??===--+△·· 21244x x =-+ 当E 与O 重合时,12242CE BO x ==∴<≤ ··········································· 〔4分〕②当E 在x 轴的负半轴上时,设DE 与y 轴交于点F ,那么重叠部分为梯形CDFO . OFE OAB △∽△ 1122OF OA OF OE OE OB ∴==∴=,⼜42OE x =-1(42)22OF x x ∴=-=-213222224CDFO x S x x x x ??∴=-+-+=-+四边形· ······································ 〔5分〕当点C 与点O 重合时,点C 的坐标为(0,0)02x ∴<< ····························································································· 〔6分〕综合①②得22124(24)432(02)4x x x S x x x ?-+-+<ii 〕①当24x <≤时,221124(2)44S x x x =-+=- ∴对称轴是4x = 抛物线开⼝向上,∴在24x <≤中,S 随x 的增⼤⽽减⼩∴当2x =时,S 的最⼤值=21(24)14-= ················································· 〔8分〕②当02x <<时,22334424433S x x x ??=-+=--+∴对称轴是43x =抛物线开⼝向下∴当43x =时,S 有最⼤值为43·································································· 〔9分〕综合①②当43x =时,S 有最⼤值为43 ····················································· 〔10分〕iii 〕存在,点C 的坐标为302?? ???,和502?? ???, ···················································· 〔14分〕附:详解:①当ADE △以点A 为直⾓顶点时,作AE AB ⊥交x 轴负半轴于点E ,AOE BOA △∽△ 12EO AO AO BO ∴== 21AO EO =∴= ∴点E 坐标为〔1-,0〕∴点C 的坐标为302??,②当ADE △以点E 为直⾓顶点时同样有AOE BOA △∽△12OE OA AO BO == 1(10)EO E ∴=∴,∴点C 的坐标502??,综合①②知满⾜条件的坐标有302?? ???,和502?? ???,.以上仅提供本试题的⼀种解法或解题思路,假设有不同解法请参照评分标准予以评分.。
辽宁省朝阳市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·益阳模拟) 的相反数是()A . 2016B . ﹣2016C .D .2. (2分)(2020·枣阳模拟) 二次根式、、、、、中,最简二次根式的概率是()A .B .C .D .3. (2分)(2017·承德模拟) 据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A . 0.3×106B . 3×105C . 3×106D . 30×1044. (2分)下面如图是一个圆柱体,则它的正视图是()A .B .C .D .5. (2分)已知点(-4,y1),(2,y2)都在直线y=x+2上,则y1和y2的大小关系是()A . y1 > y2B . y1 = y2C . y1 < y2D . 不能比较6. (2分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A . 4B . 8C . 12D . 167. (2分)(2011·深圳) 如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A . :1B . :1C . 5:3D . 不确定9. (2分) (2018七下·宁远期中) 某校课外小组的学生分组课外活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x和应分成的组数y.依题意可得方程组()A .B .C .D .10. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A . ac>0;B . bc<0C . 0<-<1D . a-b+c<0二、填空题 (共7题;共7分)11. (1分) (2017七下·博兴期末) 要反映我县某一周每天的最高气温的变化趋势,宜采用________.(从①条形统计图②扇形统计图③频数分布直方图④折线统计图中选择答案,只填序号即可)12. (1分)(2018·灌云模拟) 在元旦晚会的投飞镖游戏环节中,5名同学的投掷成绩单位:环分别是:7、9、9、6、8,则这组数据的众数是________.13. (1分)如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE丄AC于点E,PF丄BD于点F,则PE+PF的值为________14. (1分)已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是________.15. (1分) (2017八上·西湖期中) 如图,在中,,是的中垂线,分别交,于点,.已知,,则的周长是________.16. (1分)(2012·北海) 解方程 = 得________.17. (1分)如图,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种地毯每平方米售价20元,主楼梯宽2米.则购地毯至少需要________元.三、解答题 (共9题;共81分)18. (5分)计算:19. (5分)(2017·桂林模拟) 先化简,再求值:( + )÷ ,其中m= ﹣1.20. (5分)比较大小:cos1°,tan46°,sin88°和cot38°.21. (6分)(2018·吉林) 如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是________对称图形;(3)求所画图形的周长(结果保留π).22. (15分) (2018八下·江都月考) 某校在“6·26国际禁毒日”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作了频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:(1)表中=________,=________,并补全直方图________;(2)若用扇形统计图描述此成绩统计分布情况,则分数段80≤ <100对应扇形的圆心角度数是________;(3)请估计该年级分数在60≤ <70的学生有多少人?23. (10分)(2017·全椒模拟) 如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD= .(1)求∠C的度数;(2)求证:BC是⊙O的切线;(3)求阴影部分面积.24. (10分) (2019七上·潮安期末) 为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?25. (10分) (2018八上·番禺期末) 如图,在中,,点为边上一点,,且 ,点关于直线的对称点为,连接,又的边上的高为 .(1)判断直线是否平行?并说明理由;(2)证明: .26. (15分)(2020·西安模拟) 如图,已知抛物线y=﹣x2+bx+c经过点A(3,0),点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.(1)求抛物线表达式;(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;(3)当△PBQ为等腰三角形时,求m的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共81分)18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
2020年辽宁省朝阳市初中学业水平考试数学答案解析一、1.【答案】B【解析】解:根据相反数的概念及意义可知:3的相反数是3-.故选:B . 2.【答案】C【解析】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:.故选C .3.【答案】A 【解析】解:2(1)4(1)50∆=--⨯-=>,∴方程有两个不相等的两个实数根.故选:A .4.【答案】C【解析】解:A 、对全国初中学生视力情况的调查,适合用抽样调查,A 不合题意;B 、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B 不合题意;C 、对一批飞机零部件的合格情况的调查,适合全面调查,C 符合题意;D 、对我市居民节水意识的调查,适合用抽样调查,D 不合题意;故选:C . 5.【答案】D【解析】解:点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上,1881y ∴=-=-,2842y =-=-,383y =-,又8483-<<,321y y y ∴<<.故选:D . 6.【答案】D 【解析】解:把02x y =⎧⎨=⎩代入得:222n n m =⎧⎨-=⎩,解得:22m n =-⎧⎨=⎩,则0m n +=,故答案为D .7.【答案】B【解析】解:过点C 作CF AB ∥,25BCF B ︒∴∠=∠=.又AB DE ∥,CF DE ∴∥.90905832FCE E D ∴∠=∠=︒-∠=︒-︒=︒.253257BCE BCF FCE ︒︒︒∴∠=∠+∠=+=.故选:B . 8.【答案】A【解析】解:设被污损的数据为x ,则42554347x ++++++=⨯,解得5x =,∴这组数据中出现次数最多的是5,即众数为5篇,将这7个数据从小到大排列为2、3、4、4、5、5、5,∴这组数据的中位数为4篇,故选:C 9.【答案】A【解析】解:四边形ABCD 是矩形,90ADC ∴∠=︒,BD AC =,12OD BD =,12OC AC =,OC OD ∴=,2EO DE =,∴设DE x =,2OE x =,3OD OC x ∴==,6AC x =,CE BD ⊥,90DEC OEC ∴∠=∠=︒,在Rt OCE △中,222OE CE OC +=,222(2)5(3)x x ∴+=,0x >,DE ∴=,AC =,CD ∴=AD ∴==,故选:A .10.【答案】C【解析】解:①由图象可知:0a >,0c <,∴由于对称轴02ba->,0b ∴<,0abc ∴>,故①正确;②抛物线过()3,0,3x ∴=,930y a b c =++=,故②正确;③顶点坐标为:24,24b ac b aa ⎛⎫-- ⎪⎝⎭,由图象可知:2424ac b a--<,0a >,248ac b a ∴--<,即248b ac a ->,故③错误;④由图象可知:12ba->,0a >,20a b ∴+<,930a b c ++=,93c a b ∴=--,5593422(2)0a b c a b a b a b a b ∴++=+--=--=-+>,故④正确;故选:C .二、11.【答案】67.810⨯【解析】解:数据7 800 000用科学记数法表示为67.810⨯.故答案为:67.810⨯.12.【答案】1(2)(2)2x x -+-【解析】解:()2211124(2)(2)222x x x x -+=--=-+-故答案为:1(2)(2)2x x -+-.13.【答案】12【解析】解:6k =,1666-⨯=-≠,11262⨯=,2(3)66⨯-=-≠,3(2)6-⨯-=,N ∴、F 两个点在反比例函数6y x =的图象上,故所取的点在反比例函数6y x =的图象上的概率是2412=.故答案为12. 14.【答案】23x -<≤ 【解析】解:620240x x -⎧⎨+⎩≥①>②,由不等式①,得3x ≤,由不等式②,得2x ->,故原不等式组的解集是23x -<≤,故答案为:23x -<≤. 15.【答案】3【解析】解:把三角形纸片折叠,使点A 、点C 都与点B 重合,AF BF ∴=,AE BE =,BG CG =,DC DB =,12FG AC ∴=,60BDE ︒∠=,90BED ∠=︒,30EBD ︒∴∠=,24DB DE ∴==,BE ∴==,AE BE ∴==,4DC DB ==,246AC AE DE DC ∴=++=+=+,132FG AC ∴==+3 16.【答案】42223n n-【解析】解:在直线113y x =+中,当0x =时,1y =;当0y =时,3x =-;1OA ∴=,3OM =,1tan 3AMO ∴∠=,90OAB OAM ︒∠+∠=,90AMO OAM ∠+∠=︒,OAB AMO ∴∠∠=,1tan 3OB OAB OA ∴∠==,13OB ∴=.12133-=,212439S ⎛⎫∴== ⎪⎝⎭,易得111tan tan 3B C B B BB A C C O ∠==∠=,11111333B BC A AB C C ∴===,1143A AB B ∴=,22141639S S ⎛⎫∴== ⎪⎝⎭,同理可得2321161699S S S ⎛⎫== ⎪⎝⎭,3431161699S S S ⎛⎫== ⎪⎝⎭,…,111444242122222161642222299933333n n n n n n n n S S ------⎛⎫⎛⎫⎛⎫⎛⎫==⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故答案为:42223n n-. 三、17.【答案】解:原式232(2)2(2)(2)2(3)a a a a a a a +-=-⨯++-+ 23(2)2(2)(2)3a a a a a a a +-=-++-+ 222a a a a -=-++ 22a =+, 当11|6|6242a -⎛⎫=--=-= ⎪⎝⎭时,原式21423==+.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.18.【答案】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋()20x +个,依题意,得:810600(110%)20x x=-+,解得:40x =,经检验,40x =是所列分式方程的解,且符合题意,2060x ∴+=.答:文具店购进A 种款式的笔袋60个,B 种款式的笔袋40个.【解析】设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋()20x +个,根据单价=总价÷数量结合A 种笔袋的单价比B 种袋的单价低10%,即可得出关于x 的分式方程,解之经检验后即可得出结论. 19.【答案】(1)60(2)文学类有6030%18⨯=(册),则哲学故事类18册,补全的条形统计如下图所示;(3)9120018060⨯=(册),答:所捐赠的科普类书籍有180册. 【解析】(1)根据统计图中的数据可以求得本次被抽查的书籍;捐赠的哲学故事类书籍和文学类书籍的数量相同,∴本次被抽查的书籍有:(3912)(130%30%)60++÷--=(册),故答案为:60. (2)根据(1)中的结果和统计图中的数据可以将条形统计图补充完整. (3)根据统计图中的数据可以计算出所捐赠的科普类书籍有多少册.20.【答案】(1)25(2)画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,∴两次所抽取的卡片恰好都是轴对称图形的概率为310. 【解析】(1)直接利用概率公式求解可得;从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为25,故答案为:25. (2)画树状图列出所有的可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.21.【答案】解:作DC EP ⊥交EP 的延长线于C ,作DF ME ⊥于F ,作PH DF ⊥于H ,则DC PH FE ==,DH CP =,HF PE =,设 3DC x =,3tan 4θ=,4CP x ∴=,由勾股定理得,222PD DC CP =+,即22225(3)(4)x x =+,解得,5x =,则315DC x ==,420CP x ==,20DH CP ∴==,15PH FE DC ===,设m MF y =,则(15)m ME y =+,在Rt MDF △中,tan MFDF MDF ∠=,则DF ,在Rt MPE△中,tan ME MPE PE∠=,则15)tan P P M E y M E E ==+∠,DH DF HF =-,15)20y +=,解得,7.5y =+7.51539.8ME MF FE ∴=+=+≈,答:古塔的高度ME 约为39.8 m .【解析】作DC EP ⊥交EP 的延长线于C ,作DF ME ⊥于F ,作PH DF ⊥于H ,根据坡度的定义分别求出DC 、CP ,设MF ym =,根据正切的定义用y 分别表示出DF 、PE ,根据题意列方程,解方程得到答案.22.【答案】(1)证明:如图1,连接DF ,四边形ABCD 为菱形,AB BC CD DA ∴===,AD BC ∥,DAB C ∠=∠,BF BE =,AB BF BC BE ∴-=-,即AF CE =,()DAF DCE SAS ∴△≌△,DFA DEC ∴∠=∠,AD 是O 的直径,90DFA ∴∠=︒,90DEC ∴∠=︒AD BC ∥,90ADE DEC ∴∠=∠=︒,OD DE ∴⊥,OD 是O 的半径,DE ∴是O 的切线.(2)解:如图2,连接AH ,AD 是O 的直径,90AHD DFA ︒∴∠=∠=,90DFB ︒∴∠=,AD AB =,DH,2DB DH ∴==,在Rt ADF △和Rt BDF △中,222DF AD AF =-,222DF BD BF =-,2222AD AF DB BF ∴-=-,2222()AD AD BF DB BF ∴--=-,2222(2)2AD AD ∴--=-,5AD ∴=.O ∴的半径为52.【解析】(1)证明DAF DCE △≌△,可得 DFA DEC ∠=∠,证出90ADE DEC ∠=∠=︒,即OD DE ⊥,DE 是O 的切线.(2)连接AH ,求出2DB DH ==在Rt ADF △和Rt BDF △中,可得2222()AD AD BF DB BF --=-,解方程可求出AD 的长.则OA 可求出.23.【答案】(1)由图象知,当10x <≤14时,640y =;当1430x <≤时,设y kx b =+,将()14,640,(30,320)代入得1464030320k b k b +=⎧⎨+=⎩,解得20920k b =-⎧⎨=⎩,y ∴与x 之间的函数关系式为20920y x =-+;综上所述,640(1014)20920(1430)x y x x ⎧=⎨-+⎩<≤<≤.(2)(1410)6402560-⨯=,25603100<,14x ∴>,(10)(20920)3100x x ∴--+=,解得:141x =(不合题意舍去),215x =,答:销售单价x 应定为15元.(3)当1430x <≤时,2(10)(20920)20(28)6480W x x x =--+=--+,200-<,1430x <≤,∴当28x =时,每天的销售利润最大,最大利润是6480元.【解析】(1)由图象知,当10x <≤14时,640y =;当1430x <≤时,设y kx b =+,将()14,640,()30,320解方程组即可得到结论.(2)根据题意列方程,解方程即可得到结论.(3)当1430x <≤时,求得函数解析式为2(10)(20920)20(28)6480W x x x =--+=--+,根据二次函数的性质即可得到结论.24.【答案】(1)OE OD =,OE OD ⊥;理由如下:由旋转的性质得:AF AC =,AFE ACB ∠=∠,四边形ABCD 是正方形,45ACB ACD FAC ∴∠=∠=∠=︒,()11804567.52ACF AFC ∴∠=∠=︒-︒=︒,22.5DCF EFC ∴∠=∠=︒,90FEC ∠=︒,O 为CF 的中点,12OE CF OC OF ∴===,同理:12OD CF =,OE OD OC OF ∴===,245EOC EFO ∴︒∠=∠=,245DOF DCO ︒∠=∠=,180454590DOE ︒︒︒︒∴∠=--=,OE OD ∴⊥.(2)当4590α︒︒<<时,(1)中的结论成立,理由如下:延长EO 到点M ,使OM EO =,连接DM 、CM 、DE ,如图2所示:O 为CF 的中点,OC OF ∴=,在COM △和FOE △中,O O COM F E M EOOC OF ⎧⎪∠=∠⎨⎪=⎩=,()COM FOE SAS ∴△≌△,MCF EFC ∴∠=∠,CM EF =,四边形ABCD 是正方形,AB BC CD ∴==,45BAC BCA ∠=∠=︒,ABC △绕点A 逆时针旋转α得AEF △,AB AE EF CD ∴===,AC AF =,CD CM∴=,ACF AFC∠=∠,ACF ACD FCD∠=∠+∠,AFC AFE CFE∠=∠+∠,45ACD AFE ∠=∠=︒,FCD CFE MCF ∴∠=∠=∠,45EAC DAE ︒∠+∠=,45FAD DAE ︒∠+∠=,EAC FAD∴∠=∠,在ACF△中,180ACF AFC CAF ︒∠+∠+∠=,290180DAE FAD DCM ∴︒++︒∠+∠∠=,45FAD DAE ∠+∠=︒,45FAD DCM ∴∠+∠=︒,DAE DCM ∴∠=∠,在ADE △和CDM △中,AE CMDAE DCM AD CD =⎧⎪∠=∠⎨⎪=⎩,()ADE CDM SAS ∴△≌△,DE DM ∴=,OE OM =,OE OD ∴⊥,在COM △和COD △中,C C MCF F D M CDOC OC ⎧⎪∠=∠⎨⎪=⎩=,()COM COD SAS ∴△≌△,OM OD ∴=,OE OD ∴=,OE OD ∴=,OE OD ⊥.(3)连接AO ,如图3所示:AC AF =,CO OF =,AO CF ∴⊥,90AOC ︒∴∠=,∴点O 在以AC为直径的圆上运动,360α︒=,∴点O 经过的路径长等于以AC 为直径的圆的周长,28AC ==,∴点O 经过的路径长为:8d ππ=.【解析】(1)由旋转的性质得:AF AC =,AFE ACB ∠=∠,由正方形的性质得出45ACB ACD FAC ∠=∠=∠=︒,得出67.5ACF AFC ︒∠=∠=,因此22.5DCF EFC ︒∠=∠=,由直角三角形斜边上的中线性质得出12OE CF OC OF ===,同理:12OD CF =,得出OE OD OC OF ===,证出245EOC EFO ∠=∠=︒,245DOF DCO ︒∠=∠=,得出90DOE ∠=︒即可.(2)延长EO 到点M ,使OM EO =,连接DM 、CM 、DE ,证明()COM FOE SAS △≌△,得出MCF EFC ∠=∠,CM EF =,由正方形的性质得出AB BC CD ==,45BAC BCA ︒∠=∠=,由旋转的性质得出AB AE EF CD ===,AC AF =,得出CD CM =,ACF AFC ∠=∠,证明()ADE CDM SAS △≌△,得出DE DM =,再证明()COM COD SAS △≌△,得出OM OD =,即可得出结论.(3)连接AO ,由等腰三角形的性质得出AO CF ⊥,90AOC ∠=︒,得出点O 在以AC 为直径的圆上运动,证出点O 经过的路径长等于以AC 为直径的圆的周长,求出8AC =,即可得出答案. 25.【答案】(1)在26y x =+中,当0x =时6y =,当0y =时3x =-,(0,6)C ∴、(3,0)A -,抛物线22y x bx c=-++的图象经过A 、C 两点,18306b c c --+=⎧∴⎨=⎩,解得46b c =-⎧⎨=⎩,∴抛物线的解析式为2246y x x =--+.(2)令22460x x --+=,解得13x =-,21x =,(1,0)B ∴,点E 的横坐标为t ,()2,246E t t t ∴--+,如图,过点E 作EH x ⊥轴于点H ,过点F 作FG x ⊥轴于点G ,则EH FG ∥,12EF BF =,23BF BG FG BE BH EH ∴===,1BH t =-,222333BG BH t ∴==-,∴点F 的横坐标为1233t +,12204,3333F t t ⎛⎫∴++ ⎪⎝⎭,23204246233t t t ⎛⎫∴--+=+ ⎪⎝⎭,2320t t ∴++=,解得12t =-,21t =-,当2t =-时,22466t t --+=,当1t =-时,22468t t --+=,1(2,6)E ∴-,2(1,8)E -,当点E 的坐标为()2,6-时,在Rt EBH △中,6EH =,3BH =,BE ∴===,sinEH B BE E A ∴∠===E 的坐标为()1,8-时,sin G EBA E BE ∠==sin EBA ∴∠(3)点N 在对称轴上,3112N x -+∴==-. ①当EB 为平行四边形的边时,分两种情况:(Ⅰ)点M 在对称轴右侧时,BN 为对角线,(2,6)E -,1N x =-,1(2)1---=,(1,0)B ,112M x ∴=+=,当2x =时,22242610y =-⨯-⨯+=-,(2,10)M ∴-. (Ⅰ)点M 在对称轴左侧时,BM 为对角线,1N x =-,(1,0)B ,1(1)2--=,(2,6)E -,224M x ∴=--=-,当4x =-时,22(4)4(4)610y =-⨯--⨯-+=-,(4,10)M ∴--.②当EB 为平行四边形的对角线时,(1,0)B ,(2,6)E -,1N x =-,1(2)1M x ∴+-=-+,0M x ∴=,当0x =时,6y =,(0,6)M ∴.综上所述,M 的坐标为()2,10-或()4,10--或()0,6.【解析】(1)先由直线解析式求出点A 、C 坐标,再将所求坐标代入二次函数解析式,求解可得. (2)先求出()1,0B ,设()2,246E t t t --+,作EH x ⊥轴、FG x ⊥轴,知EH FG ∥,由12EF BF =知23BF BG FG BE BH EH ===,结合1BH t =-可得222333BG BH t ==-,据此知12204,,3333F t t ⎛⎫+ ⎪⎝⎭,从而得出方程23204246233t t t ⎛⎫--+=+ ⎪⎝⎭,解之得12t =-,21t =-,据此得出点E 坐标,再进一步求解可得.(3)分EB为平行四边形的边和EB为平行四边形的对角线两种情况,其中EB为平行四边形的边时再分点M 在对称轴右侧和左侧两种情况分别求解可得.。
2020年中考数学试题(辽宁朝阳卷)(本试卷满分150分,考试时间120分钟)一、选择题(共8小题,每小题3分,共24分)1.有理数15-的绝对值为【 】A. 15B. -5C. 15- D.5 【答案】A 。
2.下列运算正确的是【 】A. 3412a a =a ⋅B. ()323692a b =2a b --C. 633a a =a ÷D. ()222a+b =a +b【答案】C 。
3.如图,C 、D 分别EA 、EB 为的中点,∠E=300,∠1=1100,则∠2的度数为【 】A. 080B. 090C. 0100D. 0110【答案】A 。
4.为鼓励大学生创业,我市为在开发区创业的每位大学生提供无息贷款125000元, 这个数据用科学计数法表示为(保留两位有效数字)【 】A. 51.2510⨯B. 51.210⨯C. 51.310⨯D. 61.310⨯【答案】C 。
5.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体 的俯视图是【 】A.两个外离的圆B. 两个相交的圆C. 两个外切的圆D. 两个内切的圆【答案】C 。
6.某市5月上旬的最高气温如下(单位:℃):28、29、31、29、33,对这组数据,下列说法错误的是【 】A.平均数是30B. 众数是29C. 中位数是31D. 极差是5【答案】C 。
7.下列图形中,既是轴对称图形又是中心对称图形的是【 】【答案】A 。
8.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2k +4k+1y=x的图象上,若点A 的坐标为(-2,-3),则k 的值为【 】A.1B. -5C. 4D. 1或-5【答案】D 。
二、填空题(共8小题,每小题3分,共24分)9.函数x+3x 的取值范围是 ▲ 。
【答案】x 3x 1≥-≠且。
10.分解因式32x 9xy =- ▲ 。
【答案】()()x x+3y x 3y -。
11.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD⊥AB,垂足为E ,已知CD=6,AE=1,则⊙O 的半径为 ▲ 。
【答案】5。
12.一元二次方程2ax 2x+40-=有两个不相等的实数根,则a 的取值范围为▲ 。
【答案】a <14且a≠0。
13.如图所示的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费 ▲ 元。
【答案】7.4。
14.如图,△ABC 三个顶点都在5×5的网格(每个小正方形的边长均为1单位长度)的格点上,将△ABC 绕点C 顺时针旋转到△A′B′C 的位置,且A′、B′仍落在格点上,则线段AC 扫过的扇形所围成的圆锥体的底面半径是 ▲ 单位长度。
3。
15.下列说法中正确的序号有 ▲ 。
①在Rt△ABC 中,∠C=900,CD 为AB 边上的中线,且CD=2,则AB=4;②八边形的内角和度数为10800;③2、3、4、3这组数据的方差为0.5; ④分式方程13x 1=x x -的解为2x=3; ⑤已知菱形的一个内角为600,一条对角线为23,则另一对角线为2。
【答案】①②③④。
16.如图,在正方形ABCD 内有一折线,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,FC=12。
则正方形与其外接圆形成的阴影部分的面积为 ▲ 。
【答案】80160π-。
三、解答题(共10小题,满分102分)17.计算(先化简,再求值):223a 121a+1a 1a 2a+1-⎛⎫-÷ ⎪--⎝⎭,其中2+1。
【答案】解:原式=()()()()()()223a 12a+21a+1=a 1=a 1a+1a 1a+1a 1a 1--÷⋅-----,当a=2+1时,原式=2+11=2-。
18.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明。
你添加的条件是▲ 。
【答案】解:添加的条件是:∠F=∠CDE(答案不唯一)。
理由如下:∵∠F=∠CDE,∴CD∥AF。
在△DEC与△FEB中,∵∠DCE=∠EBF,CE=BE,∠CED=∠BEF,∴△DEC≌△FEB(AAS)。
∴DC=BF。
∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形。
19.某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题。
(1)在这次调查活动中,一共调查了▲ 名学生,并请补全统计图。
(2)“羽毛球”所在的扇形的圆心角是▲ 度。
(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?【答案】解:(1)200。
∵喜欢篮球的人数:200×20%=40(人),喜欢羽毛球的人数:200-80-20-40=60(人);喜欢排球的20人,应占20100%10% 200⨯=,喜欢羽毛球的应占统计图的1-20%-40%-10%=30%。
∴根据以上数据补全统计图:(2)108°。
(3)该校1200名学生中估计爱好乒乓球运动的约有:40%×1200=480(人)。
20.如图,四边形ABCD是正方形,点E是边BC上一动点(不与B、C重合)。
连接AE,过点E作E F⊥AE,交DC于点F。
(1)求证:△ABE∽△ECF;(2)连接AF,试探究当点E在BC什么位置时,∠BAE=∠EAF,请证明你的结论。
【答案】解:(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°。
∴∠BAE+∠BEA=90°。
∵EF⊥AE,∴∠AEF=90°。
∴∠BEA+∠FEC=90°。
∴∠BAE=∠FEC。
∴△ABE∽△ECF。
(2)E是中点时,∠BAE=∠EAF。
证明如下:连接AF,延长AE于DC的延长线相交于点H,∵E为BC中点,∴BE=CE。
∵AB∥DH,∴∠B=∠ECH。
∵∠AEB=∠CEH,∴△ABE≌△HCE(AAS)。
∴AE=EH。
∵EF⊥AH,∴△AFH是等腰三角形。
∴∠EAF=∠H。
∵AB∥DH,∴∠H=∠BAE。
∴∠BAE=∠EAF。
∴当点E在BC中点位置时,∠BAE=∠EAF。
21.在不透明的箱子里放有4个乒乓球。
每个乒乓球上分别写有数字1、2、3、4,从箱子中摸出一个球记下数字后放回箱中,摇匀后再摸出一个球记下数字。
若将第一次摸出的球上的数字记为点的横坐标,第二次摸出的球上的数字记为点的纵坐标。
(1)请用列表法或树状图法写出两次摸球后所有可能的结果;(2)求这样的点落在如图所示的圆中的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别与x轴、y轴切于点(2,0和(0,2))两点)。
【答案】解:(1)列表得:第一次第二次1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)∴共有16种等可能的结果。
(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)9点(如图),∴这样的点落在如图所示的圆内的概率为:9 16。
22.如图已知P为⊙O外一点。
PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧»AB上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC。
(1)求证:PB为⊙O的切线;(2)若2tan BCA3∠=,⊙O的半径为13,求弦AB的长。
【答案】解:(1)证明:如图,连接OA,OB,∵AP为圆O的切线,∴OA⊥AP,即∠OAP=90°。
在△OAP和△OBP中,∵AP=BP(已知),OA=OB(半径相等),OP=OP(公共边),∴△OAP≌△OBP(SSS)。
∴∠OAP=∠OBP=90°。
∴OB⊥BP,即BP为圆O的切线。
(2)延长线段BO,与圆O交于E点,连接AE,∵BE 为圆O 的直径,∴∠BAE=90°。
∵∠AEB 和∠ACB 都对»AB,∴∠AEB=∠ACB。
∴2tan AEB tan BCA 3∠=∠=。
设AB=2x ,则AE=3x ,在Rt△AEB 中,BE=()()(2222x 3x +=。
解得:x=2或x=-2(舍去)。
∴AB=2x=4。
23.为支持抗震救灾,我市A 、B 两地分别的赈灾物资100吨和180吨。
需全部运往重灾区C 、D 两县,根据灾区的情况,这批赈灾物资运往C 县的数量比运往D 县的数量的2倍少80吨。
(1)求这批赈灾物资运往C 、D 两县的数量各是多少吨?(2)设A 地运往C 县的赈灾物资为x 吨(x 为整数),若要B 地运往C 县的赈灾物资数量大于A 地运往D 县的赈灾物资数量的2倍,且要求B 地运往D 县的赈灾物资数量不超过63吨,则A 、B 两地的赈灾物资运往C 、D 两县的方案有几种?【答案】解:(1)设运往C 县的物资是a 吨,D 县的物资是b 吨,根据题意得, a b 100180a 2b 80+=+⎧⎨=-⎩,解得a 160b 120=⎧⎨=⎩。
答:这批赈灾物资运往C 、D 两县的数量各是160吨,120吨。
(2)∵A 地运往C 县的赈灾物资数量为x 吨,∴B 地运往C 县的物资是(160-x )吨,A 地运往D 县的物资是(100-x )吨,B 地运往D 县的物资是120-(100-x )=(20+x )吨,根据题意得,()160x 2100x 20x 63⎧--⎪⎨+≤⎪⎩>,解得x 40x 43⎧⎨≤⎩>。
∴不等式组的解集是40<x≤43。
∵x 是整数,∴x 取41、42、43。
∴方案共有3种,分别为:方案一:A 地运往C 县的赈灾物资数量为41吨,则B 地运往C 县的物资是119吨,A 地运往D 县的物资是59吨,B 地运往D 县的物资是61吨;方案二:A 地运往C 县的赈灾物资数量为42吨,则B 地运往C 县的物资是118吨,A 地运往D 县的物资是58吨,B 地运往D 县的物资是62吨;方案三:A 地运往C 县的赈灾物资数量为43吨,则B 地运往C 县的物资是117吨,A 地运往D 县的物资是57吨,B 地运往D 县的物资是63吨。
24.一轮船在P 处测得灯塔A 在正北方向,灯塔B 在南偏东24.50方向,轮船向正东航行了2400m ,到达Q 处,测得A 位于北偏西490方向,B 位于南偏西410方向。