二重积分复习(1)
- 格式:doc
- 大小:189.00 KB
- 文档页数:3
第二节 二重积分的计算法(1)一、利用直角坐标系计算二重积分一、利用直角坐标系(right angle 计算二重积分)(2x y ϕ=abD)(1x y ϕ=Dba)(2x y ϕ=)(1x y ϕ=y yy x f x S x x d ),()()()(21∫=ϕϕy )(1x ϕ=)(2x y ϕ= d d ),(d )( )()(21∫∫∫⎟⎠⎞⎜⎝⎛==ba x x ba x y y x f x x S V ϕϕyy x f x S x x d ),()()()(21∫=ϕϕx ϕ=)(1y ϕDcdcd(2x ϕ=)(1y ϕ=DX 型区域的特点: 穿过区域且平行于y 轴的直线与区域边界相交不多于两个交点.Y 型区域的特点:穿过区域且平行于x 轴的直线与区域边界相交不多于两个交点.若区域如图,3D 2D 1D 在分割后的三个区域上分别使用积分公式.321∫∫∫∫∫∫∫∫++=D D D D则必须分割.,X=YY=2X=1YX 2112dxdyy dy2x2xy=y=−y e2−dyey 2∵2d y=2x y =xy =xy −=1例6 改变积分 ∫d x10的次序.原式∫∫−=y dxy x f dy 101),(.解积分区域如图例xy −=222x x y −=例7 改变积分∫∫∫∫−−+xxx dy y x f dx dy y x f dx 20212010),(),(2的次序.原式∫∫−−−=12112),(yy d xy x f d y .解积分区域如图例x+ =−d x y y )二重积分在直角坐标下的计算公式(在积分中要正确选择积分次序)二、小结.),(),()()(21∫∫∫∫=Dbax x dy y x f dx d y x f ϕϕσ.),(),()()(21∫∫∫∫=Ddcy y dx y x f dy d y x f ϕϕσ[Y -型][X -型]谢谢大家!。
引言概述:在考研数学中,二重积分是一个必考的难点。
对于很多考生而言,理解和掌握二重积分的概念和计算方法是一项具有挑战性的任务。
本文将以此为主题,通过分析二重积分的基本特点和应用,帮助考生全面理解和掌握这一知识点。
正文内容:一、二重积分的定义和基本特点1. 二重积分的基本定义:二重积分是在二维平面上将一个函数在某个有限区域上的积分运算。
通过将区域分成无数个微小的面元,对每个面元的函数值进行积分,最终求得整个区域上的积分值。
2. 二重积分的性质:二重积分具有线性性、区域可加性、保号性等基本性质。
考生需要深入理解这些性质,并能够灵活应用于计算过程中。
3. 面积与二重积分的关系:二重积分可以看作是计算平面上某个区域的面积。
通过对函数的积分运算,我们可以得到该区域的面积值,并且可以灵活应用于计算各种形状的区域面积。
4. 二重积分的坐标变换:对于一些复杂的区域,我们可以通过合适的坐标变换来简化二重积分的计算。
考生需要了解极坐标变换、直角坐标变换等常见的坐标变换方法,并能够灵活运用于解题过程中。
5. 三种常用坐标系下的二重积分:直角坐标系、极坐标系和柱坐标系是三种常见的坐标系,对应着不同的求积分公式。
考生需要学会在不同的坐标系下进行积分计算,并掌握它们之间的转换关系。
二、二重积分的计算方法1. 变上限与定积分的关系:二重积分的计算可以通过变上限与定积分的关系来实现。
考生需要了解变上限与定积分之间的等价性,并能够将二重积分转化为定积分进行计算。
2. 积分上限与积分下限的交换:二重积分中,积分上限和积分下限的交换是一个常见的操作。
掌握交换积分上下限的条件和规则,能够简化计算过程,并准确求得正确的结果。
3. 利用对称性简化计算:对于一些具有对称性的区域和函数,可以通过利用对称性将二重积分的计算简化。
考生需要善于发现和应用对称性,以提高计算的效率。
4. Fubini定理:Fubini定理是二重积分计算的重要工具,可以将二重积分转化为两个一重积分,从而简化计算过程。
二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
二重积分复习题 1. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解:积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解:积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=222]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解:⎰⎰++Dd y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=.(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解:积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π)][sin(dx y x x x⎰-=π0)s i n 2(s i n dx x x x ⎰--=π0)c o s 2c o s 21(x x xd+--=0|)c o s 2c o s 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=..2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解:积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是⎰⎰D d y xσ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x .(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域; 解:积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy yy Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解:积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}. 于是⎰⎰⎰⎰⎰⎰+--+---++=111111x x y xx x yxDyx dy e dx e dy e dx e d eσ⎰⎰+---+--+=1110111][][dy e e dx e ex x y x x x y x⎰⎰---+-+-=11201112)()(dx e e dx e ex x101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.解:积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ 613)832419(2023=-=⎰dy y y .3. 改换下列二次积分的积分次序: (1)⎰⎰ydx y x f dy 01),(;解:由根据积分限可得积分区域D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰=1101),(),(xy dy y x f dx dx y x f dy .(2)⎰⎰y ydx y x f dy 2202),(;解:由根据积分限可得积分区域D ={(x , y )|0≤y ≤2, y 2≤x ≤2y }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤x ≤4, x y x ≤≤2}, 所以⎰⎰y ydx y x f dy 222),(⎰⎰=402),(xx dy y x f dx .(3)⎰⎰---221110),(y y dx y x f dy ;解:由根据积分限可得积分区域}11 ,10|),{(22y x y y y x D -≤≤--≤≤=, 如图. 因为积分区域还可以表示为}10 ,11|),{(2x y x y x D -≤≤≤≤-=, 所以⎰⎰⎰⎰-----=22210111110),(),(x y ydy y x f dx dx y x f dy(4)⎰⎰--21222),(x x xdy y x f dx ;解:由根据积分限可得积分区域}22 ,21|),{(2x x y x x y x D -≤≤-≤≤=, 如图. 因为积分区域还可以表示为}112 ,10|),{(2y x y y y x D -+≤≤-≤≤=, 所以⎰⎰--21222),(x x xdy y x f dx ⎰⎰-+-=101122),(y ydx y x f dy .(5)⎰⎰e xdy y x f dx 1ln 0),(;解:由根据积分限可得积分区域D ={(x , y )|1≤x ≤e , 0≤y ≤ln x }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤y ≤1, e y ≤x ≤ e }, 所以⎰⎰exdy y x f dx 1ln 0),(⎰⎰=10),(eey dx y x f dy4. 画出积分区域, 把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D 是:(1){(x , y )| x 2+y 2≤a 2}(a >0);解:积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (d f d a.(2){(x , y )|x 2+y 2≤2x };解:积分区域D 如图. 因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D , 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d .(3){(x , y )| a 2≤x 2+y 2≤b 2}, 其中0<a <b ;解:积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (bad f d .(4){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.解:积分区域D 如图. 因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D , 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 120)sin ,cos (d f d .5. 化下列二次积分为极坐标形式的二次积分: (1)⎰⎰101),(dy y x f dx ;解:积分区域D 如图所示. 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D ,所以⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(11⎰⎰=4s e c)s i n ,c o s (πθρρθρθρθd f d ⎰⎰+24c s c)s i n ,c o s (ππθρρθρθρθd f d .(2)⎰⎰+xxdy y x f dx 32220)(;解:积分区域D 如图所示, 并且 }sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D , 所示⎰⎰⎰⎰⎰⎰=+=+xxDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34s e c 20)(ππθρρρθd f d .(3)⎰⎰--2111),(x xdy y x f dx ;解:积分区域D 如图所示, 并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD ,所以⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解:积分区域D 如图所示, 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D ,所以⎰⎰210),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d6. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解:积分区域D 如图所示. 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=. (2)⎰⎰+xa dy y x dx 0220;解:积分区域D 如图所示. 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰⎰⎰⋅=+Dxad d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a . (3)⎰⎰-+xxdy y xdx 221221)(;解:积分区域D 如图所示. 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D , 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ212122102)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d .(4)⎰⎰-+220220)(y a a dx y x dy .解:积分区域D 如图所示. 因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ, 所以⎰⎰⎰⎰⋅=+-Dy a a d d dx y x dy θρρρ222022)(420028a d d aπρρρθπ=⋅=⎰⎰.7. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解:在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以⎰⎰⎰⎰=+DDy x d d e d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ. (2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解:在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(2012-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xyDarctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解:在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xy θρρθθρρθσ)arctan(tan arctan ⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d . 8. 选用适当的坐标计算下列各题:(1)dxdy yx D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域. 解:因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以d x d y y x D22⎰⎰dy y dx x x x ⎰⎰=211221⎰-=213)(dx x x 49=. (2)⎰⎰++--Dd yx y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解:在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .(3)⎰⎰+Dd y x σ)(22, 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解:因为积分区域可表示为D ={(x , y )|a ≤y ≤3a , y -a ≤x ≤y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰. (4)σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )| a 2≤x 2+y 2≤b 2}.解:在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 σd y x D22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ.。
二重积分复习
x 型区域二重积分
例1 设积分区域D 是由0,1,0,1x x y y ====围成的区域,求下列二重积分。
23x y D e
d σ+⎰⎰ 21(123)
D d x y σ++⎰⎰ 5(123)D x y d σ++⎰⎰ 5(1)D x xy d σ+⎰⎰, xy D xe d σ⎰⎰, cos()D
x xy d σ⎰⎰ 2(1)
D x d xy σ+⎰⎰,
D σ
例2 设积分区域D :,1y x x =±=,求下列二重积分。
D d σ⎰⎰ 2c o s ()D x d σ⎰⎰ 2sin()D x d σ⎰⎰ 2
x D e d σ⎰⎰ 211D d x σ+⎰⎰
例3 设积分区域D :01,0x y x ≤≤≤≤,求下列二重积分。
D xd σ⎰⎰, D yd σ⎰⎰, c o s ()D x y d σ+⎰⎰, 23x y D
e d σ+⎰⎰ 2xy D x e d σ⎰⎰, 2
c o s ()D x x
y d σ⎰⎰
2
D σ 2(1)
D x d xy σ+⎰⎰ 22(1)D x d xy σ+⎰⎰ 21D x d xy σ+⎰⎰
例4 设积分区域D 由2,y x y x ==围成的封闭区域,求下列二重积分。
D d σ⎰⎰ D xd σ⎰⎰, D
yd σ⎰⎰, 1D d x σ⎰⎰, D y d x σ⎰⎰
◆ y 型区域二重积分
例1 设积分区域D 是由0,1,0,1x x y y ====围成的区域,求下列二重积分。
D d σ⎰⎰ 23x y D e
d σ+⎰⎰ 21(123)
D d x y σ++⎰⎰ 5(123)D x y d σ++⎰⎰ 5(1)D y xy d σ+⎰⎰, xy D ye d σ⎰⎰, cos()D
y xy d σ⎰⎰ 2(1)
D y d xy σ+⎰⎰,
D σ
例2 设积分区域D :01,0y x y ≤≤≤≤,求下列二重积分。
D xd σ⎰⎰, D yd σ⎰⎰, c o s ()D x y d σ+⎰⎰, 23x y D
e d σ+⎰⎰ 2xy D y e d σ⎰⎰, 2
c o s ()D y x
y d σ⎰⎰
2
D σ 2(1)
D y d xy σ+⎰⎰ 22(1)D y d xy σ+⎰⎰ 21D y d xy σ+⎰⎰
◆ 二重积分的极坐标变换
例1 设积分区域D :221x y +≤,求下列二重积分。
22x y D e
d σ+⎰⎰, 22cos()D x y d σ+⎰⎰, 2211D d x y σ++⎰⎰,
D σ
D σ⎰⎰,
D d σ⎰⎰ D
d σ⎰⎰ 例2 设积分区域D :221,0,0x y x y +≤≥≥,求下列二重积分。
D xd σ⎰⎰ D yd σ⎰⎰ D x y d
σ⎰⎰ D d σ⎰⎰
例3 设积分区域D :22(1)1x y -+≤,求下列二重积分。
D σ 22D x d x y σ+⎰⎰
D σ D d σ⎰⎰
交换积分顺序
100(,)x dx f x y dy ⎰⎰ 交换积分顺序为: 210(,)x x dx f x y dy ⎰
⎰ 交换积分顺序为: 2111(,)x dx f x y dy -⎰
⎰ 交换积分顺序为:。