七年级数学下册 第一章 整式的乘除回顾与思考(第1课时)教案 (新版)北师大版
- 格式:doc
- 大小:156.50 KB
- 文档页数:5
三班举办新年才艺展示,小明的作品是用同样大小的
的空白,这幅画的画面面积法一:先表示出画面的长和宽,由此得到画面的面
法一:长方形的长为(m+a),宽为(
可以表示为_________;
法二:长方形可以看做是由四个小长方形拼成的,四
中阴影部分的面积_______.
小颖将阴影部分拼成了一个长方形(如图1-4
这个长方形的长是_____、宽是________,它的面积
)的结果,你能验证平方差公式吗?____________________________________________
:________
(两数和(差))的平方;右边是两数的平方和加上(减去)这两数乘
语言描述:两数和(或差)的平方,等于这两数的平。
北师大版义务教育教科书七年级下册第一章《整式的乘除》回顾与思考(第一课时)教学设计与说明一、教材分析(一)教学内容的地位和作用本章内容是学生在学习了七年级上册整式的加减运算,已初步体会了整式运算在解决“具有一般性”的问题中的作用之后,对整式运算学习的一个延续,代数本身是一门具有丰富内容并且与现实世界、学生生活、其他学科联系十分密切的学科,它为数学本身和其他学科的研究提供了语言、方法和手段,是研究数学本身和其他学科的基础。
而本章内容注重数与式的类比,数与形的结合,发展学生的数感、符号意识及运算能力,本节课从章标题“整式的乘除”开始,乘法学了什么?除法又学了什么?他们之间又有什么联系?让学生展示自己课前设计的思维导图,最后全班对本章内容形成知识结构图。
因此,本堂课不仅是发展学生原有的认知结构,形成新的整体的知识体系的主要通道,而且是渗透数形结合思想,进一步感受整式运算的价值以及增强学生符号感的有效载体,为学生后续学习分式、方程、函数等内容奠定了基石,积累了学习方法、经验。
因此,本章内容在教材中处于十分重要的地位。
(二)教学目标1.整式的乘除相关法则中算理的理解与应用,能熟练运用幂的运算法则、整式乘除法则进行运算.2.回顾与反思本章所学内容,梳理本章知识脉络,建立知识间的联系,渗透分类思想。
3.培养学生自主探究归纳概括、运用知识解决问题的能力,提高学生对知识整合与分析的能力,发展几何直观。
(三)重点与难点教学重点:在幂的运算,整式的乘、除法则等知识的复习过程中,进一步感受数(有理数)与式(整式)的类比、式(整式)与形(图形面积)的结合这些重要的数学思想。
教学难点:在对所学法则公式总结、归纳的过程中,认识到各知识之间的紧密联系,从而积累回顾与思考的经验和能力。
二、学情分析学生在这一章中了解了整数指数幂的意义和正整数指数幂的运算性质,经历了探索整式乘除法法则的过程,理解了整式乘除的算理,运用这些知识解决了一些相关的实际问题。
北师大版七年级下第一章《整式的乘除》教案1.1《同底数幂的乘法》教案教学目标1、理解法则中“底数不变、指数相加”的意义;能熟练地应用同底数幂乘法法则进行计算.2、从同底数幂乘法法则的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力和逻辑推理能力.重点:同底数幂的乘法法则及法则的正确应用.难点:同底数幂的乘法法则的推导.教学流程一、复习与回顾回忆乘方、幂等概念.二、创设情境,引出课题,探索新知师:看来同学们对以前所学的知识还有印象.哎,有一件事情虽然过去两年多了,但是我相信大家一定印象深刻——那就是2008年北京奥运会.你们还记得奥运场馆的标志性建筑是什么吗?——对,鸟巢和水立方!非常壮观,被列入北京十大建筑,同时也是世界上著名的节能环保建筑.你们认为他们最漂亮的是什么时候呢?到了晚上他们就更漂亮了,是因为什么?(灯光)可能大家有所不知,这里所需要的灯光大部分都不是来自发电厂,而是来自太阳能.(出示: 中国奥委会为了把2008年北京奥运会办成一个环保的奥运会,很多建筑都做了节能的设计,据统计:奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?)师:你们能列式吗?(学生讨论得出108×105)师:108、105我们称之为什么?(幂)师:我们再来观察底数有什么特点?生1:都是10生2:是一样的师:像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题)1、探索108×105等于多少?(鼓励学生大胆猜想?)13②1040③10040④1013学生可能会出现以下几种情况:①100师:那到底谁得猜想是正确呢?小组合作讨论(师提示:根据幂的意义)生回答师板演:108 × 105=(10× 10×…×10)×(10 × 10×…×10) (8个10) (5个10) =10×10×…×10 13个10 =1013 即:108 × 105=108+5 2、出示问题: a 6 · a 9=(a · a …a )×(a · a …a ) 6个a 9个a =a · a …a 15个a =a 15即:a 6 · a 9=a 6+93 、观察以上两个式子,你有什么发现?师:这是两个特殊的式子,他们的指数分别是8,5;6,9.同底的两数任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗? a m · a n 怎么计算?板书:a m · a n = a m +n (m 、n 都是正整数)师补充解释m 、n 都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.板书:同底数幂相乘底数不变,指数相加. 出示:1、计算下列各式,结果用幂的形式表示:(1)(-9)2 ×(-9)5 (2)x m ·x 3m +1 (3)(x +y )3 ×(x +y ) 教学(1)指名回答,师板演完整步骤,(2)(3)学生独立完成,要求书写完整的解答步骤. 师概括底数a 可以是任意有理数,也可以是单项式或多项式. 出示:2、计算下列各式,结果用幂的形式表示:(1)a ·a 3 ·a 6 (2)(-m )3 ×(-m )5 ×(-m )教学(1)学生齐答,师板演完整步骤,(2)学生独立完成后师提问:你对法则有什么新的认识吗? 出示:3、计算下列各式,结果用幂的形式表示:(1) -m 2 ×(-m )6(2)a ·(-a )2 ·(-a )3教学 :小组合作,讨论完成.问:此类题有何特征?解题时应注意哪些问题?第1题(1)的教学活动目的让学生掌握解题的书写步骤,(2)(3)让学生独立完成进一步巩固解题的书写步骤,第3题小组合作解题.本例的教学活动既有教师的引导,学生独立思考又有学生的合作交流,从而优化学生的思维体现了思维的合理化、严格化、程序化,特别是小组合作,能使学生在同伴交流过程中也培养了团体合作意识. 师问: a 8+a 8等于多少? 生可能会快速回答:等于a 16师追问 a 8 ·a 8等于多少? 生:等于a16 生在回答a 16时立即发现了问题 师再追问:那么说a 8+a 8= a 8 ·a 8? 生思考片刻:a 8+a 8=2 ·a 8该教学活动让学生产生思想冲突,并由教师的追问使他们自己产生疑问,再让学生经过“比较”解决冲突,也避免了以后出现同类项与同底数幂相乘产生混淆. 三、巩固新知课件出示下面计算对吗?如果不对,应怎样改正?师:思考一至二分钟举手回答,可挑选自己喜欢的题目回答.给学生充足的思维空间,养成思考习惯,让学生自主挑选回答主要是让后进生也能在课堂上体验成功,有成就感;且该教学活动亦能培养学生仔细观察问题的习惯. 四、活用法则提问:已知 a m = 3 , a n =5 , 求 a m +n 的值. 五、归纳小结1、同桌之间用今天学到的知识,每人出一个最好的题让同伴解答.看谁出题最好、又看谁解答最棒!2、叙述本节课的收获.236a a a ⋅=(2)66a a a ⋅=(3)831177⋅=-(4)(-7)()3332a a a ⋅=(1)《1.2幂的乘方与积的乘方》教案一、教学目标:1.了解积的乘方的运算性质,并能解决一些实际问题.2.经历探索积的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、教学重难点:重点:积的乘方运算性质:(ab )n = a n b n (n 是正整数). 难点:幂的运算性质的综合运用及混合运算.三、教学过程设计:本节课设计了七个教学环节:复习回顾、探索交流、知识扩充、巩固新知、公式逆用、课堂小结、布置作业. 第一环节:复习回顾活动内容:复习前几节课学习的有关幂的三个知识点.1.幂的意义: 2.同底数幂的乘法运算法则(m 、n 为正整数)3.幂的乘方运算法则(a m )n =a mn (m 、n 都是正整数) 第二环节:探索交流活动内容:地球可以近似地看做是球体,如果用V ,r 分别代表球的体积和半径,那么.地球的半径约为6×103 km ,它的体积大约是多少立方千米? 本环节是这节课最为重要的环节之一,充分借助教材提供的求地球体积的情境,引导学生思考“(6×103)3等于多少”,同时分析这种运算的特征,展开对“积的乘方”运算的探索,教师还可以在课上可以对直接学生进行升级式提问: (1)根据幂的意义,(ab )3表示什么?(2)为了计算(化简)算式ab ·ab ·ab ,可以应用乘法的交换律和结合律.又可以把它写成什么形式?(3)由(ab )3=a 3b 3 出发,你能想到更为一般的公式吗?活动目的:经历了前两节课的探究,在本课中可以启发学生自主从具体特殊的数字问题到抽象的字母,新的挑战更会激起学生学习的兴趣,达到更好的学习效果. 第三环节:知识扩充nan a a a a =⨯⨯⨯个n m n ma a a+=⋅334r V π=活动内容:积的乘方的运算法则:(ab )n =a n b n 积的乘方,等于每一因数乘方的积.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质? 怎样用公式表示? 进一步探讨出答案(abc )n =a n ·b n ·c n 第四环节:巩固新知 活动内容: 1.计算:(1)(3x ) ; (2)(-2b ); (3)(-2xy ); (4)(3a ). 2.完成引例的求地球体积问题.3.下面的计算是否正确?如有错误请改正. (1); (2). 4.课本随堂练习 第五环节:公式逆用 活动内容:计算:(1)2×5; (2)2×5;(3)(-5)× (-2); (4)2× 4×(-0.125); (5)0.25×4;(6)8×0.125.第六环节:课堂小结活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调. 第七环节:布置作业1.完成课本习题1.2的1、2.2.拓展作业:你能用几何图形直观的解释(3b )2=9b 2吗?《1.3同底数幂的除法》教案教学目标:1、理解同底数幂的除法运算法则,能解决实际问题;2、理解零指数和负整指数的意义.教学重点:同底数幂的除法运算法则及其应用.2542n844)(ab ab =2226)3(q p pq -=-338816154441001001213教学难点:对零指数和负整指数意义的理解.教学过程:一、创设问题情景,引入新课在上节课,我们计算过地球和太阳的体积,如果地球的体积大约是,太阳的体积大约为,请问,太阳的体积是地球体积的多少倍? 教师活动1、引导学生讨论,说出自己的思考过程.2、这种运算叫同底数幂的除法.学生活动 可能的思考过程:二、探索同底数幂的除法运算法则 试一试:计算(1) (2) (a ≠0) (3) (m ﹥n )(4)(p ﹥y ) 教师活动引导学生从以上特例中归纳出一般性的规律,并用自己的语言将规律描述出来. 启发学生从幂的意义等角度说明这一性质的依据.(m ,n 是正整数,且m ﹥n ,a ≠o )3111005.9千米⨯3171005.9千米⨯11171010÷611611111711171010101010101005.91005.9)1(=⨯==⨯⨯610610111010111711171010101010101010101010101005.91005.9)2(=⨯⋅⋅⋅⨯=⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯⨯==⨯⨯个个个471010÷35a a ÷nm 33÷y p)2()2(-÷-nm an m an am n m a a a a a a a aa a a a --=⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=÷个个个)(学生活动1、交流、讨论,说明每一个问题的结果和每一步运算的理由.2、观察运算前后指数和底数的变化,归纳出同底数幂除法的运算性质:(a ≠0,m ,n 都为正整数,且m ﹥n ,) 练一练:例1、计算(写出完整答案)师生互动: 注:1、公式中的底数a 可以表示数、单项式、多项式等.2、前后底数必须化成完全一致. 想一想:1000=10() 8=2( ) 100=10() 4=2( ) 10=10() 2=2( ) 1=10() 1=2()猜一猜: 0.1=10()=2( )0.01=10()=2( )0.001=10()=2( ) 教师活动:1、引导学生观察上列式子中等式左右形式的变化,提出合理猜想.2、启发学生对新发现的问题(零指数幂、负整指数幂)进行归纳、描述.(a ≠0)(a ≠0,P 为正整数) 学生活动1、观察“想一想”中,幂都大于1,当指数减1时,幂为原来的(或). nm n m a a a -=÷47)1(a a ÷36)())(2(x x -÷-36))(3(x x ÷-)())(4(4xy xy ÷122)5(-+÷m m b b 35)())(6(m n n m -÷-4101000=4216=21418110=a pp a a 1=-101212、提出猜想,解决新问题.3、解释猜想的合理性.例2、用小数或分数表示下列各数:解: 三、过手训练1、判断正误,并改正.( ) ( ) ,,得 ( )2、计算:(n 为正整数)3、(1)(2)若=1,则x = ;若则 , .(3)计算:(4)已知. 四、课时小结1.同底数幂的除法运算法则,底数不变,指数相减.2.都为整数,“m >n ”的条件可以取消;3.当m =n 时,(a ≠0),4.当m <n 时, 310)1(-2087)2(-⨯4106.1)3(-⨯001.010********)1(33===-6418118187)2(2220=⨯=⨯=⨯--00016.00001.06.11016.1106.1)3(44=⨯=⨯=⨯-23636)1(a a a a ==÷÷1)1)(2(0-=-12)3(0=130=32=58))(1(m m ÷-)())(2(7x y y x -÷-2332)3(++÷m m a a []1232)()()4(+--÷+n ny x y x ==÷+m ,x x xm 则若5212123+x ,313=x=x1=-1x 320)21()31()2004()3(-+----计算:的值求已知y x y x b a -==25,5,5)4(n m aa a nm nm.,-=÷10===÷-a a a a nm n m ),1(1)(为正整数p a a aa aa a pp mn m n nm n m ====÷-----五.课后作业《1.4整式的乘法》教案一、学习目标:理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.二、学习重点:单项式乘法法则及其应用.三、学习难点:理解运算法则及其探索过程.四、预习准备(1)预习书P14-15(2)思考:单项式与单项式相乘可细化为几个步骤?(3)预习作业:1)(-a5)5=2)(-a2b)3 =3)(-2a)2(-3a2)3=4)(-y n)2y n-1=五、学习过程:整式包括单项式和多项式,从这节课起我们研究整式的乘法,先学习单项式乘以单项式.例1.利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:(1)2x2y·3xy2(2)4a2x5·(-3a3bx)单项式乘以单项式的乘法法则:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:法则实际分为三点:(1)①系数相乘——有理数的乘法;此时应先确定结果的符号,再把系数的绝对值相乘.②相同字母相乘——同底数幂的乘法;(容易将系数相乘与相同字母指数相加混淆)③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.(2)不论几个单项式相乘,都可以用这个法则.(3)单项式相乘的结果仍是单项式.例2.计算:(1)(-5a2b3)(-3a)=(2)(2x)3(-5x2y)=(3) =________(4)(-3ab )(-a 2c )2·6ab (c 2)3= 注意:先做乘方,再做单项式相乘. 练习: 1. 判断:单项式乘以单项式,结果一定是单项式 ( ) 两个单项式相乘,积的系数是两个单项式系数的积 ( ) 两个单项式相乘,积的次数是两个单项式次数的积 ( ) 两个单项式相乘,每一个因式所含的字母都在结果里出现( ) 2. 计算:(6)0.4x 2y ·(xy )2-(-2x )3·xy 3拓展:3.已知a m =2,a n =3,求(a 3m +n )2的值. 4.求证:52·32n +1·2n -3n ·6n +2能被13整除. 5.回顾小结:单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.《1.5平方差公式》教案教学目标:1.会推导平方差公式并能正确运用公式进行计算.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用. (四)教学重点,难点教学重点:探索平方差公式的过程. 教学难点:理解平方差公式的特征.二.教材处理22232332⎪⎭⎫⎝⎛-⋅xy y x )31()2)(1(2xy xy ⋅)3()2)(2(32a b a -⋅-)105()104)(3(45⨯⨯⨯52322)()3)(4(b a b a -⋅-)31()43()32)(5(2532c ab c bc a ⋅-⋅-21.)(351221的值,求)若(n m b a b a b an n m +=⋅⋅-++1.突出重点:学生通过自主探究,剪纸拼图的方法发现和认识平方差公式.2.突破难点:学生通过尝试对公式特征的语言叙述,认识和理解公式本质的内容.三.学法指导1.由问题情境产生思考,激发对新知的求知欲.2.通过动手剪纸拼图,认识和解释情境中的问题,同时,发现数学知识,感受知识的发生和发展过程.3.通过交流辨析,进一步理解平方差公式四.教学具准备大正方形纸板,剪刀.五.教学过程(一)创设问题情景,引入新课1、在一个边长为a米的正方形草坪的一角修建一个正方形的水池,改建后草坪的面积是?aabb2、你能利用面积知识,用不同的形式表示阴影部分的面积吗?试试看!同桌可交流讨论,然后把你的想法说给大家听.(教师巡视同学们拼图的情况,了解同学们拼图的想法.)3、可能拼出的情况:(1)可以拼成长方形把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图所示的图形(阴影部分),它的长和宽分别为(a+b),(a-b),面积为(a+b)(a-b).(2)还可以拼成长方形长方形,大长方形的长和宽分别为(a +b ),(a -b ),则其面积为(a +b )(a -b ).(3)可以拼成梯形把剩下的图形(即阴影部分)沿折痕(对角线)剪开,得到两个直角梯形,我们可以注意到,两个直角梯形的高均为(a -b ),所以我们可以将这两个边重合,然后按右图拼接成梯形. 这个梯形的上底为2b ,下底为2a ,则其面积为(2a +2b )(a -b ),化简为(a +b )(a -b ).(4)可以拼成平行四边形21ababa abba bab abba b a ab babab个直角梯形的高均为(a-b),所以我们可以将这两个边重合,然后按右图拼接成平行四边形.由剪拼过程我们可以知道,这个平行四边形的边长为(a+b),高为(a-b).所以这个平行四边形的面积为(a+b)(a-b).师:“对于同一个图形,不论用什么方法来求它的面积,这个面积改不改变?计算你所拼出的几何图形的面积,你能发现什么?”(学生通过拼图来探索这一图形面积的求法,在此过程中,教师对学生所拼图形给予充分的评价并鼓励学生从中发现知识,交流自己的观点)设计意图:通过动手剪纸拼图,让学生经历平方差公式的探索,在认识和解释情境的过程中,发现数学知识,感受知识的发生和发展过程.4、你能用你学过的多项式乘多项式的知识来验证你的发现吗?设计意图:学生利用多项式乘多项式的法则计算(a+b)(a-b),验证自己的猜想.(二)得出概念1、(a+b)(a-b)=a2-b2这个公式称为平方差公式(1)你能用语言叙述这个公式吗?设计意图:锻炼学生的总结能力及语言表达能力.“两个数的和乘以两个数的差等于它们的平方差.”(2)你能用多项式乘法法则说明理由吗?设计意图:体会数学的逻辑性及利用平方差公式计算的简洁性.2、自主交流,合作探索:利用平方差公式计算的关键是什么?怎样确定?利用平方差公式计算的关键:确定a和b.其中两个完全相同的项为a,另两个只有符号不同的项为b,其结果等于符号相同的数的平方减去符号不同数的平方.3、现学现卖:按要求填写下面表格组讨论得出结果,然后教师给出答案.注意:根据学生层次的不同,若学生不能观察出公式特征,教师可增加启发性的问题,如:“两个多项式有什么相同,有什么不同?”“两项的符号都不同吗?”“等于什么?”学生由此观察发现公式的特征.(三)例题教学1、(1)(2x +y )(2x -y ) (2)(x +2)(x -2) (3)(-5a +3b )(-5a -3b ) (4)(m +n )(n -m )(可让学生先自己尝试计算,然后让部分学生上黑板,其他学生在练习本上完成,同桌交流答案,教师巡视,对错误进行辨析,最后由教师规范书写步骤.) 2、活学活用: 运用平方差公式计算:1)59.8 ×60.2 2)101 ×99(其中第1题师生共同分析式子特点,由教师给出规范步骤,第二题让同学板演或口答.) (四)实战演练1、我问你答:请你为你的同桌出一道能用平方差公式计算的问题.(在练习本上完成,先由同桌同学互查互纠,教师巡视过程中,如果有有争议的问题,提出来由老师解决.对共性的错误,教师展示给同学辨析,纠正错误.) 2、小试牛刀:下列各式的计算是否正确?如不正确,应怎样改正? 1)(x +4)(x -4)=x 2-4; ( ) 2)(a +2b )(a -2b )=a 2-4b ; ( ) 3)(-2y +3)(2y +3)=4y 2–9. ( ) 3、应用拓展:运用平方差公式计算:(1)(x +2y )(x -2y ) (2)(2a -b )(b +2a ) (3)(4a +3b )(4a -3b ) (4)(-3m +2n )(3m +2n ) 4、请你支招有一位狡猾的地主, 把一块边长为a 米正方形的土地.租给李老汉种植.今年,他对李老汉说:“我把你这块地一边增加4米,另一边减少4米,继续租给你,你也没有吃亏,你看如何?”李老汉一听,觉得好象没有吃亏,就答应.同学们,你们觉得李老汉有没有吃亏?(五)课堂小结:1、通过本节课的学习,你认为:21214a4(1)什么是平方差公式?一般两个二项式相乘的积应是几项式?(2)平方差公式中字母a、b可以是那些形式?(3)怎样判断一个多项式的乘法问题是否可以用平方差公式?2、师生总结:(1)平方差公式:(a+b)(a-b)=a2-b2(2)我们在运用平方差公式时,要注意以下几点:①公式中的字母a、b可以是任意代数式;②利用平方差公式计算的关键是:准确确定a和b;③完全相同的看作a,只有符号不同的看作b.(六)布置作业《1.6完全平方公式》教案一、教学目标1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.二、教学重难点(一)教学重难点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.(二)教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.三、教学方法引导学生从面积入手发现并猜测完全平方公式,通过合作探索讨论用所学的知识对公式进行验证.四、教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1[师]你能用不同的方式表示试验田的面积吗?(学生思考面积的表示方法)法一:改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.法二:也可以把试验田的总面积看成四部分的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过对比试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料表明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度利用多项式的乘法运算推导出这样的公式呢?想一想:(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗?(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)用多项式乘法法则可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2[师]你能用语言描述这个公式吗?(引导学生用语言描述公式,学生齐读)两个数的和的平方等于这两个数的平方和加上它们积的2倍. (2)(a -b )2等于什么?你是怎样想的. (学生讨论,探索结论,学生自己回答解决方法)(学生很容易模仿上面的方法用多项式乘法来解决,老师可以适当的引导学生利用刚才验证的公式来解决整个问题,寻求一个问题的多种解法)法一:(a -b )2=(a -b )(a -b )=a 2-ab -ba +b 2=a 2-2ab +b 2.法二:因(a +b )2=a 2+2ab +b 2中的a 、b 可以是任意数或单项式、多项式.我们用“-b ”代替公式中的“b ”,利用上面的公式就可以得到(a -b )2=[a +(-b )]2. [师生共析](a -b )2=[a +(-b )]2=a 2+2·a ·(-b )+(-b )2=a 2-2ab +b 2. 于是,我们得到又一个公式:(a -b )2=a 2-2ab +b 2 [师]你能用语言描述这个公式吗?(学生模仿上面公式的描述试着自己描述,请学生回答) 两个数的差的平方等于这两个数的平方和减去它们积的2倍. 2.应用、升华[例1]利用完全平方公式计算:(1)(2x -3)2; (2) (4x +5y )2; (3) (mn -a )2.分析:利用完全平方公式计算,第一步先选择公式;第二步,明确谁是a ,谁是b ,准确代入公式;第三步化简. Ⅲ、随堂练习 计算:(1)(x -2y )2;(2)(2xy +x )2;(3)(n +1)2-n 2. (学生演板,互相批改)解:(1)(x -2y )2=(x )2-2·x ·2y +(2y )2=x 2-2xy +4y 2 (2)(2xy +x )2=(2xy )2+2·2xy ·x +(x )2=4x 2y 2+x 2y +x 2 (3)方法一:(n +1)2-n 2=n 2+2n +1-n 2=2n +1.方法二:(n +1)2-n 2=[(n +1)+n ][(n +1)-n ]=2n +1. Ⅳ、课后作业《1.7整式的除法》教案教学目标:215121212141515151542511.知识与技能:理解整式除法运算的算理,会进行简单的整式除法运算.2.过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力. 3. 情感与态度:体会数学在生活中的广泛应用教学重点:单项式除以单项式的整式除法运算.教学难点:单项式除以单项式运算法则的探究过程.教学过程设计:第一环节:复习回顾 活动内容:复习准备 1.同底数幂的除法同底数幂相除,底数不变,指数相减.2.单项式与单项式相除的法则:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的因式. 第二环节:情境引入活动内容:你知道需要多少杯子吗?图(1)的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)的杯子中,那么一共需要多少个这样的杯子?(单位:cm )第三环节:探究新知 活动内容:1.直接出示问题,由学生独立探究. 计算下列各题,说说你的理由.2.总结探究方法),,,0(n m n m a a a a n m n m >≠=÷-且都是正整数=÷-=÷+=÷+xy xy xy a ab b a d bd ad )2()3()3()2(132)()((1)瓶28(2)杯子方法1:利用乘除法的互逆 方法2:类比有理数的除法3.总结多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 第四环节:例题讲解 活动内容:例、计算:做一做:小明在爬一小山时,第一阶段的平均速度为 v ,所用时间为 t 1;第二阶段的平均速度为v ,所用时间为 t 2.下山时,小明的平均速度保持为4v .已知小明上山的路程和下山的路程是相同的,问小明下山用了多长时间? 第五环节:课堂练习 活动内容:1.想一想,下列计算正确吗?2. 计算2)2(2)2()3(3)3(3)3()2()(1233222-=÷-∴-=⋅-+=÷+∴+=⋅++=÷+∴+=⋅+y xy xy xy xy xy xy y b ab a ab b a ab b a a b ab b a d bd ad bd ad d b a )()(02.302.0371)14.021(7)14.021(=+=⨯+=÷+例如21)2()2()3(31)3()3()2(1123322-=⋅-=÷-+=⋅+=÷++=⋅+=÷+y xy xy xy xy xy xy bab a ab b a a ab b a ba dbd ad d bd ad )()()类比得到()21()213()4(3)69()3(3)61527()2(2)86()1(222223xy xy xy y x xy xy y x a a a a b b ab -÷+-÷-÷+-÷+2122322223223232)21()642()3(32)5()15105()2(5.06)63()1(y xy x y y xy y x b ab a ab ab b a b a xxy xy y x -+-=-÷+-++=-÷--=÷-第六环节:处理情境问题活动内容:你知道需要多少杯子吗?图(1)的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)的杯子中,那么一共需要多少个这样的杯子?(单位:cm )答:一共需要 个这样的杯子.第七环节:知识小结活动内容:师生互相交流总结本节课上应该掌握的多项式除以单项式的相关知识,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生畅谈个人的学习感受. 第八环节:布置作业xy xy y x d c d c d c m mc mb ma yy xy 7)34()4()2()6()3()()2()3()1(222332÷+-÷-÷++÷+hH a h a a H a a h a H a a h a H a 212)2()4()2()(248221212212222222222+=÷+÷=⎥⎦⎤⎢⎣⎡÷⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅⋅÷⎥⎥⎦⎤⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅⋅+⋅⎪⎭⎫ ⎝⎛⋅⋅ππππππππππ(1)瓶28(2)杯子 h H 212+。
七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版一. 教材分析本节课主要讲解整式的乘法,是学生在掌握了整式的加减法、乘除法的基础上进行学习的。
整式的乘法是初中学历中非常重要的一部分,也是后续学习更复杂数学知识的基础。
本节课通过具体的例子引导学生掌握整式乘法的方法和技巧,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了整式的加减法,对整式的概念有一定的了解。
但是,对于整式的乘法,学生可能还存在着一些困难和模糊的地方。
因此,在教学过程中,需要通过具体的例子和讲解,帮助学生理解和掌握整式的乘法。
三. 教学目标1.知识与技能:使学生掌握整式的乘法,能够熟练地进行整式的乘法运算。
2.过程与方法:通过具体的例子和讲解,引导学生理解和掌握整式的乘法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:整式的乘法的方法和技巧。
2.难点:整式乘法中的一些特殊情况和高阶整式的乘法。
五. 教学方法采用讲解法、例题演示法、练习法、小组合作学习法等,通过具体的例子和讲解,引导学生理解和掌握整式的乘法。
六. 教学准备1.准备相关的例题和习题。
2.准备多媒体教学设备,用于展示例题和讲解。
七. 教学过程1.导入(5分钟)通过一个简单的例子,引导学生复习整式的加减法,为新课的学习做好铺垫。
2.呈现(10分钟)展示整式的乘法的定义和规则,通过讲解和演示,使学生理解和掌握整式的乘法。
3.操练(10分钟)让学生进行一些整式乘法的练习,巩固所学知识,并发现和解决一些问题。
4.巩固(10分钟)对整式的乘法进行总结和巩固,使学生能够熟练地进行整式的乘法运算。
5.拓展(10分钟)引导学生思考和探索一些整式乘法的特殊情况和高阶整式的乘法,培养学生的逻辑思维能力和解决问题的能力。
6.小结(5分钟)对本节课的学习内容进行小结,使学生对整式的乘法有一个清晰的认识。
七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版一. 教材分析《北师大版七年级数学下册》第一章整式的乘除1.4整式的乘法1教案,主要讲解整式的乘法运算。
整式的乘法是初中学员需要掌握的重要内容,它涉及到代数表达式的简化与变换,对于学生理解和运用代数知识具有重要意义。
二. 学情分析七年级的学生已经掌握了整数四则运算和基本的代数知识,对整式的加减法有了初步的了解。
但学生在整式的乘法运算上可能还存在一定的困难,特别是对于多项式乘以多项式的规则和不定式的确定。
因此,在教学过程中,需要注重引导学生理解和掌握整式乘法的基本规则和方法。
三. 教学目标1.让学生理解整式乘法的概念和意义。
2.掌握整式乘法的基本运算规则。
3.能够熟练进行整式的乘法运算。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:整式乘法的基本运算规则和运算方法。
2.教学难点:多项式乘以多项式的过程和不定式的确定。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过问题引导,让学生思考和探索整式乘法的规则;通过案例分析,让学生理解和掌握整式乘法的运算方法;通过小组合作,让学生互相讨论和解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪和黑板。
3.准备教学PPT或教案文档。
七. 教学过程1. 导入(5分钟)通过一个实际问题引入整式乘法的学习,例如:“已知长方形的面积为长乘以宽,如果一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
”让学生思考和探索如何将长和宽相乘得到面积。
2. 呈现(15分钟)呈现整式乘法的定义和基本规则,通过PPT或教案文档,介绍整式乘法的概念和意义,以及整式乘法的基本运算规则。
同时,给出一些具体的例子,让学生理解和掌握整式乘法的运算方法。
3. 操练(15分钟)让学生进行整式乘法的练习,可以是书面的练习题,也可以是口头的练习题。
教学设计:图形巧遇面积法[课题]:图形巧遇面积法[教学内容]:北师大版七数第一章回顾与思考[教学目标]:1.知识与能力目标:使学生通过面积法了解并掌握完全平方公式的推导过程与计算法则,并形成技能。
2.过程与方法目标:通过课堂观察,分析,讨论合作学习,以及作图,让学生使用多项式乘以多项式的计算法则与面积法进行推导,掌握知识。
3.情感态度价值观目标:培养学生归纳,概括,创新思维的能力。
[教学重点]:通过面积法掌握完全平方公式的推导。
[教学难点]:通过作图法,多项式乘以多项式法则,联系面积法推导完全平方公式。
[教学用具]:彩笔,三角尺,多媒体[教学过程]:一:复习学生引导一课本第35页第14题提问:1.图中有多少个边长为(a+3b)的正方形?它的面积怎么表示?2.图中有多少个边长为a的正方形?它的面积怎么表示?3.图中有多少个边长为b的正方形?它的面积怎么表示?4.有多少个两边分别为a和b的长方形?它的面积怎么表示?5.上述图形的面积之间有什么联系,用算式怎么表达?算式:(学生列出算式并口述思路)二.创设情境,启发思考。
探究学生引导二学案第20页第11题出示图例:有一张边长为a cm的正方形桌面,因为实际需要,需将正方形边长增加b cm,设计了三种方案,请用面积法验证:a2+2ab+b2=(a+b)2(学生活动):请你思考三幅图的方案,准确叙述并写出公式的验证过程学生一:...列式...口述思路...学生二:...列式...口述思路...学生三:...列式...口述思路...三:启发思考学生引导三(a+b)2与 (a-b)2教师提示:算式中的a和b可以是一个具体的数,也可以是单项式或多项式提问:1.(a+b)2与(a-b)2和(a+3b)2是特殊的多项式乘以多项式吗?2.特殊在什么地方?3 .你能用多项式相乘的计算法则分别计算出结果吗?学生一... 学生二... 学生三...4.思考“2ab”中的“2”是什么意思?是次数“2”吗?5(a+3b)2=a2+6ab+9b2那么怎么不见“2”呢?6.怎样用面积法表示(a+b)2=a2+2ab+b2并口述思路怎样用面积法表示(a-b)2=a2-2ab+b2并口述思路作图一... 作图二...(观察演示)四:学生引导四2016-2017期中考试题出示图例:图1是长为2m宽为2n的长方形,沿着图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形。
四、巩固提升
归纳第一章《整式的乘除》中出现的三类典型的蕴含重要数学思想的题型,让学生对知识的运用形成体系,明确在具体题目当中出现的数学方式,并能较好的进行分析和解
决。
1.公式的灵活应用
将多项式4x2+1加上一个单项式后,
使它能成为一个形如(a+b)的完全平方,
则添加单项式的方法共有多少种
2.数形结合思想
我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,
就可以用如图所示的面积关系来说明。
(1)根据图形请你写出一个等式:
(2)根据等式请你画出一个能说明等式成立的图形:(2a+b)(a+3b)=2a2+7ab+3b2从代数到图形,从图形到代数,彼此是互相支撑互相补充的关系。
对于给出的代数恒等式(2a+b)(a+b)=2a2+3ab+b2,可以用同一个图形的面积相等去解释等号左右相等,所谓“以形助数”使代数问题几何化。
另外一方面,给出一个图形,学生也可以根据面积相等列出一个代数恒等式,所谓的“以数辅形”,使几何问题代数化。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,初中数学中实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系。
七年级数学下册第一章整式的乘除1.4整式的乘法1教学设计新版北师大版一. 教材分析本节课的教学内容是北师大版七年级数学下册第一章整式的乘除1.4整式的乘法1。
这部分内容是学生在学习了整式的加减、乘法运算法则等知识的基础上进行的,是进一步深化学生对整式运算的理解,培养学生运用整式运算解决实际问题的能力。
本节课的主要内容包括单项式乘单项式、单项式乘多项式以及多项式乘多项式。
二. 学情分析学生在进入七年级之前,已经掌握了整数的四则运算和代数式的知识,对整式的加减运算有一定的了解。
但是,对于整式的乘法运算,尤其是多项式乘多项式的运算,可能会感到较为抽象和困难。
因此,在教学过程中,需要引导学生通过实际操作和举例,逐步理解和掌握整式的乘法运算规律。
三. 教学目标1.知识与技能:使学生掌握整式的乘法运算,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式。
2.过程与方法:通过小组合作、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力和创新精神。
四. 教学重难点1.重点:掌握整式的乘法运算规律。
2.难点:理解多项式乘多项式的运算方法,并能灵活运用。
五. 教学方法采用“引导探究式”教学法,通过设置问题情境,引导学生主动探究,合作交流,从而解决问题,达到学习目标。
同时,运用“案例分析法”和“实践操作法”,让学生在实际操作中感受和理解整式乘法运算的规律。
六. 教学准备1.教学PPT:制作包含教学内容的PPT,以便在课堂上进行展示和讲解。
2.教学素材:准备一些实际的例子和练习题,用于引导学生进行探究和练习。
3.学生活动材料:为学生提供一些纸张和笔,以便他们在课堂上进行实际操作和记录。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行整式的乘法运算。
例如,给出一个长方形的面积公式,让学生思考如何通过整式乘法运算求解长方形的面积。
2.呈现(10分钟)利用PPT展示整式的乘法运算规律,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式。
第一章整式的乘除
回顾与思考(第1课时)
课时安排说明:
《回顾与思考》共分两课时,第一课时,主要内容是复习整式的乘除法法则,幂的运算、简单的整式乘除法练习;第二课时,主要内容是灵活运用乘法公式,稍复杂的整式乘除法及综合应用.
一、学生起点分析:
学生的知识技能基础:学生在这一章中了解了整数指数幂的意义和正整数指数幂的运算性质,经历了探索整式乘除法法则的过程,理解了整式乘除的算理,运用这些知识解决了一些相关的实际问题。
但这一章的运算法则较多,公式也容易混淆,而且学生对这些知识的理解缺乏整体认知,还没形成体系.
学生活动经验基础:在学习整式乘除法的过程中,学生经历了许多数学活动,积累了一定的经验.但是学生有条理的思考和表达能力还比较薄弱,缺乏综合运用知识解决较复杂问题的经验,需要进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
二、教学任务分析
代数是一门具有丰富内容并且与现实世界、学生生活、其他学科联系十分密切的学科,同时代数也是一门基础的数学学科,它为数学本身和其他学科的研究提供了语言、方法和手段,它的符号表示手段,深刻的揭示了存在于一类实际问题中的共性,有助于人们对现实世界的认识;它的运用代数式、表格、图像等多种表示的方法,为数学交流提供了有效的途径;它的模型化方法、表示的思想、方程的思想、函数的思想以及推理的方法也为数学本身和其他学科的研究提供了基础。
教科书根据整式乘除的知识体系特征和学生的认知基础,提出了复习课的具体学习任务:梳理全章内容,建立知识体系;熟练运用幂的运算法则、整式乘除法进行运算;综合运用这些知识解决稍复杂的问题,这是近期目标。
整式的乘除内容从属于“数与式”这一数学学习领域,远期目标是“让学生经历观察、操作、推理、想象等探索过程,发展学生的符号感和应用意识,提高应用代数意识及方法解决问题的能力”。
为此,本节课的教学目标是:1.知识与技能:梳理全章内容,建立知识体系;熟练运用幂的运算法则、整式乘除法进行运算.
2.过程与方法:让学生经历观察、操作、推理、想象等探索过程,发展学生的符号感和应用意识,提高应用代数意识及方法解决问题的能力.
[]
2
36365326
33224424
4324321
532323
33.8)()().(76)2.(6)()().(5)(.4)(.3)(.22.1a a a a y x x y y x x x a a a b b b x x x x x x x a a a m m m m m ==÷-=-⋅--=-====-=-⋅-=-=-⋅=⋅÷⨯⨯++3.情感与态度:在数学活动中发展学生合作交流的能力和数学表达能力,感受数学与现实生活的密切联系,增强学生的数学应用意识. 三、
教学过程设计
本节课按知识点分类设计了六个教学环节:自我展示、知识串联、同场竞技、拓展延伸、课堂小结、布置作业.
第一环节:自我展示
活动内容: 让学生展示自己的预习作业:本章知识框架图,并进行说明.
活动目的:让学生亲自经历知识梳理的过程,感受幂的运算与整式的乘除法之间的关系,更好地形成自己的知识体系.
活动注意事项:不同学生的知识结构图可能在各个知识点间的联系、书写详略程度上存在差异,教学时教师可以在课前选取有代表性的框架图进行全班展示,注意让学生说说自己的框架建立的过程.在学生展示的基础上,教师可以呈现一个比较简单明了的知识框架图:
第二环节:知识串联
活动内容:将本章学过的所有法则及公式快速加以复习,同时让学生回答出法则及公式中的注意事项.
活动目的:让学生进一步明确各种运算法则,类比纠正学生在认识上模糊的地方,为下面的练习做好准备.
活动注意事项:在学生串联知识的过程中,教师应注意学生是否存在法则的混淆,是否能较好的区别法则,是否理解法则的文字叙述和符号表示等,对学生存在的困惑可以适当的举例讲解.
第三环节:同场竞技 活动内容:
1、快速判断以下各题是否正确
同底数幂的运算性质
单项式的乘
单项式的除
法
单项式与多项式的乘法
多项式与单项式的
除法
多项式的乘法
乘法公式
,
1、用小数或分数表示.
=-52=
⨯-51047.22、探索规律:下列单项式则第n 项是。
4
3
2
4,3,2,x
x x x --3、若.
===+n
m n m a a a 2,5,3则
2、计算
3、如图,一块直径为a+b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,求剩下的钢板的面积.
活动目的:设计活动1是通过纠错练习,评价学生准确的辨析幂的运算公式中易混淆的知识点的能力,同时巩固学生对幂的运算公式的理解,活动2、3是为了进一步熟练各种乘除计算.
活动注意事项:本环节的内容较为基础,课堂实施可采取灵活多样的形式,如师生问答、学生抢答、小组竞赛等方式,并且在学生做出解答后及时给与评价,提高学生学习积极性。
第四环节:拓展延伸
活动内容:
1、开动脑筋:在一次数学兴趣活动中,同学们做了一个找朋友的游戏,游戏规定:所持算式相等的两个人是朋友,有五个同学A ,B ,C ,D ,E 所持纸牌前面分别写有五个算式:5a
×7b
, 5c
×7d
, 5×7 ,(a-1) (d-1) , (b-1) (c-1).主持人宣布A ,B ,C 两两是朋友,请大家猜一猜D ,E 是否是朋友. 2、层层递进:
)0
31)2010(2)3
1
()2(-+----π)(2()1(22c a ab -⋅-()
⎪
⎭⎫
⎝⎛÷+-223431963)4(a a a a )
2)(4)(2()5(22a b b a b a ++-()()
224232)3(b ab a ab ---)2)((4)2()6(2y x y x y x +--
-
3、活学活用:
活动目的:这些问题比较有挑战性、趣味性,目的是让学生综合、灵活的运用知识解决问题,是掌握基础知识后的巩固和提高.
活动注意事项: 本环节题目难度有所提高,可分层次作答。
在教学时,要关注学生是否灵活运用法则解决问题,是否能有条理地表达自己的解题思路,同时注意点拨,引导学生积累解决问题的方法和技巧.
第五环节:课堂小结
活动内容:畅谈这节课的收获和体会
活动目的:让学生通过畅谈自己的收获的体会,巩固所学知识,感受数学思想、方法. 活动注意事项:本节课是复习课,在形成知识体系和解答综合性题目的过程中学生肯定有不少收获和感想,在小结时让学生互相交流,加深对全章知识的理解和把握,还可以让学生说说困惑,结合相关习题进行点拨.
第六环节:布置作业
1、基础作业:课本P33页 复习题1、
2、
3、4 2、拓展作业:给出下列算式: 32
-12
=8 =8×1;
52
-32
=16=8×2;
72
-52
=24=8×3; 92
-72
=32=8×4.
(1)观察上面一系列式子,你能发现什么规律? (2)用含n 的式子表示出来(n 为正整数). (3)计算 20112
-20092
= ,此时n = .
四、教学设计反思
1.课前让学生独立完成全章知识结构图,使他们亲自经历知识梳理的过程,课上再交流、
与比较
100
375
的大小,请看下面的解题过程
2
解:∵2100
=(24),
3375=(3),2525又∵24
=16,33=27,而16<27,∴()3),3。
25
24
25
<(3
即2
100
<75
9
请根据上面的解题过程,比较8131,27
41
61
的大小。
点拨,这样的教学过程使学生更好地感受幂的运算与整式的乘除法之间的关系,形成自己的知识体系.
2.本节课是复习课的第一课时,整体上以基础题目为主,在此基础上提供了少量综合性、灵活性较强的题目,最后的课后作业也分层来布置,这样就可以让每一个学生都能融入到课堂,都能感受到成功的快乐,找到学习的自信.
3.实际教学时可以根据学生的特点将复习课的上课形式设计得更加灵活多样,除了传统的师生问答,还可以采用分组竞赛、必答抢答等方式,让学生在活泼又不失紧张的学习氛围中快乐的学习.。