七年级下数学培训资料第十章 数据的收集、整理与描述 知识点归纳
- 格式:doc
- 大小:112.00 KB
- 文档页数:7
第十章数据的收集、整理、描述提升能力2022-2023学年人教版七年级下学期数学章节复习讲义第一:例题解析保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占15,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?【详解】(1)由题意可得该小区垃圾总量为:5÷10%=50(吨);∴A类垃圾有:50×54%=27(吨);B类垃圾有:50×30%=15(吨);∴C类垃圾有:50-27-15-5=3(吨);由此,补充完整条形统计图如下:(2)扇形统计图中,D类所对应的圆心角为:360°×10%=36°;(3)由(1)中计算可知,在抽样数据中,有害垃圾有3吨;(4)由题意可得,该城市每月回收的废纸可再造纸的数量为:10000×54%×15×0.85=918(吨).【分析】(1)由统计图中的信息可知D类垃圾5吨,占总数的10%,由此可计算出垃圾的总量,结合统计图中的信息即可计算出ABC各类垃圾的吨数,并将条形统计图补充完整;(2)由“D类垃圾占总数的10%”可得,扇形统计图中D类所对应的圆心角为:360°×10%=36°;(3)由(1)中的计算结果可知在抽样数据中有害垃圾的数量;(4)由题意可得:该城市每月回收的废纸可再造纸:10000×54%×15×0.85(吨).第二:考点解读本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
七年级数学下册第十章数据的收集整理与描述考点总结单选题1、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个答案:A分析:根据总体、个体、样本、样本容量的定义,总体是我们把所要考查的对象的全体,个体是把组成总体的每一个考查对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位,判断即可.解:①这3000名初一学生的数学成绩的全体是总体,说法正确;②每个初一学生的数学成绩是个体,说法正确;③200名初一学生的数学成绩是总体的一个样本,说法正确;所以其中说法正确的是3个.故选:A.小提示:本题考查了总体、个体、样本、样本容量的定义,熟练掌握相关定义是解本题的关键.2、如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人答案:C分析:根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.解:总人数=60÷20%=300(人);300×40%=120(人),故选:C.小提示:本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.3、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量答案:C分析:总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.小提示:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°答案:B分析:过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出及角平分线的定义可得“∠FBE+∠EDF=12结论.如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=1(∠ABE+∠CDE)=149.5°,2∵四边形的BFDE的内角和为360°,∴∠BFD=360°-149.5°-61°=149.5°.故选B.小提示:本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查昆仑学校的空气质量情况D.调查疫情期间某超市人员的健康码答案:D分析:根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.解:A.调查北京冬奥会开幕式的收视率,适合抽样调查,故选项A不符合题意;B.调查某批玉米种子的发芽率,适合抽样调查,故选项B不符合题意;C.调查昆仑学校的空气质量情况,适合抽样调查,故选项C不符合题意;D.调查疫情期间某超市人员的健康码,适合全面调查,故选项D符合题意;故选:D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C分析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4×100%=8 %,故D选项错误,50故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次为.1800D.2100答案:A分析:依据抽取的样本中周阅读时间超过一个半小时的职工人数所占的百分比,即可估计该公司所有职工中,周阅读时间超过一个半小时的职工人数.=1200(人),解:由题可得,3000×10+230∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选A.小提示:本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,对总体的估计也就越精确.8、平顶山某校有3000名学生,随机抽取了300名学生进行睡眠质量调查,下列说法错误的是()A.总体是该校3000名学生的睡眠质量B.个体是每一个学生C.样本是抽取的300名学生的睡眠质量D.样本容量是300答案:B分析:根据题意可得3000名学生的睡眠质量情况,从中抽取了300名学生进行睡眠质量调查,这个问题中的总体是3000名学生的睡眠质量情况,样本是抽取的300名学生睡眠质量情况,个体是每一个学生的睡眠质量情况,样本容量是300,注意样本容量不能加任何单位.解:A.总体是该校3000名学生的睡眠质量,故此选项正确,不合题意;B.个体是每名学生的睡眠质量,故此选项错误,符合题意;C.样本是抽取的300名学生的睡眠质量,故此选项正确,不合题意;D.样本容量是300,故此选项正确,不合题意;故选:B.小提示:本题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00—10:00时段这三种出行方式不同时刻出发所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若7:00前出发,地铁是最快的出行方式B.若选择公交出行且需要30分钟以内到达,则7:00之前出发均可C.驾车出行所用时长受出发时刻影响较小D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间答案:D分析:根据折线统计图中的信息进行判定即可得出答案.解:A.根据统计图可得,7:00出行,公交快,故A选项说法不正确,不符合题意;B.根据统计图可得,若选择公交出行且需要30分钟以内到达,则6:00之前出发均可,故B选项说法不正确,不符合题意;C.根据统计图可得,地铁出行所用时长受出发时刻影响较小,故C选项说法不正确,不符合题意;D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间,故D选间说法正确,符合题意.故选:D.小提示:本题主要考查了折线统计图,根据题目要求读懂折线统计图中的信息进行求解是解决本题的关键.10、如图是某种学生快餐的营养成分统计图,若脂肪有30g,则蛋白质有()A.135gB.130gC.125gD.120g答案:A分析:脂肪有30g占总质量的10%,可知总质量为300g,再根据蛋白质所占比例即可求解.由题意可得,30÷10%×45%=300×0.45=135g,即快餐中蛋白质有135克,故选:A.小提示:本题考查了扇形统计图的知识点,数量掌握扇形统计图并正确计算是解答本题的关键.填空题11、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.答案:①②分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、经调查,我区高中学生上学所用的交通方式中,选择“电瓶车”、“自行车”、“其他”的比例为5:2:5,若该校学生有600人,则选择“电瓶车”的学生人数是___________.答案:250人分析:用总人数600乘以选择“电瓶车”的比例即可.=250人,解:选择“电瓶车”的学生人数是600×55+2+5所以答案是:250人.小提示:此题考查了利用总体中部分的比例求总体中的数量,正确理解题意是解题的关键.13、为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是______.答案:抽取400名学生的数学成绩分析:根据样本的定义解答.解:为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是抽取400名学生的数学成绩,所以答案是:抽取400名学生的数学成绩.小提示:此题考查了样本的定义:抽取的部分的调查对象是样本,熟记定义是解题的关键.14、某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,你认为调查结果________普遍代表性.答案:不具有分析:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.利用样本的代表性和广泛性即可作出判断.解:在某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,范围和人群太集中,不具有代表性.所以答案是:不具有小提示:本题考查了调查的对象的选择,要读懂题意,分清调查的内容所对应的调查对象是什么是解题的关键.注意所选取的对象要具有代表性.15、某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好答案:(1)21;(2) 96% ;(3)A试题分析:(1)根据总人数=频数÷频率计算;(2)得出60分以上的频率和除以总即为本次测试这50名学生成绩的及格率=96%;(3)由及格率很高,故由频数分布表可以看出该年级此学科的成绩较好.试题解析:(1)由题意可知:测试90分以上(包括90分)的人数为50×0.42=21人;=96%;(2)本次测试这50名学生成绩的及格率是0.04+0.16+0.34+0.421(3)由频数分布表可以看出该年级此学科的及格率比较高,优秀人数比较多,成绩较好.故选A.解答题16、某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:舞请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.答案:(1)10%(2)100人(3)见解析(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大分析:(1)用1分别减去A、C、D类的百分比即可得到a的值;(2)用A类学生数除以它所占的百分比即可得到总人数;(3)用35%乘以总人数得到B类人数,再补全条形统计图画树状图;(4)根据选择两个项目的人数得出答案.(1)解:a=1﹣35%﹣25%﹣30%=10%,所以答案是:10%;(2)解:25÷25%=100(人),答:本次调查的学生总人数是100人;(3)解:B类学生人数:100×35%=35,补全条形统计图如图,(4)解:建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.17、2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了名学生,并补全条形统计图.(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数.(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数.答案:(1)500;补全条形统计图见解析(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数57.6°(3)估计该校学生的作业时间不少于2小时的学生人数为1320人分析:(1)用完成作业时间是2小时的学生人数除以相应的比例即可得到调查总数,然后用总数乘以1.5小时人数所在的比例;(2)作业时长为2.5小时对应的扇形圆心角度数等于80×360°=57.6°;500(3)不少于2小时的学生人数为总数乘以不少于2小时的学生所占比例.(1)140÷28%=500;500×36%=180(人),(2)作业时长为2.5小时对应的扇形圆心角度数为80×360°=57.6°;500=1320 (人)(3)3000×140+80500小提示:本题考查了条形统计图和扇形统计图的知识,从图中获取正确的信息是本题的解题关键.18、某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.答案:(1)50(2)见解析(3)72°(4)该校初二年级跳绳成绩为“优秀”的人数为90人分析:(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1) 中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.(1)解:由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);所以答案是:50;(2)由(1)的优秀的人数为:50-3-7-10-20=10,如图所示:;(3)×360°=72°,“中等”部分所对应的圆心角的度数是:1050所以答案是:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:450×10=90(人).50答:该校初二年级跳绳成绩为“优秀”的人数为90人.小提示:此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.。
七年级数学(下)第十章 《数据的收集、整理与描述 》(二) 第三节 扇形图 一、知识要点:(一)扇形统计图:利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图. (二)扇形统计图的特点:1、用扇形面积表示部分占总体的百分比;2、易于显示每组数据相对于总体的百分比;3、扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可..(三)扇形统计图的优缺点:1、优点是易于显示每组数据相对于总数的大小,2、缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量. 二、题型分析: 题型一:求百分数例1:如图是体育委员会对体育活动支持情况的统计,在其他类中对应的百分数为( ) A 、5% B 、1% C 、30% D 、10%题型二:看图根据比例求值例题:某商场为了解本商场的服务质量,随机调查了来本商场购物的100名顾客,调查的结果如图所示,根据图中给出的信息可知,这100•名顾客中对该商场的服务质量表示不满意的有________人.其他衣着食品教育其他教育食品衣着乙甲24%19%23%34%21%23%25%31%题型三:根据圆心角求百分比例1:如图所示的扇形统计图中,扇形B 占总体的_______%.例2:一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是______. 题型四:判断题例1:右图是甲、乙两户居民家庭全年支出费用的扇形统计图。
根据统计图,下面对全年食品支出费用判断正确的是( )A 、 甲户比乙户多B 、 乙户比甲户多C 、甲、乙两户一样多D 、无法确定哪一户多例2:图中是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比做出的判断中正确的是( ).A 、甲户比乙户大B 、乙户比甲户大C 、甲、乙两户一样大D 、无法确定哪一户大.练习:1.一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是___.2.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其它”活动的人数占总人数的_________%. 踢毽篮球跳绳其它3.我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下:每户丢弃塑料袋的个数2 3 4 5 户 数6302712根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃______个塑料袋。
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。
要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(最大值与最小值的差);
②确定组距和组数;③列频数分布表;④画频数直方图。
1。
10.数据的收集整理与描述一、目标与要求1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。
2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。
3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。
二、重点学会画频数分布直方图;分层抽样的方法和样本的分析、归纳;抽样调查、样本、总体等概念以及用样本估计总体的思想;全面调查的过程(数据的收集、整理、描述)。
三、难点绘制扇形统计图;样本的抽取;分层抽样方案的制定;确定组距和组数。
四、知识框架五、知识概念1.数据的整理:我们利用划记法整理数据,如下图所示,2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
如下图所示:3.全面调查:考察全体对象的调查方式叫做全面调查。
4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。
5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。
概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。
习惯上将概率抽样称为抽样调查。
6.总体:要考察的全体对象称为总体。
7.个体:组成总体的每一个考察对象称为个体。
8.样本:被抽取的所有个体组成一个样本。
为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。
数据的收集、整理与描述单元复习与巩固一、知识网络知识点一:总体、样本的概念1.总体:要考察的全体对象称为总体.2.个体:组成总体的每一个考察对象称为个体.3.样本:被抽取的那些个体组成一个样本.4.样本容量:样本中个体的数目叫样本容量(不带单位).注意:为了使样本能较好地反映总体的情况,除了要有合适的样本容量外,抽取时还要尽量使每一个个体都有同等的机会被抽到.知识点二:全面调查与抽样调查调查的方式有两种:全面调查和抽样调查:1.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据(划记法);(3)描述数据(条形图或扇形图等).2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.3.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况. ②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小. 调查方法:问卷,观察,走访,试验,查阅资料。
知识点三:扇形统计图和条形统计图及其特点1.生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的,即10%. 同理,圆心角是72°的扇形占整个圆面积的,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.2.用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.(1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.知识点四:频数、频率和频数分布表1.一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量.公式:.由以上公式还可得出两个变形公式:(1)频数=频率×数据总数.(2).注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.知识点五:频数分布直方图与频数折线图1.在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.2.条形图和直方图的异同:直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况.直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数),长方形的宽表示各组的组距,各长方形的高和宽都有意义. 此外由于分组数据都有连续性,直方图的各长方形通常是连续排列,中间没有空隙,而条形图是分开排列,长方形之间有空隙.3.频数折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数折线图.4.频数分布直方图的画法:(1)找到这一组数据的最大值和最小值;(2)求出最大值与最小值的差;(3)确定组距,分组;(4)列出频数分布表;(5)由频数分布表画出频数分布直方图.5.画频数分布直方图的注意事项:(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据单位多一位. 例如:题中数据要求到整数位,分组时要求数据到0.5即可.(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多,当数据在100以内类型一:考查基本概念1:为了了解2020年河南省中考数学考试情况,从所有考生中抽取600名考生的成绩进行考查,指出该考查中的总体和样本分别是什么?思路点拨:从概念上来看,总体即全部考查对象,样本是一部分考查对象,还要注意考查的对象是数量指标.解析:总体是2020年河南省参加中考考试的所有考生的数学成绩;样本是抽取的600名考生的数学成绩.总结升华:统计中的研究对象是数据,而不是具体的人或物. 在叙述总体和样本时,要注意他们的范围和数量指标.【变式】2020年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().A.4591名学生的外语成绩是总体;B.此题是抽样调查;C.样本是80名学生的外语成绩;D.样本是被调查的80名学生.【答案】D.类型二:调查方法的考查2:下列调查中,适合用普查(全面调查)方法的是().A.电视机厂要了解一批显像管的使用寿命;B.要了解我市居民的环保意识;C.要了解我市“阳山水蜜桃”的甜度和含水量;D.要了解某校数学教师的年龄状况.思路点拨:A、B、C工作量太大,太复杂,只能作抽样调查,而D可以作普查,即全面调查.解析:D.总结升华:在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.举一反三:【变式】下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在上海市调查我国公民的受教育程度;(3)在中学生中调查青少年对网络的态度;(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;(5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.【答案】(1)中的抽样不太合适,抽样时,应该让成绩好、中、差的同学都有代表参加;(2)中上海市的经济发达,公民受教育的程度较高,不具有代表性;(3)中青少年不仅仅是中学生,还有为数众多的非中学生,中学生对网络的态度不代表青少年对网络的态度;(4)中抽样是随机的,因此可以认为抽样合适;(5)中调查的人数太少,各年级的情况可能有所不同,因此抽样不合适.类型三:考查整理数据的能力3:图中所示的是2020年南宁市年鉴记载的本市社会消费品零售总额(亿元)统计图.请你仔细观察图中的数据,并回答下面问题.(1)图中所列的6年消费品零售总额的最大值和最小值的差是多少亿元?(2)求1990年、1995年和2020年这三年社会消费品零售总额的平均数(精确到0.01).(3)从图中你还能发现哪些信息,请说出其中两个.思路点拨:从图中可以看出最大值是163.44(亿元),最小值是0.33(亿元).第(3)题为开放性问题,答案不唯一解析:(1)163.44-0.33=163.11(亿元).(2)(亿元).(3)①2020年至2020年消费品零售总额的增长速度比1980年至1990年10年间的消费品零售总额平均增长速度快;②可以看出2020年人民生活水平比10年前有大幅度提高.总结升华:仔细观察图表,获取准确有用的信息.举一反三:【变式1】某中学在一次健康知识测试中,抽取部分学生成绩(分数为整数,满分为100分)为样本,绘制成绩统计图,请结合统计图回答下列问题.(1)本次测试中抽取的学生共多少人?(2)分数在90.5~100.5分这一组的频率是多少?(3)从左到右各小组的频率比是多少?(4)若这次测试成绩80分以上(不含80分)为优秀,则优秀率不低于多少?【答案】(1)2+3+41+4=50(人).所以本次测试中抽取的学生共有50人.(2)4÷50=0.08. 所以分数在90.5~100.5分这一组的频率是0.08.(3)从左到右各小组的频率比是2∶3∶41∶4.(4)41+4=45,,所以优秀率不低于90%.【变式2】(2020辽宁丹东)为了估计某市空气质量情况,某同学在30天里做了如下记录:污染指数()②将消费者打算购买小车的情况整理后,作出了频数分布直方图的一部分如图(注:每组包含最小值不包含最大值,且车价取整数).请你根据以上信息,回答下列问题:(1)根据①中信息可得,被调查消费者的年收入的众数是__________万元;(2)请在图中补全这个频数分布直方图;(3)打算购买价格10万元以下小车的消费者的人数占被调查消费者总人数的百分比是__________.分析:被调查的消费者人数中,年收入为6万元的人数最多,所以被调查的消费者的年收入的众数是6万元;因为共发放了1000份调查问卷,所以购买价格在10万到20万的人数为:1000-(40+120+360+200+40)=240(人);打算购买价格10万元以下小车的消费者人数为:40+120+360=520(人),占被调查消费者人数的百分比是.【答案】(1)6;(2)频数分布直方图为:(3)52%.。
01第十章数据的收集、整理与描述
1.数据处理的一般过程
2.数据处理一般包括收集数据、_____________、_______________和分析数据等过程.
数据处理可以帮助我们更好地了解周围世界,对未知事物作出合理的推断和预测.
3.全面调查和__________是收集数据的两种方式,全面调查通过调查________来收集数
据,抽样调查通过调查_______来收集数据.
4.实际调查中常采用抽样调查的方法获取数据.用样本估计_______是统计的基本思想.
抽样调查具有花费少、省时的特点,还适用一些不宜使用全面调查的情况.采用抽样调查需要注意:①样本容量要适中,一般为总体的5%~10%;②抽取时要尽量使每一个个体都有相等的机会被抽到.这样抽取的样本才具有代表性和广泛性.才能使样本较好地反映总体的情况.
5.要考察的全体对象称为________,组成总体的每一个考察对象称为______,被抽取的
那些个体组成一个________,样本中个体的数目称为_____________.
6.利用统计图表描述数据是统计分析的重要环节.四种统计图的各自特点:
(1)条形统计图:能清楚地表示出每个项目的具体数目;
(2)扇形统计图:能清楚地表示出各部分在全体中所占的百分比;
(3)折线统计图:能清楚地反映事物的变化情况;
(4)直方图:能清楚地表示出每组频数的大小.
7.扇形统计图表明的是部分在总体中所占的百分比,一般不能直接从图中得到具体数
量,用圆代表的是总体1,圆的大小与具体数量大小没有关系. 扇形圆心角=该部分百分比×360°
画扇形统计图的步骤:先调查收集数据,根据数据计算百分比,圆心角,画出扇形,标出百分比.
8.画直方图的一般步骤:⑴计算最大值与最小值的差⑵决定组距和组数⑶列频数
分布表⑷画频数分布直方图(或频数折线图).
注意对以下概念的理解:
⑴组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值
范围)称为组距.⑵频数:对落在各个小组内的数据进行累计,得到各个小组内数据的个数叫做频数.⑶频数分布直方图⑷频数折线图
9.频数分布直方图是以小长方形的________来反映数据落在各个小组内的频数的大小.
小长方形的高是频数与_________的比值.在等距分组时,各小长方表的面积(频数)与高的比是常数(组距).
落实知识点:
10.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目
较少时用________________的方式获得数据较好,当总体中个体数目较多时用
____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.
11.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分
别是2, 8, 15, 5.则第四组频数是______.
12.有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6.第5组的频率是0.1,
则第6组的频数是________.
13.对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于()
A.60,1B.60,60C.1,60D.1,1
14. 一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( )
A .10组
B .9组
C .8组
D .7组 15. 为了考察某市初中3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在
这个问题中,样本容量是( )
A .3500
B .20
C .30
D .600 16. 右图是甲、乙两户居民家庭全年支出费用的扇形统计图。
根据统计图,下面对全年食品支出费用判断正确的是( )
A. 甲户比乙户多
B. 乙户比甲户多
C.甲、乙两户一样多
D. 无法确定哪一户多
17. 小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕
捞时,随意捞出10尾,称得每尾的质量如下(单位:千克): 0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8. ⑴估计这塘鱼的总产量是多少千克?
⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?
⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?
其他衣着食品
教育其他教育食品衣着乙
甲
24%
19%23%
34%
21%
23%25%31%
18. 体育委员在统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:
⑴全班有多少同学? ⑵组距是多少?组数是多少?
⑶跳绳的次数x 在100≤x <140范围内的同学有多少?占全班同学的百分之几? ⑷画出适当的统计图表示上面的信息. ⑸你怎样评价这个班的跳绳成绩?
19. 为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计
如下,其中右侧扇形统计图中的圆心角α为36°.
根据上面提供的信息,回答下列问题: (1)写出样本容量、m 的值;
(
2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优
秀,请估计该校九年级学生体育成绩达到优秀的总人数.
26分
27分28分
29分
30分
20.某市教育局为了了解本市中小学实施素质教育的情况,抽查了某校初一年级甲、乙两
个班的部分学生,了解他们在一周内(星期一至星期五)参加课外活动的次数情况,抽查结果统计如下:
(1)在这次抽查中,甲班被抽查了___________人,乙班被抽查了____________人(2)在被抽查的学生中,甲班学生参加课外活动的平均次数为_____________次,
乙班学生参加课外活动的平均次数为_____________次。
(3)根据以上信息,用你学过的知识,估计甲、乙两班在开展课外活动方面哪个班级更好一些?答_________________________________________________________________ (4)从图中你还能得到哪些信息?(写出一个即可)
21.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,
截至2008年2月底,该市五个地区的100周岁以上的老人分布如下表(单位:人):
根据表格中的数据得到条形图如下:
(第21题)
解答下列问题:
(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;
(2)填空:该市五个地区100周岁以上老人中,男性人数的极差(最大值与最小值的差)是人,女性人数的最多的是地区______;
(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?
参考答案
2.整理数据、描述数据
3.抽样调查 总体 样本 5.总体 个体 样本 样本容量 9.面积 组距 10.全面调查 抽样调查 抽样调查 全面调查 全面调查 11.20
12.8
13.A
14.A
15.D
16.D
17. ⑴
()1
0.80.9 1.2 1.30.80.9 1.1 1.0 1.20.810
+++++++++⨯20000⨯70%=14000(千克).⑵14000⨯4-16000=40000(元).⑶4800040000
100%20%.40000
-⨯=
18.⑴53人. ⑵20,7. ⑶34,64.2%. ⑷用频数分布直方图和扇形图表示数据如下:
⑸略.
19. ⑴样本容量为50,10m =,⑵300人.21.⑴工薪收入 ⑵财产收入 ⑶同比增长最快的是交通和通讯,在教育文化娱乐服务方面几乎没有增长(不惟一).
20.⑴10,10 ⑵2.7,2.2 ⑶从平均数来看,甲班在开展课外活动方面比乙班更好一些.⑷不惟一 如甲、乙两班活动次数为5的都是1人.
21.⑴图略 (2)22,三;(3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5,预计地区一增加100周岁以上男性老人5人.。