机械传动系统设计
- 格式:doc
- 大小:104.50 KB
- 文档页数:11
机械传动系统的性能分析与优化设计一、引言机械传动系统在现代工业中扮演着重要的角色。
它通过将动能从动力源传递到机械设备来实现各种工业过程。
传动系统的性能直接影响着机械设备的工作效率和可靠性。
因此,对机械传动系统进行性能分析和优化设计至关重要。
二、性能分析机械传动系统的性能分析通常包括以下几个方面:1. 动力传递效率机械传动系统的主要目标是实现动力的高效传递。
因此,评估传动系统的效率是性能分析的重要一环。
动力传递效率可以通过测量传动系统输入功率和输出功率的比值来得到。
一个高效的传动系统应该具备较高的动力传递效率,确保最大限度地将输入功率转化为有用的输出功率。
2. 轴承寿命机械传动系统中的轴承起着至关重要的作用,用于支撑和定位旋转部件。
轴承的寿命可以影响传动系统的可靠性和使用寿命。
因此,对轴承的寿命进行评估和优化是性能分析的关键。
轴承寿命的评估可以通过传动系统运行时间、负载和轴承材料特性等因素进行计算。
3. 噪音和振动传动系统中的噪音和振动问题是制约其性能的常见因素。
传输、转换和调谐的机械动力会产生噪音和振动。
因此,在性能分析中需要评估传动系统的噪音和振动水平,并采取优化措施以减少它们对机器操作员和周围环境的影响。
4. 热量和能量损失机械传动系统在运行过程中会产生热量和能量损失。
这些损失主要来自于摩擦、传动元件的变形以及其他能量转化过程中的能量损耗。
在性能分析中,需要评估传动系统的能耗情况,并采取相应的措施来减少能量损失,提高传动系统的效率。
三、优化设计为了改善机械传动系统的性能,可以采取以下几种优化设计方法:1. 材料选择传动系统的性能直接受到材料特性的影响。
优化设计可通过选用高强度、低摩擦系数和高耐磨损的材料来改善机械传动系统的性能。
例如,使用先进的合金材料替代传统材料,可以提高传动系统的强度和耐用性。
2. 减少摩擦摩擦是传动系统中能量损失和噪音产生的主要原因之一。
通过应用润滑系统、优化表面涂层和改进传动元件的设计等手段,可以减少摩擦,从而提高传动系统的效率和可靠性。
机械传动系统的设计与优化机械传动系统在各行各业中起着至关重要的作用。
它们将动力从一个地方传递到另一个地方,并将旋转运动转换为线性运动或其他所需的运动形式。
因此,设计和优化机械传动系统非常重要,以确保其高效、可靠和经济。
一、机械传动系统的基本原理机械传动系统由传动装置、传动介质和输出装置组成。
传动装置用于将力和运动从一个部件传送到另一个部件,传动介质通常是齿轮、皮带、链条等,用于实现力和运动的传递,输出装置用于将传递的力和运动转换为所需的运动形式。
在机械传动系统中,齿轮是最常用的传动介质之一,因为它们可以传递大扭矩和高速比。
齿轮传动的设计需要考虑齿轮的齿数、模数、齿宽等参数,以及齿轮的材料和硬度。
此外,还需要注意齿轮的配合间隙和润滑问题,以确保传动的平稳和可靠。
二、机械传动系统的设计步骤1. 确定传动需求:首先需要明确机械传动系统的传动比、传递功率和速度要求等。
根据不同的应用需求,选择合适的传动方式和传动介质。
2. 零部件选型:根据传动需求,选择合适的传动零部件,如齿轮、链条等。
对于齿轮传动,需要根据传动比和所需扭矩选择合适的齿轮参数,如齿数、模数等。
3. 连接方式设计:根据传动零部件的选型,设计合适的连接方式,如轴的设计、轴承选型和连接装置的设计等。
确保传动零部件的正确定位和安装。
4. 强度校核:对设计的传动系统进行强度校核,确保传动零部件和连接装置具有足够的强度和刚度,以承受所需的载荷和运动。
5. 润滑设计:设计合适的润滑系统,为传动零部件提供充足的润滑和冷却,以减少磨损和延长零部件的使用寿命。
6. 优化设计:根据实际情况,对传动系统进行优化设计。
可以通过改变传动比、增加传动零件的强度或减小传动零件的质量等方式,提高传动系统的效率和可靠性。
三、机械传动系统的优化方法1. 材料优化:选择合适的材料,以提高传动零件的强度和刚度。
同时,考虑材料的耐磨性和耐蚀性,以增加传动系统的寿命。
2. 减少摩擦损失:采用润滑剂、改善配合间隙和表面光洁度等方式,减少摩擦损失,提高传动系统的效率。
机械设计基础传动系统和机构设计机械设计基础:传动系统和机构设计在机械设计中,传动系统和机构设计是非常重要的部分。
传动系统是指将动力从一个地方传输到另一个地方的机制,而机构设计则是指用于实现特定功能的装置或结构。
一、传动系统的基本原理传动系统主要用于将动力从一个设备传递到另一个设备,以实现所需的运动或力的转换。
常见的传动系统包括齿轮传动、皮带传动和链传动等。
1. 齿轮传动齿轮传动是一种常见的机械传动方式,其主要通过两个或多个齿轮的啮合来传递动力。
不同大小的齿轮之间的传动比决定了输出轴的转速和扭矩。
2. 皮带传动皮带传动采用皮带与轮齿啮合的方式传递动力。
与齿轮传动相比,皮带传动可实现更大的传动比,且运行平稳。
3. 链传动链传动利用链条与齿轮或链轮的啮合来传递动力。
链传动具有较大的传动比和较高的传动效率,常用于高负载或高速的传动系统中。
二、机构设计的基本原理机构设计涉及到将多个零部件组合起来以实现特定的功能。
在设计机构时,需要考虑运动要求、结构强度和稳定性等因素。
1. 运动要求机构设计的首要考虑因素是实现所需的运动类型,例如旋转、直线运动或摆动。
通过选择合适的连杆、曲柄轴和齿轮等组件,可以实现不同类型的运动。
2. 结构强度机构设计中的结构强度是确保机构能够承受所需负载并保持稳定运行的重要因素。
在选择材料和尺寸时,需要考虑到材料的强度、刚度和耐磨性等因素。
3. 稳定性机构设计时需要保证结构的稳定性,以防止振动、共振和其他不稳定现象的发生。
通过添加减振装置、调整结构刚度和使用合适的润滑剂等方法可以提高稳定性。
三、机械设计的案例研究为了更好地理解机械传动系统和机构设计的原理,以下是一个案例研究:假设我们需要设计一种用于升降货物的传动系统和机构。
我们需要实现以下功能:通过电动机将动力传递给升降装置,使其能够顺利升降货物。
首先,我们选择合适的传动方式。
考虑到需要较大的传动比和较高的传动效率,我们选择齿轮传动作为传动方式。
机械传动系统的设计与优化研究摘要:随着工业技术的不断发展,机械传动系统的设计和优化研究变得愈发重要。
本论文旨在提高机械传动系统的效率和性能,解决能量损耗、噪音和故障率等问题。
通过减少摩擦、改善传动效率和使用先进材料等优化方法,实验证明了优化方案的有效性。
未来的研究将致力于进一步优化设计、探索新材料应用和提出更高效的动力传递方案。
这些努力将为工业生产和社会发展提供更好的机械传动系统解决方案。
关键词:机械传动系统;设计;优化;效率;性能引言机械传动系统是实现动力传递和变速功能的重要组成部分。
随着工业技术的不断发展,人们对机械传动系统的性能要求也越来越高。
但是,传统的机械传动系统存在着能量损耗大、噪音高、故障率高等问题,亟需通过设计与优化来提升其效率和性能。
因此,本论文旨在通过研究机械传动系统的设计与优化,探索如何解决这些问题,以满足人们对机械传动系统的需求。
1.研究背景随着工业化的快速发展,机械传动系统在各个行业的应用日益广泛。
然而,传统的机械传动系统存在能量损耗大、噪音高、故障率高等问题,不满足现代工业对高效、稳定和可靠传动的需求。
因此,对机械传动系统的设计与优化研究变得至关重要,旨在提高其效率和性能,为工业生产提供更加可持续和可靠的动力传输解决方案。
2.机械传动系统的基本原理和分类2.1动力传递原理动力传递原理是指机械传动系统通过转动元件,将能量从源头传递至目标位置的过程。
在机械传动系统中,通常利用齿轮、皮带、链条等传动装置,将原动机(如发动机或电机)的旋转运动转化为其他设备或机械部件的动力输入。
通过合理的传动比、齿轮齿数和传动装置的选择,可以实现不同速度和扭矩的变换。
这种能量传递原理有效地实现了机械设备的工作,促进了工业生产的进行。
2.2机械传动系统的分类机械传动系统可以根据传动方式和结构特点进行分类。
根据传动方式,常见的分类有齿轮传动、皮带传动、链条传动和摩擦传动等。
齿轮传动是利用齿轮的啮合传递动力;皮带传动通过带状物连接轮辘来传递动力;链条传动则是利用链条的啮合传递动力;摩擦传动则是通过摩擦力传递动力。
汕头大学工学院二级项目报告(第三阶段)项目名称:机械传动设计项目题目:机械臂带传动设计指导教师:系别:机电系专业:机械设计制造及其自动化姓名:组长:XXX成员:X X XXX XXX XXXXXX XXX XXX XXX阶段时间: 2009 年12 月 04 日至 12 月 15 日成绩:评阅人:传动系统的设计一、设计题目块状物抓取搬运是流水线等工作场合中时常所需的流程之一。
机械臂可以在较高程度上满足这一要求,现即须设计一机械臂关节的传动系统。
该系统的传动过程如下,电机为动力源,通过一对齿轮减速后,再由一条同步带将动力传至该机械臂某一关节处。
该电机可以通过正反转的控制来实现关节处的正反转控制。
二、原始数据与设计要求1)动力源为电机,具有快速响应,精确步进等特点2)机构具有较稳定的传动比3)关节处实现90度转动的时间不超过5秒钟4)同步带的传动距离为200~300mm5)传动系统输出端力矩至少达到10N*M部分参数值估算如下:6)关节所属的一截机械臂重量为1kg,长度为300mm,7)关节转速为W=30度/秒三、总体设计(1)机械工作原理本机械臂由步进电机的驱动带传动。
机械臂由底座、支架、三组运动臂动臂(图一)及功能手(夹取模块,图二)组成。
图一图二(2)运动原理图如下图所示,电机1的转动通过齿轮1把力矩传给齿轮2,齿轮2通过键传动带动大臂的上下摆动。
电机2的转动通过带轮1(带轮1与齿轮4紧固连接,与大臂轴是间隙连接)把转矩传给带轮2,从而带动小臂的运动。
.(3)机械工作循环图1)机械循环如图 机械臂初始角度为0,转动范围为2ψ。
现取ψ为45度。
2)工作路线简述如下: 机械臂主要是抓取一个小物品,首先臂在平衡位置,工作时,往下偏移一个ψ角度,然后回到平衡位置,再放到正ψ角度,最后回到原位置。
3)循环工作图如下4)臂位移与角度的关系据两点间距离公式222()x r y l -+=,其中X 为臂上端点的横坐标,Y 为纵坐标,r 为臂长,l 为端点位移,可得位移是条圆弧故得位移与角度间的循环图,如下:四、技术设计(1)传动带设计电机额定功率P=12*0.6=7.2W,P1=0.9*7.2=6.48W,转速n1=14r/min,i=1.4,每天额定工作时间t=5h。
机械传动系统设计第一节概述一台机器是由原动机、传动系统、工作机构和操纵控制四个部分组成,在这里只讲传动系统设计。
它是将电动机的运动和动力传递给工作机构的中间传动装置,用来实现减速(或增速)、变速、转换运动形式等。
机械传动系统设计的一般程序是:1.机构选型:根据机器的功能要求,工作机构对动力、传动比或速度变化的要求,以及原动机的工作特性,选择机械传动系统所需的机构类型。
2.拟定传动系统总体布置方案:根据空间位置、运动和动力传递路线及所选传动机构的特点和适用条件,合理拟定传动路线,安排各传动机构的先后顺序,以完成原动机到工作机构之间的传动系统的总体布置方案。
3.选择电动机,确定传动系统的总传动比。
4.总传动比分配:根据传动系统的组成方案,将总传动比合理分配到各级传动机构。
5.传动系统的运动和动力参数计算:机械传动系统的运动和动力参数主要指各级传动比、各轴的转速、转矩、功率等。
6.确定机械传动系统的主要参数和几何尺寸:通过各级传动机构的承载能力计算,确定主要参数。
在此基础上,进行传动零件及传动系统主要几何尺寸计算,最后绘制出传动系统运动简图及总装配图。
第二节机械传动系统方案设计机械传动系统的方案设计是机械设计工作中的一个重要组成部分,是最具创造性的设计环节。
正确合理地设计机械传动系统,对提高机械的性能和质量、降低机械的制造成本和使用费用等都是至关重要的。
任何机械其传动系统设计方案都不是唯一的,在相同设计条件下,可以有不同的传动系统方案,最后确定的应是其中最佳方案。
传动系统方案设计首先应满足工作机的工作要求(如功率及转速),另外结构简单紧凑、加工方便、成本低、传动效率高、使用维护方便等特点。
见图表2-1和2-2 减速器类型和传动系统方案。
在做课程设计时,如果设计任务书已给定传动方案,表中传动方案设计就不必做了,只要按设计任务书要求选电动机,计算有关参数。
第三节选择电动机1.选择电动机的类型和结构电动机的类型很多,常用的Y系列电动机属于一般用途的全封闭自扇冷式笼型三相异步电动机。
由于三相异步电动机具有结构简单、工作可靠、价格便宜、效率高、使用方便等特点,所以现代机器中应用最广泛。
2.选择电动机的容量(功率)电动机的功率选择是否合适,对电动机的工作和经济性都有影响。
功率小于工作要求则不能保证工作机的正常工作,或使电动机因长期超载运行而过早损坏;功率选得过大,电动机价格过高,传动能力又不能充分利用,造成能源浪费。
对于载荷比较稳定,长期运转的机械,通常按照电动机的额定功率选择,保证电动机的额定功率P ed大于等于工作机所需的电动机功率P d即P ed≥P d工作机所需电动机功率为P d= P w /η kw式中P d工作机所需电动机功率,kw;P w工作机所需功率,kw;η由电动机至工作机的总效率。
工作机所需功率P w应由工作机的工作阻力和线速度(或转速)求得。
在课程设计中,可由设计任务书给定的工作机参数求:P W = FV / 1000 kw或P W= T n w / 9550 kwn w=60×1000v/πdF 工作机的工作阻力, NV 工作机的线速度,如运输机输送带的线速度,m/sT 工作机的阻力矩,N.mn w 工作机的转速,如运输机滚筒的转速, r / min传动系统的总效率η为各效率连乘积即η=η1η2η3……ηn各效率值见表2-33.确定电动机的转速功率相同的同类型电动机有几种不同的转速,比如三相异步电动机的同步转速一般有3000r/min、1500r/min、1000r/min、750r/min四种,电动机的同步转速越高、重量越轻、外廓尺寸越小、价格越低。
但是电动机转速与工作机转速相差过多,将使总传动比加大,致使外廓尺寸和重量增加。
而选用低转速的电动机时,情况正相反,虽然外廓尺寸和重量小,但电动机的尺寸重量增大,价格提高。
因此在确定电动机转速时,应进行分析比较,选择最优方案。
设计中常选用同步转速1500r/min或1000r/min两种电动机,没有特殊要求一般不选用750r/min、3000r/min电动机。
第四节计算总传动比和分配各级传动比由选定的电动机满载转速n m和工作机轴的转速n w可得到总传动比为i = n m/ n w总传动比为各级传动比的连乘积即:i = i1i2i3…i nn m 电动机的满载转速,r/min;P185页表16-1n w工作机输入轴的转速,r/min。
如何合理分配各级传动比是传动系统设计中的又一重要问题。
传动比分配的合理,可以减少传动系统的外廓尺寸、重量,达到结构紧凑、降低成本的目的。
分配传动比要注意以下几点:1.各级传动比应在推荐范围内选取,不能超过最大值,见P8表2-1表2-2。
2.各级传动零件应做到尺寸协调,避免相互发生碰撞。
3.尽量使传动系统外廓尺寸紧凑或重量较小。
4.对两级圆柱齿轮减速器,传动比可按下式分配:3.1(~i)4.1i1i1 -两级圆柱齿轮减速器的高速级传动比;i-两级圆柱齿轮减速器的总传动比,P8表2-2。
注意:以上传动比分配只是初选。
传动系统的实际传动比必须在各级传动零件的参数确定后才能计算出来。
第五节计算传动系统的运动和动力参数在选定电动机型号及分配传动比之后,下面应计算传动系统各轴的功率、转速、转矩,以及相邻两轴间的传动比和传动效率,为后续传动零件的设计计算和轴的设计计算提供依据。
各轴的转速可根据电动机的满载转速n m及传动比进行计算。
除电动机轴以外其余各轴的功率和转矩均按输入值进行计算。
在计算时先将各轴从高速轴到低速轴依次编号:0轴(电动机轴)、1轴、2轴…;相邻两轴的传动比为:i01、i12、i23…;相邻两轴的传动效率为:η01、η12、η23…;各轴输入功率为:P0、P1、P2、P3…;各轴转速为:n0、n1、n2、n3…;各轴输入转矩为:T0、T1、T2、T3…。
电动机轴的输出功率、转速、和转矩分别为:P0 =P d kw n0 =n m r/min T0 =9550 × P0 /n0 N.m传动系统中各轴的输入功率、转速和转矩分别为:P1 = P0η01 kw n1 = n0/ i01 r/min T1 =9550× P1 / n1= T0 i01η01 N.m P2 = P1η12 kw n2 = n1 / i12 r/min T2 =9550× P2 / n2= T1 i12η12 N.m ………………这里要注意:因为有轴承功率损耗,同一根轴的输入功率或转矩与输出功率或转矩数值不同,即要计入轴承的效率。
另外因为有传动零件的功率损耗,一根轴的输出功率或转矩与相邻下一根轴的输入功率或转矩数值不同,即要计入传动零件的传动效率。
机械传动系统设计暂时告一段落。
下面举例计算:带式运输机传动系统设计。
例题:已知输送带的有效拉力F=2600N,带的速度V=1.6m/s,滚筒直径D=450mm,工作条件:单向运转,连续工作,载荷平稳。
三相交流电源,电压380V。
试按传动方案选择电动机,计算总传动比,并分配各级传动比;计算传动系统运动和动力参数。
解:因为设计任务中设计方案已给定,我们只要从选电动机开始设计。
1.选择电动机的类型按工作要求选Y系列三相异步电动机,电压380V。
2.选择电动机容量电动机输出功率:P d= P w /η kw工作机所需功率:P W = FV / 1000 kw式中总效率:η=η1η32η3η4η 5按表2-3确定各部分效率:V带传动效率η 1 =0.94;滚动轴承效率η2=0.99(一对轴承);齿轮传动效率η 3 =0.97;联轴器效率η4=0.99;滚筒效率η5=0.96代入上式得:η=0.94×0.993×0.97×0.99×0.96=0.841P d=FV/1000η=2600×1.6/1000×0.841=4.946 kw因载荷平稳,电动机额定功率p ed略大于P d即可。
P185页由表16-1,Y系列电动机技术数据选电动机的额定功率p ed为 5.5 kw。
3.确定电动机转速工作机输入轴的转速n w=60×1000V/πD=60×1000×1.6/π450=67.91r/min由表2-1V带传动的传动比常用范围i1=2~4,圆柱齿轮传动比i2=3~5,则总传动比范围i =6~20,可见电动机转速可选范围为:P13页n d =i×n w =(6~20)×67.91=407.46~1358.2r/min。
符合这一范围的同步转速有750 r/min、1000 r/min。
P185页由表16-1,查得:选常用的同步转速为1000 r/min的Y系列电动机型号为Y132M2-6,满载转速n m=960 r/min。
电动机的中心高、外形尺寸、轴伸长度等均有表16-3查的。
最好设计两种方案进行比较优选一种方案。
4.传动系统总传动比和分配各级传动比(1)总传动比i=n m /n w=960/67.91=14.14(2)分配各级传动比由表2-1取V带传动比i01=3 ,则齿轮传动比为:i12=i/i01 =14.14/3=4.71i23 =15.计算传动系统的运动和动力参数(1)各轴转速电动机轴 n0=n m=960 r/min1轴(高速轴)n1=n0 /i01=960/3=320 r/min2轴(低速轴)n2=n1/i12=320/4.71=67.94r/min滚筒轴n w=n2=67.94 r/min(2) 各轴功率电动机轴 P0=Pr=4.946 kw1轴(高速轴)P1=P0η 1 =4.946×0.94 =4.649 kw2轴(低速轴)P2 = P1η2η 3 =4.649×0.99×0.97 =4.46 kw滚筒轴P W = P2η2η4=4.46×0.99×0.99=4.37 kw (3)各轴扭矩电动机轴 T0 =9550 ×P0 /n0=9550×4.946/960=49.202 N.m 1轴(高速轴) T1=T1=9550× P1 / n1=9550×4.649/320=138.74 N.m 2轴(低速轴)T2 =9550× P2 / n2=9550×4.46/67.94=626.92 N.m 滚筒轴T3=9550×P W/n w=9550×4.37/67.94=614.27 N.m传动系统的运动和动力参数列表如下:电动机圆柱齿轮减速器工作机轴号0轴1轴2轴滚筒轴转速n (r/min) 960 320 67.94 67.94 功率 P (kw) 4.946 4.649 4.46 4.37 转矩 T(N.m) 49.202 138.74 626.92 614.27 两轴联接件和带传动圆柱齿轮联轴器传动件传动比 i i01i12i23传动效率ηη01η12η23误差分析:1.效率取值不同有误差。