桥梁设计与计算
- 格式:pdf
- 大小:569.26 KB
- 文档页数:54
桥梁设计中,柱式桥墩是普遍采用的结构型式。
对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。
在设计中,由于桥梁的跨径、斜度、桥宽、车辆荷载标准的变化,对盖梁设计的影响很大,很难完全套用标准图和通用图。
盖梁设计的标准化程度很低,经常是非标准设计,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。
一、盖梁的受力特点及分析1.盖梁的受力特点盖梁的主要荷载是由其上梁体通过支座传递过来的集中力,盖梁作为受弯构件,在荷载作用下在各截面除了引起弯矩外,同时伴随着剪力的作用。
此外,盖梁在施工过程中和活载作用下,还会承受扭矩,产生扭转剪应力。
扭转剪应力的数值很小且不是永久作用,一般不控制设计。
实际计算中一般只考虑弯剪的组合,因为考虑弯、剪、扭三种内力同时组合,需要空间分析,计算工作会很繁琐,而且实际意义也不大。
可见盖梁是一种典型的以弯剪受力为主的构件。
2.盖梁的受力分析盖梁除了自重荷载之外,主要承受由支座传递过来的上部结构的恒载。
对不同桥宽、不同跨径简支梁板桥的盖梁内力计算结果进行分析,以双柱式桥墩盖梁墩顶负弯矩为例:盖梁自重所占比例很小,为9%左右;上部恒载所占比例很大,为63%左右;而活载只占总荷载比例的28%左右。
表1为笔者在设计工作中对双柱式桥墩盖梁墩顶内力计算结果的一个归纳。
二、盖梁的计算要点盖梁的计算要点是如何建立准确而且简化的计算模型。
盖梁的几何外形简单,且是以弯矩、剪力及轴力为主,受力特点明确。
将它模拟成平面杆单元比模拟成空间体单元计算要简单许多,而且能满足控制要求。
空间计算结果虽然准确,但是计算复杂,对于盖梁计算必要性不大。
采用盖梁平面基本的简化模式进行计算是最简单且比较实用的,但使用时要对局部区域的峰值如墩顶截面进行适当的折减削峰处理,因为盖梁的实际控制截面往往不在墩顶而在墩柱边缘附近,这样能避免造成较大的浪费。
盖梁的刚度与柱的刚度之比越大,简化计算结果越准确。
桥梁常用计算公式桥梁是道路、铁路、水路等交通工程中非常重要的基础设施。
在设计和施工过程中,需要进行一系列的计算来保证桥梁的稳定性和安全性。
下面是桥梁常用的计算公式和方法,供参考:1.静力平衡计算桥梁的静力平衡是保证桥梁结构稳定的基础。
在计算静力平衡时,常用的公式有:-受力平衡公式:对于简支梁,ΣFy=0,ΣMa=0;对于连续梁,ΣFy=0,ΣMa=0。
-桥墩反力计算公式:P=Q+(M/b),其中P为桥墩反力,Q为桥面荷载,b为桥墩底宽度。
2.梁的弯矩计算桥梁在受到荷载作用时,会出现弯矩。
常用的梁的弯矩计算公式有:-点荷载的弯矩计算公式:M=Px;- 面荷载的弯矩计算公式:M=qx^2/2;-均布载荷的弯矩计算公式:M=qL^2/83.梁的挠度计算挠度是指梁在受荷载作用时的变形程度。
常用的梁的挠度计算公式有:-点荷载的挠度计算公式:δ=Px^2/(6EI);- 面荷载的挠度计算公式:δ=qx^2(6L^2-4xL+x^2)/24EI;-均布载荷的挠度计算公式:δ=qL^4/(185EI)。
4.桥梁的自振频率计算自振频率是指桥梁结构固有的振动频率。
常用的自振频率计算公式有:-单跨梁自振频率计算公式:f=1/2π(1.875)^2(EI/ρA)^0.5/L^2;-多跨梁自振频率计算公式:f=1/2π(π^2(EI/ρA)^0.5/L^2+Σ(1.875)^2(EI/ρA)^0.5/L_i^2)。
5.破坏形态计算桥梁在受到荷载作用时可能发生不同的破坏形态,常用的破坏形态计算公式有:-弯曲破坏计算公式:M=P*L/4;-剪切破坏计算公式:V=P/2;-压弯破坏计算公式:M=P*L/2;-压剪破坏计算公式:V=P。
6.抗地震设计计算在地震区设计的桥梁需要进行抗地震设计,常用的抗地震设计计算公式有:-设计地震力计算公式:F=ΣW*As/g;-结构抗震强度计算公式:S=ηD*ηL*ηI*ηW*A。
其中,ΣW为结构作用力系数,As为地震地表加速度,g为重力加速度,ηD为调整系数,ηL为长度和工况调整系数,ηI为体型和影响系数,ηW为材料和连接性能系数,A为结构抗震强度。
30米桥梁设计计算书一、设计概述本设计为一座跨越30米的桥梁,桥型为梁式桥,采用混凝土T型梁,墩台采用钢筋混凝土结构。
桥面铺装材料采用沥青混凝土。
二、荷载计算1. 桥面荷载根据规范,桥面荷载应为10kN/m^2。
因此,本桥梁的桥面荷载设计值为30m × 10kN/m^2 = 300kN。
2. 桥墩荷载根据规范,当桥梁长度L<60m时,台墩反力可以通过简化方法计算:R = (G1 + Q1/2)± (G2 ± Q2/2)。
其中G为重力荷载,Q为活载荷载。
按照规范要求,各荷载按保险系数取设计值,重力荷载设计值按4kN/m^3取,活载荷载设计值按规范要求取。
经过计算,得到桥墩荷载设计值为4200kN。
三、梁设计1. 梁截面大小计算采用混凝土T型梁,梁截面大小的计算要满足以下两个条件:- 梁截面中和轴处混凝土受压区不超限。
- 梁截面中和轴处混凝土与钢筋之间的黏结不发生破坏。
经计算,梁截面高度h=1.2m,下翼缘宽度b1=0.6m,上翼缘宽度b2=0.3m。
2. 梁配筋计算根据规范,T型梁的配筋计算可以通过拟合法进行。
经计算,配筋率ρ=1.37%。
四、墩台设计1. 墩台尺寸计算对于单排墩梁式桥,按照规范要求,墩台高度应在1.2-2m之间,墩台底宽应不小于 2.5m。
经计算,本桥梁的墩台高度取 1.8m,墩台底宽取3.0m。
2. 墩台钢筋配筋计算墩台结构采用钢筋混凝土结构,按照规范要求进行配筋计算。
经计算,墩台钢筋配筋采用Ф25横筋,纵向间距200mm。
五、桥面铺装本设计方案采用沥青混凝土铺装材料作为桥面铺装材料。
按照规范要求,铺装厚度应为50mm。
经计算,本桥梁的沥青混凝土铺装面积为90m^2,铺装材料总量为4.5m^3。
六、结论经过以上计算,本设计方案中桥梁、墩台和桥面铺装的各项设计参数计算完成,满足设计要求。
毕业设计一级公路桥梁工程设计计算公路桥梁工程设计计算是指针对一级公路建设项目中的桥梁工程,通过运用相关的计算方法和原理,对桥梁各部分的尺寸、材料、荷载等进行计算和确定,确保桥梁的安全性、稳定性和经济性。
整个设计计算工作可以分为以下几个步骤:1.桥梁类型选择:根据实际情况和设计要求,选择适合的桥梁类型,如梁式桥、拱桥、悬索桥等。
2.车行荷载计算:根据设计标准和实际使用情况,确定车辆荷载的大小和分布形式,以此进行桥梁的承载能力计算。
3.地基承载力计算:对桥梁的地基进行承载力计算,确定桥墩和桥基的尺寸和深度。
4.结构分析计算:根据桥梁的结构形式,进行强度、刚度和稳定性等方面的计算。
对于梁式桥,需要对主梁和支座进行强度和刚度计算;对于拱桥,需要对拱体和桥台进行力学分析;对于悬索桥,需要对悬索和桥塔进行计算。
5.材料选择和计算:根据设计要求和实际情况,选择合适的材料,并进行相应的强度和耐久性计算。
6.施工工况计算:在桥梁建设过程中,需要考虑施工阶段的荷载和施工过程中的承载能力,进行相应的计算。
7.防护装置和附属设施计算:对于一级公路桥梁工程,还需要进行相关的防护装置和附属设施的计算,如护栏、标志牌等。
整个设计计算工作需要运用相关的工程力学、结构力学、材料力学等理论和知识,结合实际情况进行具体计算。
同时,还需要依据国家和地方的桥梁设计规范和标准进行设计,确保桥梁满足安全性、稳定性和经济性的要求。
为了保证计算结果的准确性和合理性,设计人员还应该充分考虑不确定性因素和安全裕度,进行必要的校核和验证。
同时,设计计算过程中还应该积极借助计算机辅助设计软件和工具,提高计算效率和精度。
总之,一级公路桥梁工程设计计算是保证桥梁工程的安全性和稳定性的重要环节,它需要综合运用各种理论和方法,进行全面、准确的计算和分析,确保桥梁的设计符合工程技术标准和要求,为实际施工提供可靠的依据。
桥梁结构的设计与计算桥梁是一种连接两个或多个支柱或墩柱的结构,它是人类造桥技术的杰出成就。
在建造大型桥梁的过程中,桥梁秉承着重载、安全、美观等多重原则,设计师需要对桥梁进行合理的计算和规划,才能够确保桥梁的稳定性和寿命。
桥梁结构的设计与计算是桥梁建设中非常重要的环节。
桥梁结构的分类桥梁结构按照杆件的形态可以分为梁桥、拱桥和索桥三种类型。
梁桥是由梁和支座构成的,其各部分相对简单,易于制作和安装,是市区桥梁的主流形式。
但梁桥的跨度会受到限制,一般最大跨度为150米。
拱桥是以弧形或圆形的拱体为骨架,再加以桥面铺装而成。
拱桥可架空越过河流和高山,有较大的跨度。
但拱桥的结构比较复杂,制作困难,且需要较高技术水平。
索桥是以绳索和钢管为骨架,用桥面板等材料搭建而成的。
索桥跨度大、坚固,但垂直桥塔之间的斜拉缆索需要承受巨大的张力,实施难度和安全要求也高。
桥梁结构的计算桥梁结构的计算是桥梁设计的核心环节。
桥梁的计算需要遵循国家有关标准和规范,包括荷载标准、抗震标准、桥梁计算和分析标准等。
荷载标准是桥梁设计中最基本的部分,因为桥梁的受力大小直接影响到桥梁的载荷能力。
桥梁的计算主要包括静力分析计算、动力分析计算和非线性(离散)分析计算。
其中静力分析计算是最主要的一种计算方法。
静力分析计算考虑的是桥梁所承受的静态荷载产生的内力和位移,主要依据牛顿第二定律和平衡原理。
动力分析计算是基于桥梁受到地震和车辆行驶等因素引起的动态荷载,计算桥梁自由振动频率和振动形态等结构参数。
非线性(离散)分析计算则是解决新型桥梁结构和复杂荷载下的计算问题。
桥梁结构的设计桥梁结构设计是指根据现有的环境条件、技术要求和经济条件,设计最适合的桥梁结构方案。
桥梁的结构设计需要充分考虑桥梁所处的环境、风险和安全等因素。
桥梁的设计需要遵循国家规定的标准和规范,满足相关法律法规和技术要求。
桥梁结构设计的过程中,设计师需要组织实地勘察、调查环境、进行结构分析,以及进行工程设计和施工方案制定等一系列工作。
简述桥梁抗风设计流程与主要计算内容下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!桥梁作为重要的交通基础设施,在风力的作用下容易受到影响,因此抗风设计是桥梁设计中的重要环节之一。
1 基本资料1.1公路等级:二级公路1.2主梁形式:钢筋混凝土T形简支形梁1.3标准跨径:20m1.4计算跨径:19.7m1.5实际梁长:19.6m1.6车道数:二车道1.7 桥面净空桥面净空——7m+2×0.75m人行道1.8 设计依据(1)《公路桥涵设计通用规范(JTG D60—2004)》,简称《桥规》。
(2)《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》,简称《公预规》。
(3)《公路桥涵地基与基础设计规范(JTJ 124-85)》,简称《基规》。
2 具体设计2.1 主梁的详细尺寸主梁间距:1.7m主梁高度:h=(111~118)l=(111~118)20=1.82~1.1(m)(取1.8)主梁肋宽度:b=0.2m主梁的根数:(7m+2×0.75m)/1.7=52.2行车道板的内力计算考虑到主梁翼板在接缝处沿纵向全长设置连接钢筋,故行车道板可按两端固接和中间铰接的板计算。
已知桥面铺装为2cm的沥青表面处治(重力密度为23kN/m3)和平均9cm厚混泥土垫层(重力密度为24kN/m3),C30T梁翼板的重力密度为25kN/m3。
2.2.1结构自重及其内力(按纵向1m 宽的板条计算))①每米延板上的恒载1g沥青表面处治:1g =0.02×1.0×23=0.46kN/m C25号混凝土垫层:2g =0.09×1.0×24=2.16kN/m T 梁翼板自重:3g =(0.08+0.14)/2×1.0×25=2.75kN/m 每延米板宽自重:g= 1g +2g +3g =0.46+2.16+2.75=5.37kN/m ②每米宽板条的恒载内力:弯矩:M g m in,=-21gl 20=-21×5.37×0.712=-1.35kN.m剪力:Q Ag =g·l 0=5.37×0.71=3.81kN2.2.2汽车车辆荷载产生的内力公路II 级:以重车轮作用于铰缝轴线上为最不利荷载布置,此时两边的悬臂板各承受一半的车轮荷载下图:图2-2 行车道板计算(尺寸单位:cm )后轴作用力140KN 的着地长度为a 2=0.2m,宽度b 2=0.6m ,铺装层的厚度H=0.09+0.02=0.11m 垂直行车方向轮压分布宽度为:a 1=a 2+2H =0.20+2×0.11=0.42m 。
道路桥梁荷载计算与设计方法摘要:桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称。
本文依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为公路桥梁荷载设计理念和设计方法的逐步完善实现科学化和合理化。
关键词:设计荷载;公路桥梁;荷载效应;分项系数前言桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称,包括恒载、活载和其他荷载。
包括铁路列车活载或公路车辆荷载,及它们所引起的冲击力、离心力、横向摇摆力(铁路列车)、制动力或牵引力,人群荷载,及由列车车辆所增生的土压力等。
在公路桥上行驶的车辆种类很多,而且出现机率不同,因此把大量出现的汽车排列成队,作为计算荷载;把出现机率较少的履带车和平板挂车作为验算荷载。
车辆活载对桥梁结构所产生的动力效应中,铅直方向的作用力称冲击力、它使桥梁结构增加的挠度或应力对荷载静止时产生的挠度或应力之比称为动力系数μ,也称冲击系数。
最近的研究成果把动力系数分为两部分:一为适用于连续完好的线路部分μ1;另一为受线路不均匀性影响部分μ2。
动力系数则为μ1与μ2之和。
在计算公式中,除考虑桥梁的跨度外,反映了车辆的运行速度和桥梁结构的自振频率。
公路桥梁汽车荷载的冲击力为汽车荷载乘以冲击系数,平板挂车和履带车不计冲击力。
1 公路桥梁荷载标准2004 年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式。
2004 版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。
并且提出车道荷载的均布荷载kq和集中荷载KP 的标准值2 荷载效应计算2.1 影响线计算桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。
所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。
因此,需要确定的是荷载最不利位置和最大值。
首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1 的最简单基本形式。
结构设计知识:桥梁预应力设计原理与计算桥梁是连接两地的重要交通工程,为了保证桥梁的安全和使用寿命,一些特殊的设计要求必须被考虑。
预应力是其中一个重要的设计要求,它可以增强桥梁的承载能力,减少由于挠度引起的变形和裂缝,提高桥梁的稳定性。
本文将介绍桥梁预应力设计的原理和计算方法。
1.预应力设计原理预应力是指通过预先在混凝土或钢筋上施加拉应力,使结构在使用荷载时通过应力重新分布,降低或消除由于使用荷载引起的应变而产生的变形,从而达到增强结构承载能力,提高结构的使用性能和稳定性的效果。
预应力的施加方式分为钢束预应力和钢丝绳预应力两种。
在桥梁结构设计中,通过施加预应力,可使混凝土中的压应力和钢筋中的拉应力相互合作,形成强有力的内力,从而使结构的承载能力和抗震能力得到显著提高。
同时,预应力设计还可以减少由于使用荷载引起的桥梁变形和裂缝,增加桥梁的使用寿命,降低维护成本。
2.桥梁预应力设计计算方法桥梁预应力设计计算方法主要包括预应力设计理论、计算方法和控制计算方法。
预应力设计理论指的是桥梁预应力设计的基本理论,包括能量原理、相容原理和等效荷载原理等。
计算方法指的是通过数学计算的方式,确定桥梁预应力的施加量、布置方式以及锚固长度等,确保结构的承载能力和稳定性。
控制计算方法指的是根据实际施工过程中的情况,对预应力施加量、锚固长度、布设方式等进行修正和控制。
在桥梁预应力设计中,常用的计算方法包括工作状态下桥梁设计、计算状态下桥梁设计和控制状态下桥梁设计。
工作状态下桥梁设计指的是预应力施加以后,桥梁在使用荷载下的受力状态;计算状态下桥梁设计指的是桥梁在按规定荷载计算后的受力状态;控制状态下桥梁设计指的是在施工中进行的一些控制计算,用于控制预应力的施加量等。
在桥梁预应力设计计算过程中,需要考虑预应力设备和工艺的影响,确保预应力施加的可靠性和稳定性。
同时,还需要制定严格的检验和验收标准,确保预应力设计的质量和安全性。
3.桥梁预应力设计应用实例桥梁预应力设计是一项重要的工程技术,在实际应用中具有广泛的应用价值。
桥梁设计计算内容及方法桥梁设计是指根据桥梁的结构类型、跨度、荷载情况等要求,确定桥梁的各项技术指标和构造参数的过程。
其计算内容主要包括静力分析、动力分析、热力分析、疲劳分析等方面。
在进行桥梁设计计算时,需要采用一系列的方法和理论来确保桥梁的结构安全可靠。
静力分析是桥梁设计计算的基础。
在桥梁设计中,首先需要进行静力分析,确定桥梁的受力状态,计算桥梁各个构件的受力情况。
静力分析主要涉及平衡方程、力的合成和分解、力的传递和平衡等基本原理。
通过静力分析,可以确定桥梁的弯矩、剪力、轴力等内力的大小和分布情况。
动力分析是桥梁设计计算中的重要内容之一、桥梁在使用过程中会受到风荷载、地震荷载等动力荷载的作用,这些荷载可能导致桥梁产生振动,影响桥梁的安全性和舒适性。
因此,需要进行动力分析来确定桥梁的振动特性。
动力分析常用的方法包括模态分析、响应谱分析、时程分析等。
通过动力分析,可以确定桥梁的固有频率、振型形态以及在不同荷载下的振动响应。
热力分析是桥梁设计计算中的另一个重要内容。
桥梁在受到季节变化和温度差异的影响下,会产生热胀冷缩及温度应力。
热力分析主要涉及温度场分布、热应力计算、温度各项系数等。
通过热力分析,可以确定桥梁结构在温度变化过程中的应力和位移变化情况。
疲劳分析是桥梁设计计算中的重要环节之一、疲劳是指结构在受到反复载荷作用下产生裂纹、变形甚至破坏的过程。
桥梁在使用过程中会受到交通载荷的反复作用,对桥梁的疲劳性能提出了较高要求。
疲劳分析主要涉及疲劳寿命计算、疲劳裂纹扩展预测等。
通过疲劳分析,可以确定桥梁在交通载荷下的寿命和安全性。
桥梁设计计算方法包括解析方法和数值方法两种。
解析方法是通过建立桥梁的力学模型,根据力学原理和方程,进行计算分析。
解析方法具有计算速度快、适用范围广等优点。
常用的解析方法有梁理论法、板理论法、弹性地基反应解析法等。
数值方法是通过将结构离散化,建立差分方程、积分方程或微分方程,再用计算机进行迭代求解的方法。
桥梁设计计算流程第一步:明确设计要求和几何参数在进行桥梁设计计算之前,首先需要明确设计要求和几何参数。
设计要求包括承载能力、使用寿命、设计安全系数、桥梁结构类型等。
几何参数包括桥梁跨度、桥面宽度、桥墩高度、桥面标高等。
第二步:确定荷载类型和强度根据桥梁的功能和使用要求,确定适用于该桥梁的荷载类型,如静态荷载、动态荷载、温度荷载等。
同时需要确定每种荷载类型的荷载强度,例如车辆自重、行车荷载、人行荷载等。
第三步:进行荷载计算在确定了荷载类型和强度之后,需要对桥梁进行荷载计算。
荷载计算的目的是确定桥梁在各种荷载作用下的受力情况。
根据荷载类型、强度以及桥梁结构特点,可以采用不同的荷载计算方法,如静力验算、弹性分析等。
第四步:结构计算和分析在进行荷载计算之后,需要进行桥梁的结构计算和分析。
结构计算和分析的目的是确定桥梁结构的稳定性、刚度、变形等性能。
根据设计要求和几何参数,可以采用不同的结构计算和分析方法,如有限元法、弹性理论等。
第五步:选择合适的材料和断面形状在进行结构计算和分析之后,需要选择合适的材料和断面形状。
材料的选择应考虑结构的强度、刚度、耐久性等要求,并与实际材料的可行性进行评估。
断面形状的选择应满足结构的力学需求,并尽量减小结构的重量和成本。
第六步:进行构造计算和校核在选择合适的材料和断面形状之后,需要进行构造计算和校核。
构造计算和校核的目的是确定各构件的尺寸、配筋和局部稳定性等,并根据设计要求进行检查和校核。
第七步:绘制施工图和编制规范在进行构造计算和校核之后,需要进行桥梁的施工图绘制和编制相关规范。
施工图包括桥梁的布置图、剖面图、构件图等,用于实际施工和施工监督。
编制规范是为了保证桥梁的设计和施工符合国家相关标准和规范。
第八步:施工和监督最后一步是桥梁的实际施工和监督。
根据施工图和规范,进行桥梁的施工和施工监督,并对施工过程进行质量检查和验收。
总结:桥梁设计计算流程总体分为明确设计要求和几何参数、确定荷载类型和强度、进行荷载计算、结构计算和分析、选择材料和断面形状、进行构造计算和校核、绘制施工图和编制规范、施工和监督等八个步骤。