最新人教版初中八年级上册数学《分式的乘除混合运算与分式的乘方》导学案
- 格式:doc
- 大小:864.54 KB
- 文档页数:8
《分式的加减、乘除混合运算》教学设计
教学目标:
1.灵活运用分式的加减、乘除法则。
2.能区分运算顺序且能较好地进行分式的的混合运算。
教学重难点:
重点:掌握分式的加减、乘除混合运算顺序和运算方法。
难点:带括号的分式的加减、乘除混合运算。
教学过程:
知识回顾
分式的乘除法法则:
两个分式相乘, 把分子相乘的积作为积的分子
, 把分母相乘的积作为积的
分母。
两个分式相除, 把除式的分子分母颠倒位置后,再与被除式相乘。
= =
分式乘方法则注意:其中 a 表示分式的分子, b 表示分式的分母,且b ≠0, n 是正整数。
分式乘方,把分子分母分别乘方。
d c b a d c b a .n n n b a b
a
分式加减运算的方法思路:
通分分母不变
异分母相加减同分母相加减分子(整式)相加减
转化为转化为
初学:
该学生解答过程是从第步开始出错的,其错误原因是;
深学:
化简计算
(1)(+)÷
解:原式=[﹣]×
=×
=4;
(2)(+)?
解:原式=?
=
拓学:
化简计算
(1)(a﹣)÷
解:原式=?
=
(2)化简:
解:原式=×
=
小结:
(1)谈谈自己本节课的收获。
(2)本节课自己是否还有不懂的题目或不明白的地方需要请教同学或老师?
作业布置:。
人教版八年级数学上册《分式》导学案 分式的乘除(第一课时)【学习目标】1.理解和掌握分式的乘除法运算法则,能进行简单的分式乘除法运算;2.掌握分式的分子和分母是单项式的分式的乘除法计算;3.掌握分式的乘方法则,会进行分式的乘方运算. 【知识梳理】1.分式乘法的运算法则:两个分式相乘,把分子的积作为积的 ,把分母的积作为积的 .用式子表示为 .2.分式除法的运算法则:两个分式相除,把除式的分子和分母 ,再与被除式 .3.计算:(1)2b a -·(-43ab ) (2)x2y 32÷ ()y x 26-4.n a 表示 ,其中a 叫做 ,n 叫做 .5.计算:6.分式的乘方法则:分式的乘方,把 ,即 .7.计算:(1)32)32(c b a - (2)32)-2(x y【典型例题】知识点一 分子、分母是单项式的分式乘法1.计算2916431ab b a •)( (2)(x 2−2y )3∙6xy 2x 4知识点二 分子、分母是单项式的分式除法2.计算 xy y x 323-(1)222÷ (2)(b 3a 2)2÷(−b 36a )知识点三 分子、分母是单项式的分式乘除乘方混合运算;2)()()()(=⋅=⎪⎭⎫ ⎝⎛b a ;3)()()()()(=⋅⋅=⎪⎭⎫ ⎝⎛b a ;)()(4)()()()(=⋅⋅⋅=⎪⎭⎫ ⎝⎛b a .)()(=⎪⎭⎫ ⎝⎛nb a3.43223)()()ab a b ab -÷-•(4.计算(1)3223b a b b a ÷⋅(3)(xy 2−z )4∙(z 2xy )3÷(xz −y )5(4)(b2ax )2÷(−ax3b )×8ab 3【巩固训练】1.列各式中,计算结果是分式的是( )A. B. C. D.2.化简÷是( )A .mB .﹣mC .D .﹣3.计算:4352310251b a c c b a ⋅)( (2)22223498zxy z y x ÷- (3)43222)()()x y x y y x -÷⋅-(人教版八年级数学上册《分式》导学案n am b ÷35x x ÷3223734x x y y ÷nm m 23n ⋅3222)3()23()2)(2(ab b b a -⋅-÷-分式的乘除(第二课时)【学习目标】1.熟练运用分式的乘除法运算法则,能进行简单的分式乘除法运算;2.掌握分式的分子和分母是多项式的分式的乘除法计算.【知识梳理】1.在进行分式相乘时,如果分子或分母是多项式,现将分子或分母____________,将除法转化为____________,再约分化简,题中有括号的,应先算括号里面的. 2.因式分解(1)2249n m - (2)22224)(y x y x -+ (3)81721624+-x x【典型例题】知识点一 分子、分母是多项式的分式乘除法1.222250101y x y x xy y x -⋅-)( 4121222--÷--a a a a )( 22222)2(243y x y x y xy x y x ++÷++-)(2.(1) 165)4(2n 2--÷-m mn m (2))(4243y x yx xy y x ⋅- (3)知识点二 分式的化简求值3.先化简再求值: 228241681622+-⋅+-÷++-a a a a a a a 选择一个合适的数代入求值.4.先化简,再求值: x 2+2x−8x 3+2x 2+x÷(x−2x⋅x+4x+1) 其中x =−45【巩固训练】1. 化简xyx xy x +÷+)2(的结果是( ) A. B.y x +2 C. D.2.化简1211a 222+--÷-+a a a a a 的结果是( ) A.11+-a a B.11-+a a C.a1D.a 3.化简÷的结果是( ) A .B .C .D .4.使分式()22222y x ay ax y a x a y x ++⋅-- 的值等于5,则a 的值是( ) A.5 B.-5 C.51 D.51-5.计算:(1)mm m m m --⋅-+-3249622 (2)()2x xy xy yx -÷-(3)44246322+++÷--x x x x x (4)22233969⎪⎭⎫⎝⎛+-⋅+--x x x x x(5) a 2−16a 2+8a+16÷a−42a+8∙a−2a+2 (6)x+2x 2−6x+9÷13−x ∙x−3x+26.先12)1(441222-+⋅+÷++-m mm m m m m 化简,再选一个你认为合适的m 的值代入求值.2()x y +2x x。
15.2.2分式的混合运算一、学习目标1.掌握分式加,减,乘,除,乘方的法则,并能熟练运用法则进行分式加减乘除法的计算.2. 掌握分式混合运算的顺序。
3.能够根据分式特征灵活运用运算律,乘法公式简化运算。
重点:掌握分式加,减,乘,除,乘方的法则,并能熟练运用法则进行分式加减乘除法的计算.难点:根据分式特征灵活运用运算律,乘法公式简化运算。
二、教学过程:1.复习引入活动(1):法则记忆我最棒(分式的运算法则)乘法法则: ____________________除法法则:_______________________同分母加减法: ____________________异分母加减法:_______________________乘方: ____________________活动2:计算速度我最快2,例题1讲解(自主学1)请你快速计算这道题的,并总结思维上分为哪几步? 又要注意什么?师生小结:1, 先看运算的种类2,确定运算顺序3,运用法则分别运算注意:运算符号,性质符号,结果要化为最简形式。
分式的混合运算顺序:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,同级运算从左到右依次进行.注意:计算结果要化为最简分式或整式.2214a a b b a b b --⎛⎫⋅÷ ⎪⎝⎭例题2讲解:(自主学习2)学生展示:(1)把整式看成一个整体,当成分母是“1”,注意符号的处理。
(2)当分子或分母是多项式时,应先因式分解,能约分时要约分,结果保留最简形式。
例3综合运用:(合作学习)观察分式特征,选择合适方法计算:(1)题:方法1:常规方法。
方法2:乘法分配律(2)题:方法1:常规方法方法2: 平方差公式方法3:换元法方法小结:善于观察题目特征,灵活运用运算律,,乘法公式可简化运算,提高速度.例4综合运用:(发展性学习)先化简,取一个你喜欢的m值代入求值.注意:(1),先把分式化成最简形式。
《分式的乘方及分式乘除、乘方混合运算》科目:数学一、教材分析分式的乘方是在有理数乘方,幂的运算及分式乘除基础上展开的学习,是这些知识的综合运用。
在各种习题中都可能出现,牢固掌握分式乘方知识对于解乘除混合运算起着重要的作用。
二、学情分析1.知识掌握上,我任教的班级数学基础比较差,两极分化十分严重,优等生比例偏小,学习发展生所占比例太大,其中发展生大多数接受能力不强,学习上碰到问题也不会大胆提出来,学习的自主性和主动性都不强,不利于对新知识的理解和掌握。
2.学生学习本节的障碍。
学生对混合运算顺序是个难点,老师应给予以简单明白、深入浅出的分析。
对公式的推导过程,让学生亲身感受来发现,这样使学生感到自然,易于接受。
三、教学目标(一)知识技能:1、理解分式的乘方原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。
2、熟练地进行分式乘方与乘除的混合运算。
(二)数学思考:经历从分式的乘除法运算到分式的乘方运算过程,培养学生类比的探究能力,加深对“从特殊到一般”的数学思想的认识.(三)问题解决:能根据混合运算法则进行分式乘除、乘方混合运算.(四)情感态度让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和一丝不苟的精神.教学重点: 分式的乘方及分式乘除、乘方混合运算.教学难点: 分式的乘除法、乘方混合运算.教学方法:启发--探究式教具准备:多媒体四、教学内容(一)知识回顾计算:1. a n =________2. (ab)n =______, (-3ab 2)2=______, (-2x 2y 3)3=______.3. (23)2=________, (-23)2=________. 4. (23)3=________,(-23)3=________. 【设计意图】:温故知新,为本节课知识作铺垫.归纳:由以上计算你会发现:1. 分数的乘方就是把分子、分母分别________.2. 负数的奇次幂是________,负数的偶次幂是________.(二)创设情境,引入新课问题引入:1.美术课上需要一张边长为b acm 的正方形卡纸,它的面积为________. 2. 一个正方体的容器,它的棱长为b acm ,它的容积为______. 教师提问:怎样计算出这两个结果呢?让我们来探究一下吧!(导入新课)设计意图:使学生经历了将实际问题转化为数学问题的建模过程.激发学生的学习兴趣.(三)动手实践,进行数学探究交流活动【探究】根据乘方的意义和分式乘法的法则,计算⎝ ⎛⎭⎪⎫a b 2=________.⎝ ⎛⎭⎪⎫a b 3=________;⎝ ⎛⎭⎪⎫a b 10=________;(a b )n =a b .a b ……a b =________.思考:分式的乘方法则:(a b)n =________. 归纳:分式乘方要把________、________分别乘方.【设计意图】:培养学生归纳探究能力(四)开放训练 体现应用【应用举例】例1 (教材139页例5):计算 232222212323--y a a b x c c ()();()();()().例 2 ⎝ ⎛⎭⎪⎪⎫a 2b -cd 33÷2a d 3·⎝ ⎛⎭⎪⎫c 2a 2 师生共同分析:例1是分式的乘方运算,与整式的乘方一样,应先判断乘方结果的符号,再分别把分子、分母乘方;例2是分式的乘除与乘方的混合运算,强调运算顺序:先做乘方,再做乘除.例1、解: (3)⎝ ⎛⎭⎪⎪⎫-2a 2b 3c 2=(-2a 2b )2(3c )2=4a 4b 29c 2. 例2、 解:⎝ ⎛⎭⎪⎪⎫a 2b -cd 33÷2a d 3·⎝ ⎛⎭⎪⎫c 2a 2=a 6b 3-c 3d 9÷2a d 3·c 24a 2=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b 38cd 6. 注意:教师引导学生进行探索,必要时进行适当的启发和提示.师生总结注意事项:分式的乘方运算,乘方的结果要注意符号;注意分式的乘除与乘方的混合运算顺序.【设计意图】1. 通过例题教学使学生掌握基础知识、基本的运算方法,掌握解决数学问题的基本技能,增强学生解决问题的能力.2.通过例题教学使学生掌握基本的数学语言、规范其解题书写格式【课堂练习】教材139页练习【设计意图】考查分式的乘除与乘方的混合运算:先做乘方,再做乘除. 课堂小结:333331228==y y y x x x()();()22222242242--==a a a c c c()()();()1. 本节课学习了哪些主要内容?2. 运用分式乘方法则计算的步骤是什么?它与整式的乘方运算有什么区别和联系?3. 分式的乘方与乘除混合运算的运算顺序是什么?布置作业:第146页习题15.2的第3题【知识网络】【教学反思】分式的乘除与乘方的混合运算是学生学习中的重点,也是难点,所以教师必须要强调运算顺序,提醒学生:不要盲目地跳步计算.根据“学生好胜心强,并且喜欢找别人错误”的特点,把学生的注意力完全集中到练习中来,调动了学生学习的主动性,培养学生的语言表达能力。
分式的乘方【学习目标】1、知识与技能:理解和掌握分式的乘方法则;会进行分式的乘方运算,分式的乘、除及乘方的混合运算。
2、过程与方法:经历分式乘方法则的探究过程,培养学生的观察、类比、归纳等数学能力。
3、情感态度与价值观:感受数学的严谨性,对数学产生强烈的好奇心和求知欲。
一、知识准备(1)=m ab )( ; =32)2x ( ;=33)3x a ( ; (2)在下列横线上填“+”或“-”。
①2)a -(= 2a ;② 3)a -(= 3a ③ 4)ab -(= 4)(ab二、探究分式的乘方法则1、根据乘方的意义和分式乘法的法则,计算下列各题:)()(b a a b a a b a b a b a =••=•=⎪⎭⎫⎝⎛2)()(b a b b b a a a b a b a b a b a =••••=••=⎪⎭⎫⎝⎛3)()(b a b b b b a a a a b a b a b a b a b a =••••••=•••=⎪⎭⎫⎝⎛4由以上计算的结果你能推出?=⎪⎭⎫⎝⎛nb a (n 为正整数)的结果吗?)()(b a b b b b a a a a b a b a b a b a b a n=••••••••••••=••••••=⎪⎭⎫⎝⎛即:)()(b a b a n=⎪⎭⎫⎝⎛2、归纳分式乘方的法则:分式乘方要把分子、分母分别三、例题精讲例1 计算:(1)2)32(xy (2) 32)32(c b a - 解:原式= 22)3()2(x y - 解:原式== 2294xy注意:1、分式乘方时,一定要把分子、分母分别乘方,不要把写n n n b a b a =⎪⎭⎫ ⎝⎛写成b a b a n n=⎪⎭⎫⎝⎛。
2、分式乘方时,要注意确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负。
(奇负偶正)公式表示: nn a a 22)(=- 1212)(+-=-+n aa n3、当分式的分子或分母是多项式时,要把多项式加上括号作为一个整体乘方,要避免出现的错误。
新人教八年级上册第15章15.2.1分式的乘除第2课时分式的乘除混合运算与分式的乘方一、新课导入1.导入课题:我们学习了分式的乘除法,那么分式的乘除混合运算是怎样进行的?分式的乘方又是怎样进行运算的呢?这就是本节课我们所要学的内容.2.学习目标:(1)掌握分式的乘除混合运算顺序及方法.(2)能说出分式乘方的运算法则,并能运用法则进行分式乘方的运算.3.学习重、难点:重点:分式的乘除混合运算的方法及分式的乘方法则.难点:乘方法则的应用.二、分层学习1.自学指导:(1)自学内容:教材第138页例4.(2)自学时间:5分钟.(3)自学方法:通过类比分数的混合运算得出分式乘除混合运算的方法.(4)自学参考提纲:①分式乘除混合运算,先依据分式的乘除法法则,把分式乘除法统一成乘法.②当分式的分子分母为多项式的应先进行因式分解,然后约去分子分母的公因式,计算结果应为最简分式或整式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:部分学困生对例4的计算过程中略去了25x2-9=(5x+3)(5x-3)一步会存在理解障碍.②差异指导:对学生学习中存在的问题予以启发指导.(2)生助生:生生间相互交流帮助.4.强化:(1)分式乘除混合运算的顺序及注意的问题.(2)练习:计算:1.自学指导:(1)自学内容:探究分式的乘方法则.(2)自学时间:5分钟.(3)自学方法:回顾分式乘法法则和乘方的意义;注意采用从简单到复杂,从具体到一般的探究方法. (4)自学参考提纲:①思考并填空:(ab )2=22ab,(ab)3=33ab,(ab)8=88ab.②一般地,当n是正整数时,(ab )n=nnab,并证明上述情况.③对②中的等式用文字表述是分式的乘方要把分子、分母分别乘方.④计算:2.自学:同学们结合自学指导进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否知道(ab)n的意义及乘方运算法则.②差异指导:对推导乘方运算法则存在困难的学生予以启发指导.(2)生助生:小组内相互交流、纠错、互助解疑难.4.强化:分式乘方的法则:分式的乘方,把分子和分母分别乘方,用字母表述是:(ab )n=nnab.1.自学指导:(1)自学内容:教材第139页例5.(2)自学时间:3分钟.(3)自学方法:认真观察例题的解答过程,重点关注分式乘方及乘除混合运算顺序.(4)自学参考提纲:①分式的乘方及乘除混合运算的顺序是怎样的?②练习:2.自学:同学们结合自学指导自学.3.助学:(1)师助生:①明了学情:了解学生是否掌握了例题中的运算方法和运算顺序.②差异指导:了解学生学习中存在的困惑,进行分类指导.(2)生肋生:小组间相互交流和解疑.4.强化:分式的混合运算的顺序:先乘方,再乘除.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.一、基础巩固(第4题20分,其余每题10分,共50分)1.下列计算中,正确的是(D)4.计算下列各题.二、综合应用(每题15分,共30分)三、拓展延伸(20分)7.当x=1949,求代数式的值时,小聪认为x只要取任一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.解:有道理.。
第2课时分式的混合运算设计意图通过2个例题(例1为不带括号的,例2为带括号的)教学使学生掌握基础知识、基本的运算方法,并规范其解题书写格式,增强学生的运算能力. 例2(教材P141例8)计算:对应训练教材P142练习第1,2题.【对应训练】教材P142练习第1,2题.(4)忽视分数线的括号作用;(5)运算的最终结果不是最简分式或整式.设计意图分式的混合运算是高频考点,设置此例题是为了体现运算方法的灵活性和运算律的使用.例计算:问题1 这样做完了吗?教师引导学生观察:可将a+b看成一个整体,然后分解因式,从而继续解答.接上面的步骤:=(a+b)-2a(a+b)2a·1a+b=(a+b)(1-2a)2a·1a+b=1-2a2a.问题2你还有其他更简便的解法吗?另解:原式=[a+b2a-(a+b)]·1a+b=a+b2a·1a+b-(a+b)·1a+b=12a-1=1-2a2a.归纳总结:分式混合运算应根据式子的特点,选择灵活简便的方法计算,注意使用运算律.【教学建议】教师需再次强调,分式的混合运算中如果存在整式,可将整式看作分母是1的“分式”,然后依照运算顺序及法则进行运算.【教学建议】学生独立思考,教师引导学生可利用运算律简化运算,学生将自己的解题过程写在练习本上.教学步骤师生活动活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题: 分式混合运算的运算顺序是什么样的? 【知识结构】【作业布置】1.教材P 146~147习题15.2第6,12,13题.2.《创优作业》主体本部分相应课时训练.板书设计第2课时 分式的混合运算分式混合运算的顺序:先乘方,再乘除,然后加减,遇到括号要先算括号里面的.教学反思在学习这部分内容时,可以根据学生的具体情况,适当增加例题和习题,让学生熟练掌握分式的运算法则并提高运算能力.但与整式、分数的运算相比,分式的运算步骤多,符号变化复杂,所以在增加例题和习题时,要注意控制难度,特别是不要在分子、分母的因式分解上增加难度.关键是让学生通过基本的练习,弄清运算依据,做到步步有据,降低计算的错误率.解题大招一 与分式混合运算相关的化简求值 1.直接化简求值有关分式的化简求值问题,一般是先把给定的分式运用分式的运算法则化为最简分式或整式,然后把已知数据代入,求分式的值.例1 先化简,再求值:已知(1-1a )÷(a 2+1a -2),其中a =2.解:(1-1a )÷(a 2+1a -2)=a -1a ÷a 2+1-2a a =a -1a ·a (a -1)2=1a -1.当a =2时,原式=12-1=1.2.与非负性结合的分式化简求值一般这类题的字母的值没有直接给出,需要利用非负性的特征(几个非负数或式相加和为0,则每个数或式分别为0)求出字母的值,然后代入化简后的分式计算即可.初中阶段的三个非负性如下:⎩⎪⎨⎪⎧1.绝对值的非负性,即|a|≥0;2.偶次幂的非负性,即a 2≥0;3.算术平方根的双重非负性,即a≥0,a≥0.例2 先化简,再求值:(a 2-b 2a 2-2ab +b 2+a b -a )÷b 2a 2-ab,其中a ,b 满足|a +1|+(b -4)2=0.解:(a 2-b 2a 2-2ab +b 2+a b -a )÷b 2a 2-ab =[(a +b )(a -b )(a -b )2-a a -b ]·a (a -b )b 2=(a +b a -b -a a -b )·a (a -b )b 2=b a -b·a (a -b )b 2=ab .∵|a +1|+(b -4)2=0,∴a +1=0,b -4=0,解得a =-1,b =4. 当a =-1,b =4时,原式=-14.3.化简后选择合适的值代入求值这类型一般在选择合适的数代入时需要注意所选取的值要使原分式有意义,并且要使分式的乘除法有意义.例3 先化简x -3x 2-1÷x -3x 2+2x +1-(1x -1+1),再从-1≤x≤3的范围内选取一个合适的整数作为x 的值代入求值.解:x -3x 2-1 ÷x -3x 2+2x +1-(1x -1+1)=x -3(x +1)(x -1) ÷x -3(x +1)2-(1x -1+x -1x -1)=x -3(x +1)(x -1) ·(x +1)2x -3-x x -1=x +1x -1-x x -1=1x -1 .∵分式和除法要有意义,∴x≠±1且x≠3.∵-1≤x≤3且x 为整数,∴取x =0.当x =0时,原式=10-1=-1.(答案不唯一) 解题大招二 分式混合运算过程的纠错题的解法遇到与分式混合运算有关的纠错题可以从以下常见的几个错误方向来考虑: ①计算过程中漏掉了分母;②分式的运算中当分式前面是减号时,忽视分数线的括号作用; ③分式的基本性质用错等.例4 下面是某同学化简(x 2-9x 2+6x +9-2x +3x +3)÷-3xx +3的部分过程,请认真阅读并完成相应任务.解:原式=[(x +3)(x -3)(x +3)2-2x +3x +3]·x +3-3x①;=(x -3x +3-2x +3x +3)·x +3-3x②; =x -3-2x +3x +3·x +3-3x③;…(1)该同学第③步开始出现错误;请你改正错误,然后完成后续的化简过程. (2)该分式的值能(填“能”或“不能”)等于0;如果能,则x =-6. 解:(1)由题目中的解答过程可知,第③步开始出现错误, 正确的过程如下: 原式=[(x +3)(x -3)(x +3)2-2x +3x +3]·x +3-3x=(x -3x +3-2x +3x +3)·x +3-3x=x -3-2x -3x +3·x +3-3x=-x -6x +3·x +3-3x =x +63x. (2)解析:令x +63x =0,解得x =-6,当x =-6时,原分式有意义,∴该分式的值能等于0,此时x 的值为-6.培优点逆运算型分式的混合运算例老师在黑板上写了一个分式混合运算的正确计算结果,随后用手遮住了原式的一个式子,如下:(-x2-1x2-2x+1)÷xx+1=x+1x-1,求被遮住的式子.分析:根据“被除式=商×除式,被减式=差+减式”,以及分式的乘除法和加减法运算法则进行计算,即可解答.解:被遮住的式子是x+1x-1·xx+1+x2-1x2-2x+1=xx-1+(x+1)(x-1)(x-1)2=xx-1+x+1x-1=2x+1x-1.。
15.2.1分式的乘除
第2课时分式的乘除混合运算与分式的乘方
一、新课导入
1.导入课题:
我们学习了分式的乘除法,那么分式的乘除混合运算是怎样进行的?分式的乘方又是怎样进行运算的呢?这就是本节课我们所要学的内容.
2.学习目标:
(1)掌握分式的乘除混合运算顺序及方法.
(2)能说出分式乘方的运算法则,并能运用法则进行分式乘方的运算.
3.学习重、难点:
重点:分式的乘除混合运算的方法及分式的乘方法则.
难点:乘方法则的应用.
二、分层学习
1.自学指导:
(1)自学内容:教材第138页例4.
(2)自学时间:5分钟.
(3)自学方法:通过类比分数的混合运算得出分式乘除混合运算的方法.
(4)自学参考提纲:
①分式乘除混合运算,先依据分式的乘除法法则,把分式乘除法统一成乘法.
②当分式的分子分母为多项式的应先进行
因式分解,然后约去分子分母的公因式,计算结果应为最简分式或整
式.
2.自学:请同学们结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:部分学困生对例4的计算过程中略去了25x2-9=(5x+3)(5x-3)一步会存在理解障碍.
②差异指导:对学生学习中存在的问题予以启发指导.
(2)生助生:生生间相互交流帮助.
4.强化:
(1)分式乘除混合运算的顺序及注意的问题.
(2)练习:计算:
1.自学指导:
(1)自学内容:探究分式的乘方法则.
(2)自学时间:5分钟.
(3)自学方法:回顾分式乘法法则和乘方的意义;
注意采用从简单到复杂,从具体到一般的探究方法.
(4)自学参考提纲:
①思考并填空:(a
b )2=2
2
a
b
,(a
b
)3=3
3
a
b
,(a
b
)8=8
8
a
b
.
②一般地,当n是正整数时,(a
b )n=n
n
a
b
,并证明上述情况.
③对②中的等式用文字表述是分式的乘方要把分子、分母分别乘方.
④计算:
2.自学:同学们结合自学指导进行自主探究.
3.助学:
(1)师助生:
①明了学情:了解学生是否知道(ab)n的意义及乘方运算法则.
②差异指导:对推导乘方运算法则存在困难的学生予以启发指导. (2)生助生:小组内相互交流、纠错、互助解疑难.
4.强化:分式乘方的法则:分式的乘方,把分子和分母分别乘方,用
字母表述是:(a
b )n=n
n
a
b
.
1.自学指导:
(1)自学内容:教材第139页例5.
(2)自学时间:3分钟.
(3)自学方法:认真观察例题的解答过程,重点关注分式乘方及乘除混合运算顺序.
(4)自学参考提纲:
①分式的乘方及乘除混合运算的顺序是怎样的?
②练习:
2.自学:同学们结合自学指导自学.
3.助学:
(1)师助生:
①明了学情:了解学生是否掌握了例题中的运算方法和运算顺序.
②差异指导:了解学生学习中存在的困惑,进行分类指导.
(2)生肋生:小组间相互交流和解疑.
4.强化:分式的混合运算的顺序:先乘方,再乘除.
三、评价
1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.
2.教师对学生的评价:
(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行归纳点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前
面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.
一、基础巩固(第4题20分,其余每题10分,共50分)
1.下列计算中,正确的是(D)
4.计算下列各题.
二、综合应用(每题15分,共30分)
三、拓展延伸(20分)
7.当x=1949,求代数式的值时,小聪认为x 只要取任一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.
解:有道理.
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
希望我的文档能够帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能提出你的宝贵意见,促进我们共同成长,共同进步。
每一个都花费了我大量心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最大的欣慰。
如果您觉得有改进之处,请您留言,后期一定会优化。
常言道:人生就是一场修行,生活只是一个状态,学习只是一个习惯,只要你我保持积极向上、乐观好学、求实奋进的状态,相信你我不久的将来一定会取得更大的进步。
最后祝:您生活愉快,事业节节高。