第三章 数据仓库的数据存储与处理
- 格式:ppt
- 大小:679.50 KB
- 文档页数:66
第一章总则第一条为规范公开数据仓库的管理,确保数据安全、准确、高效地服务于社会公众和政府部门,根据《中华人民共和国数据安全法》、《中华人民共和国个人信息保护法》等相关法律法规,结合本单位的实际情况,制定本制度。
第二条本制度适用于本单位公开数据仓库的建立、运行、维护及使用等各个环节。
第三条本制度遵循以下原则:1. 安全性原则:确保数据仓库的安全,防止数据泄露、篡改和破坏。
2. 准确性原则:保证数据仓库中数据的准确性和可靠性。
3. 完整性原则:确保数据仓库的完整性和连续性。
4. 可用性原则:保障数据仓库的数据能够被有效利用。
5. 法规遵从性原则:遵守国家相关法律法规,确保数据仓库管理合法合规。
第二章数据仓库的建立第四条数据仓库的建立应当经过以下程序:1. 制定数据仓库建设方案,明确数据仓库的目标、功能、规模、结构等。
2. 进行数据资源调查,确定数据来源、类型、质量等。
3. 设计数据仓库架构,包括数据模型、存储结构、访问控制等。
4. 选择合适的技术和工具,进行数据仓库的搭建。
第三章数据入库与更新第五条数据入库应当遵循以下规定:1. 数据来源应当合法,确保数据的真实性、完整性和准确性。
2. 数据入库前应当进行质量检查,不合格的数据不得入库。
3. 数据入库应当有记录,包括数据来源、入库时间、操作人员等信息。
第六条数据更新应当及时、准确,确保数据仓库的实时性。
数据更新包括以下方式:1. 定期更新:根据数据变化周期,定期对数据进行更新。
2. 实时更新:对于关键数据,实现实时更新。
第四章数据使用与共享第七条数据使用应当遵循以下规定:1. 数据使用应当符合国家法律法规和本单位的规章制度。
2. 数据使用应当尊重数据提供者的权益,不得泄露、篡改数据。
3. 数据使用应当确保数据安全,防止数据泄露和非法使用。
第八条数据共享应当遵循以下原则:1. 遵守国家有关数据共享的规定。
2. 保障数据共享的合法性、安全性。
3. 数据共享应当明确共享范围、共享方式、共享权限等。
第一章总则第一条为确保公司数据仓库数据的安全、完整和可用,防止数据泄露、篡改、丢失等风险,特制定本制度。
第二条本制度适用于公司所有涉及数据仓库的数据收集、存储、使用、处理、传输、销毁等活动。
第三条本制度遵循以下原则:1. 隐私保护原则:对个人隐私数据进行严格保护,未经授权不得泄露。
2. 完整性原则:确保数据仓库数据的准确性和一致性。
3. 可用性原则:确保数据仓库数据在需要时能够及时、准确地提供。
4. 安全性原则:采取有效措施,防止数据泄露、篡改、丢失等风险。
第二章数据分类与分级第四条公司数据仓库数据分为以下几类:1. 公开数据:指对内对外公开的数据,如公司年报、产品介绍等。
2. 内部数据:指公司内部使用的数据,如员工信息、财务数据等。
3. 高级内部数据:指涉及公司核心业务、技术秘密的数据。
第五条公司数据仓库数据分级如下:1. 一级数据:涉及公司核心业务、技术秘密,对数据安全要求极高的数据。
2. 二级数据:涉及公司内部使用的数据,对数据安全要求较高的数据。
3. 三级数据:涉及公司公开数据,对数据安全要求较低的数据。
第三章数据安全责任第六条公司董事会对数据安全负有最终责任。
第七条公司高层管理人员对数据安全方针和政策负责,并由数据安全团队负责执行与管理数据安全。
第八条数据安全团队工作职责:1. 制定与颁布数据安全政策和规程。
2. 定期开展数据安全教育和训练。
3. 监测和识别数据安全风险。
4. 负责数据安全事件的调查和处理。
第九条所有公司员工应遵守数据安全制度,将数据安全作为工作的重中之重。
第四章数据收集与存储第十条数据收集应遵循以下原则:1. 合法性原则:收集数据应合法合规,不得侵犯他人合法权益。
2. 诚信原则:收集数据应诚实守信,不得虚构、篡改数据。
第十一条数据存储应遵循以下要求:1. 选用安全可靠的数据存储设备。
2. 对数据进行加密存储,防止数据泄露。
3. 定期对数据进行备份,确保数据安全。
第五章数据使用与处理第十二条数据使用应遵循以下原则:1. 依法使用原则:使用数据应符合法律法规的要求。
数据仓库与数据分析第一、二、三章一、数据处理的类型:1、操作型处理:操作型处理主要完成数据的收集、整理、存储、查询和增、删改操作等,主要由一般工作人员和基层管理人员完成。
2、分析型处理:分析型处理是对数据的再加工,往往要访问大量的历史数据,进行复杂的统计分析,从中获取信息,因此也称为信息型处理,主要由中高级管理人员完成。
操作型数据处理:二、联机事务处理系统(OLTP)的主要功能:对事务进行处理,快速地响应客户的服务要求,使企业的业务处理自动化。
其主要性能指标是事务处理效率和事务吞吐率,每个事务处理的时间越快越好,单位时间能完成的事务数量越多越好。
三、dbms:数据库管理系统。
Dwms:数据仓库管理系统。
OLAP:联机分析处理。
Oltp基于db,olap基于dw。
四、事务:用户定义的一个数据库操作序列,这些操作要么全做、要么全不做,是一个不可分割的工作单元。
在关系数据库中,一个事务可以是一条SQL语句、一组SQL语句或整个程序。
五、事务的ACID性质:1、原子性:事务是一个逻辑工作单元,是一个整体,是不可分割的。
2、一致性:事务在完成时,必须使所有的数据都保持一致状态。
3、隔离性:事务并发执行也能保持原子性和一致性,则是事务的隔离性。
4、持久性:一旦事务成功完成,该事务对数据库所施加的所有更新都是永久的。
六、决策支持系统(DSS):分析型数据处理的典型。
决策支持系统需要具备的基本功能是建立各种数学模型,对数据进行统计分析,得出有用的信息作为决策的依据和基础。
DSS对数据集成的迫切需要是数据仓库技术出现的最重要动因。
分析型数据处理需要访问大量的当前和历史数据,进行复杂的计算,即需要本部门的数据也会需要其他部门的数据,甚至是竞争对手的数据。
七:操作型数据和分析型数据的区别:操作型数据分析型数据细节的综合的,或提炼的当前数据历史数据可更新(可以update)不更新(不可update,但可insert)操作需求事先可知道操作需求事先不知道完全不同的生命周期生命周期符合SDLC(软件开发生命周期)对性能要求高对性能要求宽松一个时刻操作一单元一个时刻操作一集合事务驱动分析驱动面向业务处理面向分析一次操作数据量大,计算复杂一次操作数据量小,计算简单支持日常操作支持管理需求八、数据分散的原因:1、事务处理应用的分散:OLTP系统一般只需要与本部门业务有关的当前数据,没有包括企业范围内的集成应用。
教育行业教育大数据解决方案第一章:概述 (3)1.1 教育大数据的定义与意义 (3)1.2 教育大数据的发展现状 (3)1.3 教育大数据解决方案的目标与原则 (4)第二章:数据采集与整合 (4)2.1 数据采集技术 (4)2.1.1 网络爬虫技术 (4)2.1.2 数据接口技术 (4)2.1.3 物联网技术 (4)2.1.4 移动应用技术 (5)2.2 数据整合方法 (5)2.2.1 数据清洗 (5)2.2.2 数据映射 (5)2.2.3 数据关联 (5)2.2.4 数据仓库 (5)2.3 数据质量控制 (5)2.3.1 数据校验 (5)2.3.2 数据监控 (5)2.3.3 数据治理 (6)第三章:数据存储与管理 (6)3.1 数据存储技术 (6)3.1.1 关系型数据库 (6)3.1.2 非关系型数据库 (6)3.1.3 分布式存储技术 (6)3.2 数据管理策略 (6)3.2.1 数据标准化 (6)3.2.2 数据清洗 (7)3.2.3 数据整合 (7)3.2.4 数据监控 (7)3.3 数据安全与隐私保护 (7)3.3.1 数据加密 (7)3.3.2 访问控制 (7)3.3.3 数据备份与恢复 (7)3.3.4 隐私保护技术 (7)第四章:数据分析与挖掘 (7)4.1 数据分析方法 (7)4.2 数据挖掘技术 (8)4.3 教育应用案例 (8)第五章:个性化教学与评估 (9)5.1 个性化教学策略 (9)5.2 学习评估方法 (9)5.3 教学效果分析 (10)第六章:教育管理决策支持 (10)6.1 教育决策模型 (10)6.2 数据可视化技术 (10)6.3 决策效果评估 (11)第七章:教育资源共享与优化 (11)7.1 资源共享平台建设 (11)7.1.1 平台架构设计 (11)7.1.2 资源分类与标准制定 (12)7.1.3 资源共建共享机制 (12)7.1.4 平台运营与管理 (12)7.2 资源优化配置策略 (12)7.2.1 需求导向策略 (12)7.2.2 差异化配置策略 (12)7.2.3 协同发展策略 (12)7.2.4 动态调整策略 (12)7.3 教育公平与均衡发展 (13)7.3.1 提高教育资源覆盖面 (13)7.3.2 促进教育资源均衡发展 (13)7.3.3 关注弱势群体教育需求 (13)7.3.4 提升教育质量 (13)第八章:教师专业发展 (13)8.1 教师培训与成长 (13)8.2 教师评价体系 (13)8.3 教师激励与激励制度 (14)第九章:学生发展指导 (14)9.1 学生个性化发展 (14)9.1.1 个性化发展概述 (14)9.1.2 个性化发展策略 (15)9.2 学生心理健康与成长 (15)9.2.1 心理健康概述 (15)9.2.2 心理健康与成长策略 (15)9.3 学生综合素质评价 (15)9.3.1 综合素质评价概述 (15)9.3.2 综合素质评价策略 (15)第十章:教育大数据应用案例与展望 (16)10.1 国内外教育大数据应用案例 (16)10.1.1 国内教育大数据应用案例 (16)10.1.2 国外教育大数据应用案例 (16)10.2 教育大数据发展趋势 (16)10.3 面向未来的教育大数据解决方案 (17)第一章:概述1.1 教育大数据的定义与意义教育大数据是指在教育领域,通过对海量教育信息资源的收集、整合、分析与挖掘,形成具有教育决策支持、教育管理与教育服务功能的数据集合。
第一章总则第一条为规范公开数据仓库的管理,确保数据质量、安全与合规,提高数据利用率,根据国家有关法律法规和行业标准,结合本地区实际情况,特制定本制度。
第二条本制度适用于本地区所有公开数据仓库的建设、维护、使用和管理。
第三条公开数据仓库应遵循以下原则:1. 合法性:数据收集、存储和使用必须符合国家法律法规。
2. 安全性:确保数据安全,防止数据泄露、篡改和破坏。
3. 完整性:保证数据真实、准确、完整。
4. 可用性:确保数据易于获取、查询和使用。
5. 可维护性:便于数据仓库的更新、升级和维护。
第二章数据收集与存储第四条数据收集:1. 收集数据应遵循合法性、必要性、最小化原则。
2. 收集数据应明确数据来源、收集目的、数据范围和数据处理方式。
3. 收集数据应经数据提供方同意,并签订数据共享协议。
第五条数据存储:1. 数据存储应选择符合国家标准的存储设备和技术。
2. 数据存储应保证数据安全,防止数据泄露、篡改和破坏。
3. 数据存储应按照数据类型、数据来源、数据时效等属性进行分类管理。
第三章数据治理与维护第六条数据治理:1. 建立数据治理组织,明确各部门职责,制定数据治理策略。
2. 制定数据质量标准,对数据进行定期检查和评估。
3. 对数据进行清洗、转换、整合,确保数据质量。
第七条数据维护:1. 定期检查数据仓库运行状态,确保系统稳定、可靠。
2. 及时更新数据,确保数据时效性。
3. 定期备份数据,防止数据丢失。
第四章数据开放与共享第八条数据开放:1. 对符合开放条件的数据,按照国家规定进行公开。
2. 公开数据应确保数据真实、准确、完整。
3. 公开数据应便于用户查询、下载和使用。
第九条数据共享:1. 建立数据共享机制,明确共享范围、共享方式和共享责任。
2. 数据共享应遵循合法性、必要性、最小化原则。
3. 数据共享应签订数据共享协议,明确双方权利和义务。
第五章安全与保密第十条安全保障:1. 建立数据安全管理制度,明确数据安全责任。
第1章数据仓库的概念与体系结构1.数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2.元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据元数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3.数据处理通常分成两大类:联机事务处理OLTP和联机分析处理OLAP。
4.多维分析是指对以“维”形式组织起来的数据(多维数据集)采取切片(Slice)、切块(dice)、钻取(Drill-down 和Roll-up 等)和旋转(pivot)等各种分析动作,以求剖析数据,使用户能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5. ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。
6.数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储与管理和数据表现等。
7.数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集市、依赖型数据集市和操作型数据存储、逻辑型数据集市和实时数据仓库。
8.操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。
9.“实时数据仓库”意味着源数据系统、决策支持服务和数据仓库之间以一个接近实时的速度交换数据和业务规则。
10.从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以营运导向为主、以实时数据仓库和自动决策为主。
11.什么是数据仓库?数据仓库的特点主要有哪些?答:数据仓库就是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,通常用于辅助决策支持。
数据仓库的特点包含以下几个方面:(1)面向主题。