回转式空气预热器结构及特点ppt课件
- 格式:ppt
- 大小:10.01 MB
- 文档页数:57
回转式空气预热器一. 作用空予器是利用锅炉尾部烟气热量加热燃烧所需空气的一种热交换装置。
空预器可以进一步降低排烟温度,减少排烟热损失;同时提高燃烧所需空气温度,改善燃料着火和燃烧条件,降低各项不完全燃烧损失,提高锅炉机组热效率等。
二. 原理1.本空气预热器型号LAP8650/1900是根据美国ABB-CE预热器公司的技术进行设计和制造。
这种三分仓回转式空气预热器是一种以逆流方式运行的再生式热交换器。
转子直径8650毫米,蓄热元件高度自上而下分别为800、800和300毫米,冷段300毫米,蓄热元件为低合金耐腐蚀的考登钢,其余热段蓄热元件为碳钢。
预热器左右两半部份分别为烟气和空气通道,空气侧又分为一次风道及二次风道。
当烟气流经转子时烟气将热量释放给蓄热元件,烟气温度降低;当受热后的蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高。
如此周而复始地循环,实现烟气与空气地热交换。
2.装在壳体上地驱动装置通过转子外围地围带,使转子以1.28转/分的转速旋转。
为了防止空气向烟气侧泄漏,在转子的上、下端半径方向,外侧轴线方向以及圆周方向分别设有径向、轴向及旁路密封装置,此密封装置采用双密封结构以减小漏风。
此外,预热器上还设有火灾监测消防及清洗系统、吹灰装置、润滑及控制等设备。
三. 空气预热器技术特性见下表四. 空气预热器主要构件及性能1.空气预热器为回转再生式三分仓结构,逆流,转动轴垂直,具有气密保温外壳,用以从烟气流中有效地回收热量。
设计时应考虑预热器低温端的防腐问题。
回转式空气预热器的设计应满足二次风和一次风的总需求,以保证在燃烧劣质煤和所有负荷情况下,达到所需要的风温。
每台空气预热器应包括一套带二台电机的驱动装置:-一台用于正常运行;-一台用于事故运行,或用于冲洗过程。
每台空气预热器均配有用于火焰检测的热电偶、防火保护、冲洗通道和吹灰器。
空气预热器的外壳上配有门孔,以便在不拆下预热器的情况下检查和更换冷端部件。
回转式空气预热器密封选型摘要:本文分析回转式空预器的漏风原因及对机组经济性的影响,介绍空预器的密封措施,提出密封方式的推荐性意见。
关键词:回转式空气预热器;漏风;密封1.回转式空气预热器结构回转式空气预热器是一种以逆流方式运行的再生式热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形仓格内,转子以约1转/分钟的转速旋转,其左右两侧分别为烟气和空气通道;空气侧又分为一次风通道及二次风通道。
当烟气流经转子时,烟气将热量释放给蓄热元件,烟气温度降低;当蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高。
如此周而复始地循环,实现烟气与空气的热交换。
2.回转式空预器漏风的原因及对经济性的影响2.1回转式空预器漏风的原因回转式空预器产生漏风的主要原因是由于转子热态的“蘑菇型”变形造成的转子表面和扇形板表面的泄漏面积加大引起漏风量增加,另外由于转子长期运行产生径向椭圆变形造成轴向漏风增加。
由于转子的不断转动,转子上表面持续受到热风侧的高温烟气的加热,温度较高;而转子的下表面也连续受到冷风侧一、二次冷风的冷却,温度较低。
使得转子的上部热膨胀大于下部;由于转子下端受到推力轴承、中心驱动装置、支撑横梁的支撑作用,使转子在受热后的热态变形为向下部膨胀。
这种膨胀结果使得转子中心的上表面较冷态时升高,并且由于转子上部的径向膨胀大于下部,使得转子的上部受到的热膨胀径向力矩大于转子下部。
致使转子以下部为原点发生向下、向外的翻转变形。
加之转子的自重力矩,更加速了转子的这种行似“蘑菇型”的热态变形。
“蘑菇型”的热态变形中,空预器转子的外周发生向下的沉降现象,而转子中心发生隆起。
故热态时转子下部的三角形漏风间隙和转子圆周的轴向漏风间隙变得比冷态时小,而转子上部的漏风间隙变得比冷态时大;而且随着锅炉负荷的升高,空预器转子换热量的增加,上述“蘑菇状”变形就越明显。
2.2漏风量计算及对机组运行经济性的影响影响漏风的主要因素是漏风系数、间隙面积、空气侧与烟气侧之间的压力差。
科技成果——回转式空气预热器接触式密封技术适用范围电力行业所有使用回转式空气预热器的发电机组行业现状在发电行业,传统空气预热器是采用刚性有间隙密封技术,在动静间保持一个最小间隙,达到漏风最小。
由于空气预热器存在蘑菇状变形问题,而且变形随负荷环境温度不断发生变化,很难达到最佳的动静之间的间隙值,漏风率一般在10%左右。
目前该技术可实现节能量36万tce/a,减排约95万tCO2/a。
成果简介1、技术原理回转式空气预热器是一种传动机构,泄漏无法避免。
但过大的泄漏首先会影响锅炉运行的经济性,增加了风机的功率消耗,降低机组出力;其次漏风过大加快了空气预热器冷端腐蚀。
统计表明,对于300MW的机组,空预器漏风率每增加1%,将使机组的综合煤耗增加0.2-0.6g/kWh。
改造后新型密封结构是对传统的非接触式密封的颠覆,它采用柔性金属密封簇直接与空预器的密封板进行接触,在各种运行工况下这种直接接触式的密封技术都可将密封间隙减小至零。
2、关键技术新型的空预器密封结构,称为接触式全向柔性密封技术,它利用的是迷宫密封的原理,将运动部件和静止部件之间的间隙完全覆盖。
新型的密封结构钢丝具有良好的弹性和柔性,可以根据不同负荷下密封间隙的变化改变变形量,并向四周散开,阻止空气向各个方向渗漏,实现了在轴向、径向和环向上的全方位密封,将空预器在各个方向的漏风降到最低。
3、工艺流程这种全新的密封结构具有极大的灵活性和可行性,可适用于不同大小、不同结构的回转式空预器。
可以根据现场的位置和漏风情况安装在空预器轴向、径向、环向任一方向,或者是在三个方向同时安装,安装后的空预器漏风率得到极大减小,且结构简单投资小。
新型密封结构的安装可根据现场实际情况采用焊接、紧固螺丝、或用三角板加固等方法安装在空预器的径向隔板、转子膜片或是环向密封面上。
主要技术指标以一台1000MW机组为例,并根据上文中对节能减排能力的计算结果,该技术相关行业特性指标包括:节煤量:7217.7t/a;降低厂用电耗量:2248.5万kWh/a;降低CO2排放量:19055t/a。