陕西中考数学(副题)含答案解析版
- 格式:doc
- 大小:4.22 MB
- 文档页数:9
2013年陕西省中考数学副题一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是正确的)1. 23-的倒数是 ( )A. 32-B. 32C. 23-D.232. 如图,将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是 ( )A B C D3. 若0a ≠,则下列运算正确的是 ( ) A. 32a a a -= B. 326a a a ⋅= C. 325a a a += D. 32a a a ÷=4. 如图,AB ∥CD, AE 平分∠CAB 交CD 于点E 。
若∠C=50°,则∠AED 的大小为 ( ) A. 55° B. 105° C. 65° D. 115°5.则这十一双运动鞋尺码的众数和中位数分别为 ( ) A. 40,41 B. 41,41 C. 41, 42 D. 42,43 6. 若一个正比例函数的图象经过点(-3,2),则这个图象一定也经过点 ( ) A. (2,-3) B. (32,-1) C. (-1,1) D. (2,-2)7. 如图,在菱形ABCD 中,∠ABC=60°,AB=4. 若点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,连接EF 、FG 、GH 、HE 则四边形EFGH 的面积为 ( )A.8B.C.D. 68.如果点(,)A m n 、(1,2)B m n ++均在一次函数(0)y kx b k =+≠的图像上,那么k 的值为 ( ) A. 2 B. 1 C. -1 D. -29. 在矩形ABCD 中,AB=3.4,BC=5,以BC 为直径作半圆O ,点P 是半圆O 上的一点,若PB=4,则点P 到AD 的距离为 ( ) A.45 B. 1 C. 65 D. 8510. 若一个二次函数243(0)y ax ax a =-+≠的图象经过两点1(2,)A m y +、2(2,)B m y -,则下列关系正确的是E DCBA B第4题( )A.12y y >B. 12y y <C. 12y y =D. 12y y ≥ 二、填空题(每小题3分,共18分) 11.221,,7π-这四个数中,无理数有 个 12. 不等式123x x -+>的正整数解为 。
陕西省中考数学试题(含答案解析)(共五则范文)第一篇:陕西省中考数学试题(含答案解析)2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D. 2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△A BC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O 为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3 D.2 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=. 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:16.(5分)解分式方程:1.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B 处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN. 21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长. 24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l 上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y (m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷答案解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B. 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 【解答】解:990870=9.9087×105,故选:A. 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 【解答】解:(x2y)3.故选:C. 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【解答】解:由勾股定理得:AC,∵S△ABC=3×33.5,∴,∴,∴BD,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A. B. C.3 D.2 【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EFBC=4,∵EF∥AB,AB∥C G,E是边BC的中点,∴F 是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC 的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODCBDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m >1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,∴该抛物线顶点坐标是(,m),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),∵m>1,∴m﹣1>0,∴0,∵m31<0,∴点(,m3)在第四象限;故选:D.二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)= 1 .【解答】解:原式=22﹣()2 =4﹣3 =1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是144°.【解答】解:因为五边形ABCDE是正五边形,所以∠C108°,BC=DC,所以∠BDC36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为﹣1 .【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y (k≠0)的图象经过其中两点,∴反比例函数y(k≠0)的图象经过B (3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD 上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 .【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF2.故答案为:2.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3. 16.(5分)解分式方程:1.【解答】解:方程1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x,经检验x是分式方程的解.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE. 19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg,众数是1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元. 20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M 的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C 三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k,∴y;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y,∴;(2)当y=80时,80,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果. 22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠A DB,∴AD8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF,∴EFAF =12,∴CE=CF+EF=12+4.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l 上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x ﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x =0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P (m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF .问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C 在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m 时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BFCF,∵PB=PF+BF,∴PB=CF+BF,即:4CFCF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),在Rt△ACB中,AC=BCAB70=35,∴S△ACBAC2(35)2=1225,∴y =S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B50,∵S△A′PBA′B•PFPB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.第二篇:2019年陕西省中考数学试题(含解析)2019年中考数学真题(陕西省)一、选择题(共10小题,每小题3分,共30分)1.计算:()A.1B.0C.3D.2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()3.如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.若正比例函数的图象经过点O(a-1,4),则a的值为()A.-1B.0C.1D.25.下列计算正确的是()A.B.C.D.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。
z2022年陕西省中考数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共8页,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B ).3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔搭黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题)一、选择题共8小题,每小题只有一个选项是符合题意的)1. 的相反数是( ) A.B. 37C. D.2. 如图,.若,则的大小为( )A.B. C. D.3. 计算:( )A.B.C.D.4. 在下列条件中,能够判定为矩形的是( ) A.B.C.D.5. 如图,是的高,若,,则边的长为( )37-37-137-137,AB CD BC EF !!158Ð=°2Ð120°122°132°148°()2323x x y ×-=336x y 236x y -336x y -3318x y ABCD !AB AC =AC BD ^AB AD =AC BD =AD ABC !26BD CD ==tan 2C Ð=ABzA.B. C.D.6. 在同一平面直角坐标系中,直线与相交于点,则关于x ,y 方程组的解为( ) A.B.C. D.7. 如图,内接于⊙,连接,则( )A. B.C. D.8. 已知二次函数y =x 2−2x −3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A.B.C.D.第二部分(非选择题)二、填空题(共5小题)9. 计算:______.10. 实数a ,b 在数轴上对应点的位置如图所示,则a ______.(填“>”“=”或“<”)11. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推4y x =-+2y x m =+(3,)P n 的4020x y x y m +-=ìí-+=î15x y =-ìí=î13x y =ìí=î31x y =ìí=î95x y =ìí=-îABC !,46O C Ð=°OA OAB Ð=44°45°54°67°123y y y <<213y y y <<312y y y <<231y y y <<3-=b -z广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E 为边的黄金分割点,即.已知为2米,则线段的长为______米.12. 已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数的图象上,则这个反比例函数的表达式为_______. 13. 如图,在菱形中,.若M 、N 分别是边上的动点,且,作,垂足分别为E 、F ,则的值为______.三、解答题(共13小题,解答应写出过程)14 计算:. 15. 解不等式组:16. 化简:. 17. 如图,已知是的一个外角.请用尺规作图法,求作射线,使.(保留作图痕迹,不写作法)18. 如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .EF ABCD AB 2BE AE AB =×ABBE 12y x =ABCD 4,7AB BD ==AD BC 、AM BN =,MEBD NF BD ^^ME NF+15(3)||7æö´-+-ç÷èø()21531x x x +>-ìí--î212111a a a a +æö+÷ç÷--èø,,ABC CA CB ACD =Ð△ABC !CP CP AB!z19. 如图,的顶点坐标分别为.将平移后得到,且点A 的对应点是,点B 、C 的对应点分别是.(1)点A 、之间的距离是__________;(2)请在图中画出.20. 有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg ,6kg ,7kg ,7kg ,8kg .现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg 的概率是______;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg 的概率.21. 小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ⊥OD ,EF ⊥FG .已知小明的身高EF 为1.8米,求旗杆的高AB.ABC !(23)(30)(11)A B C ----,,,,,ABC !A B C ¢¢¢V (23)A ¢,B C ¢¢,A ¢A B C ¢¢¢Vz.com22. 如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x …0 2 … 输出y…2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________; (2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.23. 某校为了了解本校学生“上周内做家务劳动所用时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表: 组别“劳动时间”t /分钟频数组内学生的平均“劳动时间”/分钟6-4-2-6-2-的zA8 50B 16 75C40 105D36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在__________组; (2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24. 如图,是⊙的直径,是⊙的切线,、是⊙的弦,且,垂足为E ,连接并延长,交于点P .(1)求证:;(2)若⊙的半径,求线段的长.25. 现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平路面,以O 为坐标原点,以所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P 到的距离为.60t <6090t £<90120t £<120t ³AB O AM O AC CD O CD AB ^BD AM CAB APB Ð=ÐO 5,8r AC ==PD OE 的OE 10m OE =OE 9mz(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到的距离均为,求点A 、B 的坐标. 26. 问题提出(1)如图1,是等边的中线,点P 在的延长线上,且,则的度数为__________. 问题探究(2)如图2,在中,.过点A 作,且,过点P 作直线,分别交于点O 、E ,求四边形的面积. 问题解决(3)如图3,现有一块型板材,为钝角,.工人师傅想用这块板材裁出一个型部件,并要求.工人师傅在这块板材上的作法如下:①以点C 圆心,以长为半径画弧,交于点D ,连接; ②作的垂直平分线l ,与于点E ;③以点A 为圆心,以长为半径画弧,交直线l 于点P ,连接,得. 请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论.OE 6m AD ABC !AD AP AC =APC ÐABC !6,120CA CB C ==Ð=°AP BC ∥AP BC =l BC ^AB BC 、OECA ABC !ACB Ð45BAC Ð=°ABP △15,BAP AP AC Ð=°=为CA AB CD CD CD AC AP BP 、ABP △ABP △2022年陕西省中考数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共8页,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B ).3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔搭黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题)一、选择题共8小题,每小题只有一个选项是符合题意的)1. 的相反数是( ) A. B. 37 C. D.【答案】B 【解析】【分析】根据相反数的定义解答即可. 【详解】-37的相反数是37. 故选:B .【点睛】本题主要考查了相反数,掌握定义是解题的关键.即只有符号不同的两个数,称其中一个是另一个的相反数.2. 如图,.若,则的大小为( )A. B. C. D.【答案】B 【解析】【分析】根据两直线平行线,内错角相等,求出∠1=∠C =58°,再利用两直线平行线,同旁内角互补即可求出∠CGE 的大小,然后利用对顶角性质即可求解.37-37-137-137,AB CD BC EF !!158Ð=°2Ð120°122°132°148°z【详解】解:设CD 与EF 交于G , ∵AB ∥CD ∴∠1=∠C =58° ∵BC ∥FE ,∴∠C +∠CGE =180°, ∴∠CGE =180°-58°=122°,∴∠2=∠CGE =122°, 故选:B .【点睛】本题主要考查了平行线的性质,掌握平行线性质是解题关键 3. 计算:( )A.B.C.D.【答案】C 【解析】【分析】利用单项式乘单项式的法则进行计算即可. 【详解】解:.故选:C .【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键. 4. 在下列条件中,能够判定为矩形的是( ) A.B.C.D.【答案】D 【解析】【分析】根据矩形的判定定理逐项判断即可.【详解】当AB=AC 时,不能说明是矩形,所以A 不符合题意; 当AC ⊥BD 时,是菱形,所以B 不符合题意; 当AB=AD 时,是菱形,所以C 不符合题意; 当AC=BD 时,是矩形,所以D 符合题意. 故选:D.()2323x x y ×-=336x y 236x y -336x y -3318x y ()()23233323236x x y x xy x y ×-=´-´=-×´ABCD !AB AC =AC BD ^AB AD =AC BD =ABCD !ABCD !ABCD !ABCD !z【点睛】本题主要考查了矩形的判定,掌握判定定理是解题的关键.有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形.5. 如图,是的高,若,,则边的长为( )A.B.C.D.【答案】D 【解析】【分析】先解直角求出AD ,再在直角中应用勾股定理即可求出AB . 【详解】解:∵, ∴,∵直角中,, ∴,∴直角中,由勾股定理可得,故选D .【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.6. 在同一平面直角坐标系中,直线与相交于点,则关于x ,y的方程组的解为( )A.B.C.D.【答案】C 【解析】【分析】先把点P 代入直线求出n ,再根据二元一次方程组与一次函数的关系求解即可;AD ABC !26BD CD ==tan 2C Ð=AB ABC !ABD △26BD CD ==3CD =ADC !tan 2C Ð=tan 326AD CD C =×Ð=´=ABD △AB ===4y x =-+2y x m =+(3,)P n 4020x y x y m +-=ìí-+=î15x y =-ìí=î13x y =ìí=î31x y =ìí=î95x y =ìí=-î4y x =-+z【详解】解:∵直线与直线交于点P (3,n ), ∴, ∴, ∴, ∴1=3×2+m , ∴m =-5,∴关于x ,y 的方程组的解;故选:C .【点睛】本题主要考查了一次函数的性质,二元一次方程与一次函数的关系,准确计算是解题的关键.7. 如图,内接于⊙,连接,则( )A. B.C. D.【答案】A 【解析】【分析】连接OB ,由2∠C =∠AOB ,求出∠AOB ,再根据OA =OB 即可求出∠OAB .【详解】连接OB ,如图,∵∠C =46°, ∴∠AOB =2∠C =92°,∴∠OAB +∠OBA =180°-92°=88°, ∵OA =OB , ∴∠OAB =∠OBA ,4y x =-+2y x m =+34n =-+1n =()3,1P 40250x y x y +-=ìí--=î31x y =ìí=îABC !,46O C Ð=°OA OAB Ð=44°45°54°67°z∴∠OAB =∠OBA =×88°=44°, 故选:A .【点睛】本题主要考查了圆周角定理,根据圆周角定理的出∠AOB =2∠C =92°是解答本题的关键.8. 已知二次函数y=x 2−2x −3的自变量x 1,x 2,x3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A.B.C.D.【答案】B 【解析】【分析】先求得抛物线的对称轴为直线x =1,抛物线与x 轴的交点坐标,画出草图,利用数形结合,即可求解.【详解】解:y =x 2−2x −3=(x -1)2-4, ∴对称轴为直线x =1, 令y =0,则(x -1)2-4=0, 解得x 1=-1,x 2=3,∴抛物线与x 轴的交点坐标为(-1,0),(3,0), 二次函数y =x 2−2x −3的图象如图:由图象知. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用数形结合解题是关键.第二部分(非选择题)二、填空题(共5小题)9. 计算:______.12123y y y <<213y y y <<312y y y <<231y y y <<213y y y <<3-=z【答案】 【解析】【分析】先,再计算3-5即可得到答案. 【详解】解:. 故答案为:-2.【点睛】本题主要考查了实数的运是解答本题的关键.10. 实数a ,b 在数轴上对应点的位置如图所示,则a ______.(填“>”“=”或“<”)【答案】< 【解析】【分析】根据在数轴上右边的数据大于左边的数据即可得出答案. 【详解】解:如图所示:-4<b <-3,1<a <2, ∴, ∴ . 故答案为:<.【点睛】此题主要考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键. 11. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E 为边的黄金分割点,即.已知为2米,则线段的长为______米.【答案】## 【解析】【分析】根据点E 是AB 的黄金分割点,可得,代入数值得出答案.【详解】∵点E 是AB 的黄金分割点,2-3352=-=-b -34b <-<a b <-EF ABCD AB 2BE AE AB =×ABBE 1)(1-12A EB EB E A B -==z∴.∵AB=2米, ∴米. 故答案为:).【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.12. 已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数的图象上,则这个反比例函数的表达式为_______. 【答案】y = 【解析】【分析】根据点A 与点A ′关于y 轴对称,得到A ′(2,m ),由点A ′在正比例函数的图象上,求得m 的值,再利用待定系数法求解即可. 【详解】解:∵点A 与点A ′关于y 轴对称,且A (−2,m ), ∴A ′(2,m ),∵点A ′在正比例函数的图象上, ∴m =×2, 解得:m =1, ∴A (−2,1),设这个反比例函数的表达式为y =, ∵A (−2,1) 在这个反比例函数的图象上, ∴k =-2×1=-2,∴这个反比例函数的表达式为y =, 故答案为:y =. 【点睛】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特征,解答本题的关键是明确题意,求出m 的值.13. 如图,在菱形中,.若M 、N 分别是边上动点,12A EB EB E A B -==1BE =)1-12y x =2x-12y x =12y x =12k x2x-2x-ABCD 4,7AB BD ==AD BC 、的z且,作,垂足分别为E 、F ,则的值为______.【解析】【分析】连接AC 交BD 于点O ,过点M 作MG //BD 交AC 于点G ,则可得四边形MEOG 是矩形,以及,从而得NF =AG ,ME =OG,即NR +ME =AO,运用勾股定理求出AO 的长即可.【详解】解:连接AC 交BD 于点O ,如图,∵四边形ABCD 是菱形, ∴AC ⊥BD ,BO =,AD //BC , ∴ 在Rt 中,AB =4,BO =, ∵,∴过点M 作MG //BD 交AC 于点G ,∴,AM BN =,ME BD NF BD ^^ME NF +AGM BFN D @D 1722BD =,90,ADB CBD AOD Ð=ÐÐ=°ABO D 72222AB BO AO =+2AO ==,90AMG ADB MGO MOG Ð=ÐÐ+Ð=°z∴ 又 ∴, ∴四边形MEOG 是矩形, ∴ME =OG , 又 ∴ ∴ 在和中,, ∴≌ ∴,∴故答案为. 【点睛】本题主要考查了菱形性质以及全等三角形的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.三、解答题(共13小题,解答应写出过程)14.计算:. 【答案】【解析】【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.【详解】解:【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.90,MGO MGA Ð=Ð=°,ME BD ^90MEO Ð=°,NF BD ^90,NFB Ð=°,NFB AGM Ð=ÐNFB D AGM D NFB AGM NBF AMG BN AM Ð=ÐìïÐ=Ðíï=îNFB D AGM D NF AG =2NF ME AG OG AO +=+==2的15(3)|7æö´-+-ç÷èø16-015(3)||7æö´-+-ç÷èø151=-+-16=-+z15. 解不等式组:【答案】 【解析】【分析】分别解出每个不等式的解集,再找解集的公共部分求不等式组的解集即可. 【详解】解:,解不等式①,得, 解不等式②,得,将不等式①,②的解集在数轴上表示出来∴原不等式组的解集为.【点睛】本题考查不等式组计算,准确地计算能力是解决问题的关键. 16. 化简:.【答案】 【解析】分析】分式计算先通分,再计算乘除即可.【详解】解:原式 .【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键.17. 如图,已知是的一个外角.请用尺规作图法,求作射线,使.(保留作图痕迹,不写作法)【答案】见解析()21531x x x +>-ìí--î1x ³-()21531x x x +>-ìïí--ïî①②3x >-1x ³-1x ³-的212111a a a a +æö+÷ç÷--èø1a +【211112a a a a a ++--=×-2(1)(1)12a a a a a+-=×-1a =+,,ABC CA CB ACD =Ð△ABC !CP CP AB!z【解析】【分析】作的角平分线即可. 【详解】解:如图,射线即为所求作.【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.18. 如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【答案】见解析 【解析】【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB , ∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A , ∴△CDE ≌△ABC (ASA). ∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.19. 如图,的顶点坐标分别为.将平移后得到,且点A 的对应点是,点B 、C 的对应点分别是. ACD ÐCP ABC !(23)(30)(11)A B C ----,,,,,ABC !A B C ¢¢¢V (23)A ¢,B C ¢¢,z(1)点A 、之间的距离是__________; (2)请在图中画出. 【答案】(1)4 (2)见解析 【解析】【分析】(1)由得,A 、之间的距离是2-(-2)=4; (2)根据题意找出平移规律,求出,进而画图即可. 【小问1详解】解:由得, A 、之间距离是2-(-2)=4. 故答案为:4. 【小问2详解】解:由题意,得, 如图,即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简A ¢ABC ¢¢¢V (23)A -,,(23)A ¢,A ¢103-1B C ¢¢(,),(,)(23)A -,,(23)A ¢,A ¢的103-1B C ¢¢(,),(,)A B C ¢¢¢V单,掌握平移规律是解决问题的关键.20. 有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg ,6kg ,7kg ,7kg ,8kg .现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg 的概率是______; (2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg 的概率. 【答案】(1)(2)见解析, 【解析】【分析】(1)直接根据概率公式计算;(2)先列表,展示所有20种等可能的结果数,再找出两个数字之和等于15kg 所占的结果数,再根据概率公式计算. 【小问1详解】解:所选纸箱里西瓜的重量为6kg 的概率是, 故答案为:; 【小问2详解】 解:列表如下: 第二个 第一个 6 6 7 7 86 12 13 13 14 6 12 13 13 147 13 13 14 15 7 13 13 14 15 814141515由列表可知,共有20种等可能的结果,其中两个西瓜的重量之和为15kg 的结果有4种. ∴. 【点睛】本题考查了列表法与树状图法求概率,解题的关键是利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,从而求出概率.2515252541205P ==z21. 小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ⊥OD ,EF ⊥FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米. 【解析】【分析】证明△AOD ∽△EFG ,利用相似比计算出AO 的长,再证明△BOC ∽△AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∥EG , ∴∠ADO =∠EGF . 又∵∠AOD =∠EFG =90°, ∴△AOD ∽△EFG . ∴. ∴.同理,△BOC ∽△AOD . ∴. ∴.∴AB =OA −OB =3(米). ∴旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的. 22. 如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该AO ODEF FG=1.820152.4EF OD AO FG ×´===BO OC AO OD=15161220AO OC BO OD ×´===z“函数求值机”得到的几组x 与y 的对应值.输人x …0 2 … 输出y…2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________; (2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【答案】(1)8 (2) (3) 【解析】【分析】对于(1),将x =1代入y =8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案; 对于(3),将y=0分别代入两个关系式,再求解判断即可. 【小问1详解】 当x =1时,y =8×1=8; 故答案为:8; 【小问2详解】将(-2,2),(0,6)代入,得,解得; 6-4-2-6-2-26k b =ìí=î3-y kx b =+226k b b -+=ìí=î26k b =ìí=î令,由,得,∴.(舍去) 由,得,∴. ∴输出的y 值为0时,输入的x 值为.【点睛】本题主要考查了待定系数法求一次函数关系式,理解“函数求值机”的计算过程是解题的关键.23. 某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表: (1)这100名学生的“劳动时间”的中位数落在__________组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数. 【答案】(1)C (2)112分钟 (3)912人 【解析】【分析】(1)根据中位数的定义可知中位数落在C 组; (2)根据加权平均数的公式计算即可; (3)用样本估计总体即可. 【小问1详解】解:由题意可知,100名学生的“劳动时间”的中位数是第50、51个数, 故本次调查数据的中位数落在C 组, 故答案为:C ;0y =8y x =08x =01x =<26y x =+026x =+31x =-<3-z解:(分钟), ∴这100名学生的平均“劳动时间”为112分钟; 【小问3详解】 解:∵(人), ∴估计在该校学生中,“劳动时间”不少于90分钟的有912人.【点睛】本题考查了统计的知识,解题的关键是仔细读图,并从中找到进一步解题的有关信息,难度不大.24. 如图,是⊙的直径,是⊙的切线,、是⊙的弦,且,垂足为E ,连接并延长,交于点P .(1)求证:;(2)若⊙的半径,求线段的长. 【答案】(1)见解析 (2) 【解析】【分析】(1)根据是的切线,得出.根据,可证.得出.根据同弧所对圆周角性质得出即可;(2)连接.根据直径所对圆周角性质得出,.可证.得出.根据勾股定理.再证.求出即可.【小问1详解】证明:∵是的切线, ∴. ∵ ∴,1(50875161054015036)112100x =´´+´+´+´=40361200912100+´=AB O AM O AC CD O CD AB ^BDAM CAB APB Ð=ÐO 5,8r AC ==PD 323AM O !90BAM Ð=°CD AB ^AM CD !CDB APB Ð=ÐCAB CDB Ð=ÐAD 90CDB ADC Ð+Ð=°ADC C Ð=Ð8AD AC ==6BD ==ADB PAB △∽△21005063AB PB BD ===AM O !90BAM Ð=°CD AB ^90CEA Ð=°z∴.∴. ∵, ∴. 【小问2详解】 解:如图,连接.∵为直径, ∴∠ADB =90°,∴.∵, ∴. ∴. ∵, ∴.∵∠BAP =∠BDA =90°,∠ABD =∠PBA , ∴. ∴. ∴.∴. 【点睛】本题考查圆的切线性质,直径所对圆周角性质,同弧所对圆周角性质,勾股定理,三角形相似判定与性质,掌握圆的切线性质,直径所对圆周角性质,同弧所对圆周角性质,勾股定理,三角形相似判定与性质是解题关键.25. 现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O 为坐标原点,以所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P 到的距离为.AM CD !CDB APB Ð=ÐCAB CDB Ð=ÐCAB APB Ð=ÐAD AB 90CDB ADC Ð+Ð=°90,CAB C CDB CAB Ð+Ð=°Ð=ÐADC C Ð=Ð8AD AC ==210AB r ==6BD ==ADB PAB △∽△AB BDPB AB=21005063AB PB BD ===5032633DP =-=OE OE 10m OE =OE 9mz(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到的距离均为,求点A 、B 的坐标. 【答案】(1) (2) 【解析】【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a 的值即可;(2)根据题意知,A ,B 两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而可解决问题. 【小问1详解】 依题意,顶点,设抛物线的函数表达式为, 将代入,得.解之,得. ∴抛物线的函数表达式为. 【小问2详解】 令,得. 解之,得.OE 6m 29(5)925y x =--+(5(5,6)33A B -+2(5)9y a x =-+(5,9)P 2(5)9y a x =-+(0,0)20(05)9a =-+925a =-29(5)925y x =--+6y =29(5)9625x --+=125,5x x ==+z∴. 【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键. 26. 问题提出(1)如图1,是等边的中线,点P 在的延长线上,且,则的度数为__________.问题探究(2)如图2,在中,.过点A 作,且,过点P 作直线,分别交于点O 、E ,求四边形的面积. 问题解决(3)如图3,现有一块型板材,为钝角,.工人师傅想用这块板材裁出一个型部件,并要求.工人师傅在这块板材上的作法如下:①以点C 为圆心,以长为半径画弧,交于点D ,连接; ②作的垂直平分线l ,与于点E ;③以点A 为圆心,以长为半径画弧,交直线l 于点P ,连接,得. 请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论.【答案】(1) (2(3)符合要求,理由见解析 【解析】【分析】(1)利用等腰三角形的判定及性质,结合三角形内角和,先求出即可;(5(5A B +AD ABC !AD AP AC =APC ÐABC !6,120CA CB C ==Ð=°AP BC ∥AP BC =l BC ^AB BC 、OECA ABC !ACB Ð45BAC Ð=°ABP △15,BAP AP AC Ð=°=CA AB CD CD CD AC AP BP 、ABP △ABP △75°15PCD Ð=°z(2)连接.先证明出四边形是菱形.利用菱形的性质得出,由,得出.根据,得,可求出再求出即可求解;(3)由作法,知,根据,得出.以为边,作正方形,连接.得出.根据l 是的垂直平分线,证明出为等边三角形,即可得出结论. 【小问1详解】 解:,,, ,解得:,, ,故答案为:; 【小问2详解】 解:如图1,连接.图1∵,∴四边形是菱形. ∴. ∵, ∴. ∵,∴BP ACBP 6BP AC ==120ACB Ð=°60PBE Ð=°l BC ^cos 603BE PB =×°=sin 60PE PB =×°=12ABC S BC PE =×=△OE =ABC OBE OECA S S S =-△△四边形AP AC =,45CD CA CAB =Ð=°90ACD Ð=°AC CD 、ACDF PF AF AC AP ==CD AFP !AC AP =!ACP APC \Ð=Ð2()180ACD PCD CAP Ð+Ð+Ð=°!2(60)30180PCD \´°+Ð+°=°15PCD Ð=°75ACP ACD PCD \Ð=Ð+Ð=°75APC \Ð=°75°BP ,AP BC AP BC AC ==∥ACBP 6BP AC ==120ACB Ð=°60PBE Ð=°l BC ^cos603,sin60BE PB PE PB =×°==×°=z∴∵, ∴∴. ∴. 【小问3详解】 解:符合要求. 由作法,知. ∵, ∴.如图2,以为边,作正方形,连接.图2∴. ∵l 是的垂直平分线, ∴l 是的垂直平分线. ∴.∴为等边三角形. ∴, ∴, ∴.∴裁得的型部件符合要求.【点睛】本题考查了等边三角形的性质,等腰三角形的判定及性质、三角形内角和定理、菱形的判定及性质、锐角三角函数、正方形、垂直平分线,解题的关键是要灵活运用以上知识点进行求解,涉及知识点较多,题目较难.12ABC S BC PE =×=△30ABC Ð=°tan30OE BE =×°=122OBE S BE OE =×=△2ABC OBE OECA S S S =-=△△四边形AP AC =,45CD CA CAB =Ð=°90ACD Ð=°AC CD 、ACDF PF AF AC AP ==CD AF PF PA =AFP !60FAP Ð=°30PAC Ð=°15BAP Ð=°ABP △。
2019年陕西省中考数学试卷(副卷)一、选择题(共10小题).1.﹣8的立方根是()A.2B.﹣2C.4D.﹣42.如图,是由两个大小不同的长方体组成的几何体,则该几何体的主视图为()A.B.C.D.3.如图,在△ABC中,∠A=46°,∠B=72°.若直线l∥BC,则∠1的度数为()A.117°B.120°C.118°D.128°4.A′是点A(1,2)关于x轴的对称点.若一个正比例函数的图象经过点A′,则该函数的表达式为()A.y=x B.y=2x C.y=﹣x D.y=﹣2x5.下列计算正确的是()A.3a4﹣a4=3B.(﹣5x3y2)2=10x6y4C.(x+1)(x﹣2)=x2﹣x﹣2D.(ab﹣1)2=a2b2﹣16.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°7.若直线y=kx+b(k≠0)经过点A(2,﹣3),且与y轴的交点在x轴上方,则k的取值范围是()A.k>B.k>﹣C.k<﹣D.k<8.如图,在矩形ABCD中,AB=6,BC=8,过矩形的对称中心O的直线EF,分别与AD、BC交于点E、F,且FC=2.若H为OE的中点,连接BH并延长,与AD交于点G,则BG的长为()A.8B.C.3D.29.如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在上.若∠AOD=∠BAC,则CD的长为()A.5B.6C.7D.810.在平面直角坐标系中,将抛物线y=x2﹣(a﹣2)x+a2﹣1向右平移4个单位长度,平移后的抛物线与y轴的交点为A(0,3),则平移后的抛物线的对称轴为()A.x=﹣1B.x=1C.x=﹣2D.x=2二、填空题(共4小题,每小题3分,计12分)11.比较大小:2.12.如图,正五边形ABCDE的边长为1,对角线AC、BE相交于点O,则四边形OCDE 的周长为.13.如图,在平面直角坐标系中,正方形OABC的面积为4,边OA、OC分别在x轴、y 轴上,一个反比例函数的图象经过点B.若该函数图象上的点P到y轴的距离是这个正方形边长的一半,则点P的坐标为.14.如图,O为菱形ABCD的对称中心,AB=4,∠BAD=120°.若点E、F分别在AB、BC边上,连接OE、OF,则OE+OF的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.计算:﹣2×()2+|﹣3|﹣(﹣65)0.16.解方程:﹣1=.17.如图,已知∠AOB,点M在边OA上.请用尺规作图法求作⊙M,使⊙M与边OB相切.(保留作图痕迹,不写作法)18.如图,在△ABC中,D是BC边的中点,过点D作DE∥AB,并与AC交于点E,延长DE到点F,使得EF=DE,连接AF.求证:AF∥BC.19.今年植树节,某校开展了“植树造林,从我做起”的植树活动.该校参加本次植树活动的全体学生被分成了115个植树小组,按学校要求,每个植树小组至少植树10棵.经过一天的植树活动,校团委为了了解本次植树任务的完成情况,从这115个植树小组中随机抽查了10个小组,并对这10个小组植树的棵数进行了统计,结果如下:根据以上提供的信息,解答下列问题:(1)求所统计的这组数据的中位数和平均数;(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比;(3)请你估计在本次植树活动中,该校学生共植树多少棵.20.新学期,小华和小明被选为升旗手,为了更好地完成升旗任务,他俩想利用测倾器和阳光下的影子来测量学校旗杆的高度PA.如图所示,旗杆直立于旗台上的点P处,他们的测量方法是:首先,在阳光下,小华站在旗杆影子的顶端F处,此时,量得小华的影长FG=2m,小华身高EF=1.6m;然后,在旗杆影子上的点D处,安装测倾器CD,测得旗杆顶端A的仰角为49°,量得CD=0.6m,DF=6m,旗台高BP=1.2m.已知在测量过程中,点B、D、F、G在同一水平直线上,点A、P、B在同一条直线上,AB、CD、EF均垂直于BG.求旗杆的高度PA.(参考数据:sin49°≈0.8,cos49°≈0.7,tan49°≈1.2)21.在所挂物体质量不超过25kg时,一弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,其图象如图所示.(1)求y与x之间的函数表达式及该弹簧不挂物体时的长度;(2)若该弹簧挂上一个物体后,弹簧长度为16cm,求这个物体的质量.22.从同一副扑克牌中选出7张,分为A、B两组,其中A组是三张牌,牌面数字分别为1,2,3;B组是四张牌,牌面数字分别为5,6,7,8.(1)将A组牌的背面都朝上,洗匀,随机抽出一张,求抽出的这张牌的牌面数字是3的概率;(2)小亮与小涛商定了一个游戏规则:分别将A、B两组牌的背面都朝上,洗匀,再分别从A、B两组牌中各随机抽出一张,将这两张牌的牌面数字相加,若和为偶数,则小亮获胜;若和为奇数,则小涛获胜.请用列表或画树状图的方法说明这个游戏规则对双方是否公平.23.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.24.在平面直角坐标系中,抛物线L经过点A(﹣1,0),B(3,0),C(1,﹣2).(1)求抛物线L的表达式;(2)连接AC、BC.以点D(1,2)为位似中心,画△A′B′C′,使它与△ABC位似,且相似比为2,A′、B′、C′分别是点A、B、C的对应点.试判定是否存在满足条件的点A′、B′在抛物线L上?若存在,求点A′、B′的坐标;若不存在,请说明理由.25.问题提出(1)如图①,已知直线l及l外一点A,试在直线l上确定B、C两点,使∠BAC=90°,并画出这个Rt△ABC.问题探究(2)如图②,O是边长为28的正方形ABCD的对称中心,M是BC边上的中点,连接OM.试在正方形ABCD的边上确定点N,使线段ON和OM将正方形ABCD分割成面积之比为1:6的两部分.求点N到点M的距离.问题解决(3)如图③,有一个矩形花园ABCD,AB=30m,BC=40m.根据设计要求,点E、F 在对角线BD上,且∠EAF=60°,并在四边形区域AECF内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:≈1.4,≈1.7)参考答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣8的立方根是()A.2B.﹣2C.4D.﹣4【分析】根据立方根的定义即可求出答案.解:﹣8的立方根为﹣2,故选:B.2.如图,是由两个大小不同的长方体组成的几何体,则该几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.解:该几何体的主视图为:.故选:A.3.如图,在△ABC中,∠A=46°,∠B=72°.若直线l∥BC,则∠1的度数为()A.117°B.120°C.118°D.128°【分析】由平行线的性质,得∠2与∠B的关系,再利用三角形的外角和内角的关系得结论.解:∵直线l∥BC,∴∠2=∠B=72°.∴∠1=∠2+∠A=72°+46°=118°.故选:C.4.A′是点A(1,2)关于x轴的对称点.若一个正比例函数的图象经过点A′,则该函数的表达式为()A.y=x B.y=2x C.y=﹣x D.y=﹣2x【分析】先求得A′的坐标,然后设该正比例函数的解析式为y=kx(k≠0),再把点A′的坐标代入求出k的值即可.解:∵A′是点A(1,2)关于x轴的对称点.∴A′(1,﹣2),设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点A′(1,﹣2),∴﹣2=k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:D.5.下列计算正确的是()A.3a4﹣a4=3B.(﹣5x3y2)2=10x6y4C.(x+1)(x﹣2)=x2﹣x﹣2D.(ab﹣1)2=a2b2﹣1【分析】各项计算得到结果,即可作出判断.解:A、原式=2a4,不符合题意;B、原式=25x6y4,不符合题意;C、原式=x2﹣2x+x﹣2=x2﹣x﹣2,符合题意;D、原式=a2b2﹣2ab+1,不符合题意.故选:C.6.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【分析】由直角三角形斜边上的中线性质得出BE=AC=AE,由等腰三角形的性质得出∠BAE=∠ABE=38°,由角平分线定义得出∠BAD=19°,由三角形的外角性质得出∠BOF=57°,由直角三角形的性质得出答案.解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=AC=AE,∴∠BAC=∠ABE=38°,∵AD平分∠BAC,∴∠BAF=∠BAC=19°,∴∠BOF=∠BAD+∠ABE=19°+38°=57°,∵BF⊥AD,∴∠BFO=90°,∴∠EBF=∠BFO﹣∠BOF=90°﹣57°=33°;故选:B.7.若直线y=kx+b(k≠0)经过点A(2,﹣3),且与y轴的交点在x轴上方,则k的取值范围是()A.k>B.k>﹣C.k<﹣D.k<【分析】直线y=kx+b(k≠0)与y轴交于点(0,b),依据直线y=kx+b(k≠0)经过点A(2,﹣3),即可得出b=﹣3﹣2k,再根据直线y=kx+b(k≠0)与y轴的交点在x 轴上方,即可得到k的取值范围.解:直线y=kx+b(k≠0)中,令x=0,则y=b,∴直线y=kx+b(k≠0)与y轴交于点(0,b),又∵直线y=kx+b(k≠0)经过点A(2,﹣3),∴﹣3=2k+b,∴b=﹣3﹣2k,又∵直线y=kx+b(k≠0)与y轴的交点在x轴上方,∴b>0,即﹣3﹣2k>0,解得k<,故选:C.8.如图,在矩形ABCD中,AB=6,BC=8,过矩形的对称中心O的直线EF,分别与AD、BC交于点E、F,且FC=2.若H为OE的中点,连接BH并延长,与AD交于点G,则BG的长为()A.8B.C.3D.2【分析】由矩形的中心对称性质可得AE=FC=2,OE=OF,由矩形的性质可得AD∥BC,即EG∥BF,从而可判定△EHG∽△FHB,根据相似三角形的性质可得比例式,将相关线段的长代入计算可得AG的长,而AB=6,则可由勾股定理求得BG的长.解:∵在矩形ABCD中,直线EF过矩形的对称中心O,∴EF把矩形分割成的两部分图形一样,∴AE=FC=2,OE=OF,∵H为OE的中点,∴HE=OH,∴HF=3EH,∵四边形ABCD为矩形,∴AD∥BC,即EG∥BF,∴△EHG∽△FHB,∴==,∵BF=BC﹣FC=8﹣2=6,∴EG=2,∴AG=4,∵AB=6,∴由勾股定理得:BG===2.故选:D.9.如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在上.若∠AOD=∠BAC,则CD的长为()A.5B.6C.7D.8【分析】连接BD,证得∠ACD+∠ACB=90°,即∠BCD=90°,得出BD为⊙O的直径,由勾股定理可求出答案.【解答】解:连接BD,∵AB=AC,∴∠ABC=∠ACB,∴∠BAC+2∠ACB=180°,∵∠BAC=∠AOD,∴∠AOD+2∠ACB=180°,∵∠AOD=2∠ACD,∴2∠ACD+2∠ACB=180°,∴∠ACD+∠ACB=90°,即∠BCD=90°,∴BD为⊙O的直径,∴BD=10,∴CD===6,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(a﹣2)x+a2﹣1向右平移4个单位长度,平移后的抛物线与y轴的交点为A(0,3),则平移后的抛物线的对称轴为()A.x=﹣1B.x=1C.x=﹣2D.x=2【分析】先得到抛物线的顶点坐标,进而求得平移后的顶点坐标,得到平移后的解析式,根据题意得到关于a的方程解方程求得a的值,即可对称轴.解:∵抛物线y=x2﹣(a﹣2)x+a2﹣1=(x﹣)2+a2﹣1﹣,∴顶点为(,a2﹣1﹣),将抛物线y=x2﹣(a﹣2)x+a2﹣1向右平移4个单位长度,平移后的顶点为(+4,a2﹣1﹣),∴平移后的抛物线为y=(x﹣﹣4)2+a2﹣1﹣,∵移后的抛物线与y轴的交点为A(0,3),∴3=(0﹣﹣4)2+a2﹣1﹣,解得a=﹣2,∴+4=2,∴平移后的抛物线的对称轴为直线x=2,故选:D.二、填空题(共4小题,每小题3分,计12分)11.比较大小:<2.【分析】因为是两个无理数比较大小,所以应把根号外的数整理到根号内再进行比较.解:∵3=,2=,27<28,∴<2.故结果为:<.12.如图,正五边形ABCDE的边长为1,对角线AC、BE相交于点O,则四边形OCDE 的周长为4.【分析】根据正五边形的性质证得四边形OCDE为菱形,然后求得菱形的周长即可.解:∵五边形ABCDE是正五边形,∴CD=DE=AB=1,∠BAE=∠BCD=∠D=×(5﹣2)×180°=108°,∠BAO=∠BCA=∠ABE=∠AEB=×(180°﹣108°)=36°,∴∠BED=108°﹣36°=72°,∴∠D+∠BED=180°,∴BE∥CD;同理可证DE∥AC,∴四边形DEOC为平行四边形,而DE=DC,∴四边形CDEO是菱形,∵正五边形的边长为1,∴CD=DE=1,∴四边形OCDE的周长为4,故答案为:4.13.如图,在平面直角坐标系中,正方形OABC的面积为4,边OA、OC分别在x轴、y轴上,一个反比例函数的图象经过点B.若该函数图象上的点P到y轴的距离是这个正方形边长的一半,则点P的坐标为(1,4)或(﹣1,﹣4).【分析】先根据正方形的面积公式求得正方形的边长,进而得B点坐标,用待定系数法求得反比例函数的解析式,根据题目条件求得P点的横坐标,进而求得P点坐标.解:∵正方形OABC的面积为4,∴OA=AB=BC=OC=2,∴B(2,2),设反比例函数的解析式为y=,∴k=2×2=4,∵该函数图象上的点P到y轴的距离是这个正方形边长的一半,∴点P的横坐标为:±1,∴P点的坐标为P(1,4)或P(﹣1,﹣4),故答案为:(1,4)或(﹣1,﹣4).14.如图,O为菱形ABCD的对称中心,AB=4,∠BAD=120°.若点E、F分别在AB、BC边上,连接OE、OF,则OE+OF的最小值为2.【分析】连接AC,证明△ABC是等边三角形,根据垂线段最短,分别求出OE,OF的最小值即可解决问题.解:连接AC.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,AD∥BC,∴∠DAB+∠B=180°,∵∠DAB=120°,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∵OA=OC=2,根据垂线段最短可知,当OE⊥AB,OF⊥BC时,OE+OF的值最小,此时OE=OA•sin60°=,OF=OC•sin60°=,∴OE+OF的最小值为2.故答案为2.三、解答题(共11小题,计78分.解答应写出过程)15.计算:﹣2×()2+|﹣3|﹣(﹣65)0.【分析】直接利用绝对值的性质、零指数幂的性质、二次根式的性质分别化简得出答案.解:原式=﹣2×3+3﹣﹣1=﹣6+3﹣﹣1=﹣4﹣.16.解方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:5x﹣8﹣(x2﹣9)=(3﹣x)(x﹣3),去括号得:5x﹣8﹣x2+9=﹣x2+6x﹣9,移项合并得:﹣x=﹣10,解得:x=10,经检验,x=10是原方程的根.17.如图,已知∠AOB,点M在边OA上.请用尺规作图法求作⊙M,使⊙M与边OB相切.(保留作图痕迹,不写作法)【分析】过点M作BC的垂线交OB于C,然后以M点为圆心,MC为半径作圆即可.解:如图,⊙M即为所求.18.如图,在△ABC中,D是BC边的中点,过点D作DE∥AB,并与AC交于点E,延长DE到点F,使得EF=DE,连接AF.求证:AF∥BC.【分析】由平行线分线段成比例可得AE=EC,由“SAS”可证△AEF≌△CED,可得∠F=∠EDC,可证AF∥BC.【解答】证明:∵D为BC的中点,∴BD=DC,∵DE∥AB,∴=1,∴AE=EC,又∵EF=DE,∠AEF=∠CED,∴△AEF≌△CED(SAS)∴∠F=∠EDC,∴AF∥BC.19.今年植树节,某校开展了“植树造林,从我做起”的植树活动.该校参加本次植树活动的全体学生被分成了115个植树小组,按学校要求,每个植树小组至少植树10棵.经过一天的植树活动,校团委为了了解本次植树任务的完成情况,从这115个植树小组中随机抽查了10个小组,并对这10个小组植树的棵数进行了统计,结果如下:根据以上提供的信息,解答下列问题:(1)求所统计的这组数据的中位数和平均数;(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比;(3)请你估计在本次植树活动中,该校学生共植树多少棵.【分析】(1)根据中位数和平均数的定义即可直接求解;(2)利用抽查的这10个小组中完成本次植树任务的小组个数除以10即可求得完成本次植树任务的小组所占的百分比;(3)用平均数乘植树小组的个数115即可.解:(1)∵=10.5(棵);x==10.6(棵).∴所统计的这组数据的中位数为10.5棵,平均数为10.6棵.(2)∵×100%=90%.∴在抽查的10个小组中,90%的小组完成了植树任务.(3)∵10.6×115=1219(棵).∴估计在本次植树活动中,该校学生共植树1219棵.20.新学期,小华和小明被选为升旗手,为了更好地完成升旗任务,他俩想利用测倾器和阳光下的影子来测量学校旗杆的高度PA.如图所示,旗杆直立于旗台上的点P处,他们的测量方法是:首先,在阳光下,小华站在旗杆影子的顶端F处,此时,量得小华的影长FG=2m,小华身高EF=1.6m;然后,在旗杆影子上的点D处,安装测倾器CD,测得旗杆顶端A的仰角为49°,量得CD=0.6m,DF=6m,旗台高BP=1.2m.已知在测量过程中,点B、D、F、G在同一水平直线上,点A、P、B在同一条直线上,AB、CD、EF均垂直于BG.求旗杆的高度PA.(参考数据:sin49°≈0.8,cos49°≈0.7,tan49°≈1.2)【分析】过C作CH⊥AB于H,则四边形BDCH是矩形,根据矩形的性质得到CH=BD,BH=CD=0.6m,设BD=CH=x,则BF=(5+x)m,根据三角函数的定义得到AH=CH•tan49°=1.2x,求得AB=1.2x+0.6,根据相似三角形的性质即可得到结论.解:过点C作CH⊥AB于点H,如图所示:则CH=BD,BH=CD=0.6.在Rt△AHC中,tan49°=,即1.2=,∴AH=1.2BD.∴AB=AH+HB=1.2BD+0.6.连接AF、EG.由题意得:△EFG∽△ABF.∴=,即=.解得BD=10.5,∴AB=13.2.∴PA=AB﹣PB=13.2﹣1.2=12(m).∴旗杆的高度PA为12m.21.在所挂物体质量不超过25kg时,一弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,其图象如图所示.(1)求y与x之间的函数表达式及该弹簧不挂物体时的长度;(2)若该弹簧挂上一个物体后,弹簧长度为16cm,求这个物体的质量.【分析】(1)根据函数图象中的数据,可以求得y与x的函数关系式,然后令x=0求出y的值,即可得到该弹簧不挂物体时的长度;(2)将y=16代入(1)中的函数关系式,求出x的值,即可得到这个物体的质量.解:(1)设y与x的函数关系式为y=kx+b(k≠0),,解得,即y与x的函数关系式为y=x+15,令x=0,得y=15.即该弹簧不挂物体时的长度为15cm;(2)当y=16时,16=x+15.得x=5.即这个物体的质量为5kg.22.从同一副扑克牌中选出7张,分为A、B两组,其中A组是三张牌,牌面数字分别为1,2,3;B组是四张牌,牌面数字分别为5,6,7,8.(1)将A组牌的背面都朝上,洗匀,随机抽出一张,求抽出的这张牌的牌面数字是3的概率;(2)小亮与小涛商定了一个游戏规则:分别将A、B两组牌的背面都朝上,洗匀,再分别从A、B两组牌中各随机抽出一张,将这两张牌的牌面数字相加,若和为偶数,则小亮获胜;若和为奇数,则小涛获胜.请用列表或画树状图的方法说明这个游戏规则对双方是否公平.【分析】(1)直接利用概率公式求解;(2)通过列表展所有12种等可能的结果,找出两张牌的牌面数字之和为偶数的结果数与和为奇数的结果数,再加计算出小亮获胜和小涛获胜的概率,然后根据概率的大小判断该游戏规则对双方是否公平.解:(1)从A组牌中随机抽取一张,共有3种等可能结果,其中牌面数字是3的结果只有1种.P(牌面数字是3)=;(2)列表如下:A5678B167892789103891011由上表可知,共有12种等可能的结果,其中两张牌的牌面数字之和为偶数的结果有6种,和为奇数的结果有6种,∴P (小亮获胜)=,P (小涛获胜)=.∴P(小亮获胜)=P(小涛获胜),∴该游戏规则对双方是公平的.23.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解答】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=BC,CE=CD,在Rt△AOP中,OP==10,由(1)知,△AOP∽△CBD,∴==,即==,∴BC=,DC=,∴OE=,CE=,在Rt△AEC中,AC===.24.在平面直角坐标系中,抛物线L经过点A(﹣1,0),B(3,0),C(1,﹣2).(1)求抛物线L的表达式;(2)连接AC、BC.以点D(1,2)为位似中心,画△A′B′C′,使它与△ABC位似,且相似比为2,A′、B′、C′分别是点A、B、C的对应点.试判定是否存在满足条件的点A′、B′在抛物线L上?若存在,求点A′、B′的坐标;若不存在,请说明理由.【分析】(1)抛物线L经过点A(﹣1,0),B(3,0),则设L:y=a(x+1)(x﹣3),将点C的坐标代入上式即可求解;(2)分△A′B′C′在△ABC下方、△A′B′C′在△ABC上方两种情况,通过画图即可求解.解:(1)∵抛物线L经过点A(﹣1,0),B(3,0),∴设L:y=a(x+1)(x﹣3)(a≠0).又∵C(1,﹣2)在L上,∴a=.∴y=x2﹣x﹣.(2)如图,∵L:y=x2﹣x﹣,∴D(1,2)在L的对称轴x=1上.∵△A′B′C′与△ABC位似,位似中心为D(1,2),且相似比为2.①当△A′B′C′在△ABC下方时,显然,点A′、B′不会在抛物线L上;②当△A′B′C′在△ABC上方时,如上图,A′B′=2AB=8.∴点A′、B′的横坐标分别为5,﹣3.设对称轴x=1分别与AB、A′B′的交点为E、E′.由题意,可知DE=2.∴点E的对应点E′(1,6).∴点A′、B′的纵坐标均为6.∴A′(5,6),B′(﹣3,6).∵当x=5时,y=×52﹣5﹣=6.∴点A′(5,6)在抛物线L上.同理,可得B′(﹣3,6)也在抛物线L上.∴存在点A′(5,6),B′(﹣3,6)在抛物线L上.25.问题提出(1)如图①,已知直线l及l外一点A,试在直线l上确定B、C两点,使∠BAC=90°,并画出这个Rt△ABC.问题探究(2)如图②,O是边长为28的正方形ABCD的对称中心,M是BC边上的中点,连接OM.试在正方形ABCD的边上确定点N,使线段ON和OM将正方形ABCD分割成面积之比为1:6的两部分.求点N到点M的距离.问题解决(3)如图③,有一个矩形花园ABCD,AB=30m,BC=40m.根据设计要求,点E、F 在对角线BD上,且∠EAF=60°,并在四边形区域AECF内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:≈1.4,≈1.7)【分析】(1)利用辅助圆结合圆周角定理解决问题即可.(2)首先判断点N只能在线段AB或线段CD上,根据面积关系构建方程求出BN或CN即可解决问题.(3)由题意S四边形AECF=2S△AEF=2××EF•AH=24EF,可知,只有S四边形AECF最小时,按设计要求在矩形ABCD内种植红、黄两种花卉的费用最低.要使S四边形AECF最小,就需EF最短,想办法求出EF的最小值即可解决问题.解:(1)如图①所示,Rt△ABC即为所求.(只要画出一个符合要求的Rt△ABC即可);(2)如图②,∵O是正方形ABCD的对称中心,且BM=CM,∴S△BOM=×282<×282,∴点N不可能在BM上,由对称性,可知点N也不可能在MC上,显然,点N不在AD边上,∴设点N在AB边上,连接ON.由题意,得(BN+14)×14=×282,解之,得BN=2.由对称性知,当点N在CD边上时,可得CN=2.∴MN==10.(3)如图③所示,过点A作AH⊥BD于点H,在Rt△ABD中,∵∠BAD=90°,AB=30,AD=40,∴BD===50,∵•AB•AD=•BD•AH,∴AH=24,∵四边形ABCD是矩形,∴S△AEF=S△CEF,∴S四边形AECF=2S△AEF=2××EF•AH=24EF,由题意可知,只有S四边形AECF最小时,按设计要求在矩形ABCD内种植红、黄两种花卉的费用最低.要使S四边形AECF最小,就需EF最短,∵AH⊥EF,tan∠HAD=tan∠ABD=<,tan∠BAH=tan∠ADB=<,∴∠HAD<60°,∠BAH<60°,又∵∠EAF=60°,∴E、F两点分布在AH异侧.∴△AEF为锐角三角形,作其中任一锐角△AEF的外接圆⊙O,过O作OG⊥EF于点G,连接OA、OF,则EF =2GF,∠GOF=∠EAF=60°,在Rt△OGF中,OF=2OG,GF=OG,∴EF=2OG,又∵OA+OG≥AH,OA=OF=2OG,∴2OG+OG≥24,得OG≥8,∴EF=2OG≥16,∴当圆心O在AH上,即AE=AF时,EF=16,∴EH=8<18=BH,FH=8<32=HD,∴当AE=AF时,点E、F在BD上,∴S四边形AECF的最小值为24×16=384,∴384×210+(30×40﹣384)×180=216000+11520≈235584(元).∴按设计要求,完成这两种花卉的种植至少需费用约为235584元.。
2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1. 3-的倒数是( )A 3 B. 13 C. 13- D. 3-2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.3. 如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒4. 不等式()216x -≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥5. 如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( ).A. 2个B. 3个C. 4个D. 5个6. 一个正比例函数图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =-C. 13y x =D. 13y x =-7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )A. 2 B. 3 C. 52 D. 838. 已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,x…4-2-035…y …24-8-03-15-…则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象的对称轴是直线1x =第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab -=_______________.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)的11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12. 已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
2023年陕西省中考数学真题及参考答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项时符合题意的)1.计算:=-53()A .2B .2-C .8D .8-2.下列图形中,既是轴对称,又是中心对称图形的是()3.如图,AB l ∥,B A ∠=∠2.若︒=∠1081,则2∠的度数为()A .︒36B .︒46C .︒72D .︒824.计算:=⎪⎭⎫⎝⎛-⋅332216y x xy A .543y x B .543y x -C .633y x D .633y x -5.在同一平面直角坐标系中,函数ax y =和a x y +=(a 为常数,0<a )的图象可能是()6.如图,DE 是ABC ∆的中位线,点F 在DB 上,BF DF 2=.连接EF 并延长,与CB 的延长线相交于点M .若6=BC ,则线段CM 的长为()A .213B .7C .215D .87.陕西饮食文化源远流长,“老碗面”是山西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.弧AB 是☉O 的一部分,D 是弧AB 的中点,连接OD ,与弦AB 交于点C ,连接OB OA ,.已知cm AB 24=,碗深cm CD 8=,则☉O 的半径OA 为()A .cm13B .cm 16C .cm 17D .cm268.在平面直角坐标系中,二次函数m m mx x y -++=22(m 为常数)的图象经过点()60,,其对称轴在y 轴左侧,则该二次函数有()A .最大值5B .最大值415C .最小值5D .最小值415二、填空题(本大题共5小题,共15分)9.如图,在数轴上,点A 表示3,点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是.10.如图,正八边形的边长为2,对角线CD AB 、相交于点E .则线段BE 的长为.11.点E 是菱形ABCD 的对称中心,︒=∠56B ,连接AE ,则BAE ∠的度数为.12.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点F C ,均在x 轴正半轴上,点D 在边BC 上,CD BC 2=,3=AB .若点E B ,在同一反比例函数的图象上,则这个反比例函数的表达式是.13.如图,在矩形ABCD 中,43==BC AB ,.点E 在边AD上,且3=ED ,N M 、分别是边BC AB 、上的动点,且BN BM =,P 是线段CE 上的动点,连接PN PM ,.若4=+PN PM .则线段PC 的长为.三、解答题(本大题共13小题,共81分.解答应写出文字说明,证明过程或演算步骤)14.(5分)解不等式:x x 2253>-.15.(5分)计算:()31271105-+⎪⎭⎫ ⎝⎛--⨯-.16.(5分)化简:11211132+-÷⎪⎭⎫⎝⎛---a a a a a .17.(5分)如图,已知ABC ∆,︒=∠48B ,请用尺规作图法,在ABC ∆内部求作一点P 使PC PB =,且︒=∠24PBC .(保留作图痕迹,不写作法)18.(5分)如图,在ABC ∆中,︒=∠50B ,︒=∠20C .过点A 作BC AE ⊥,垂足为E ,延长EA 至点D .使AC AD =.在边AC 上截取AB AF =,连接DF .求证:CB DF =.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法,求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,公用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得cm DF 4.2=;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为︒6.26.已知爸爸的身高m CD 8.1=,小明眼睛到底面的距离m EF 6.1=,点BD F 、、在同一条直线上,FB AB FB CD FB EF ⊥⊥⊥,,.求该景观灯的高AB .(参考数据:45.06.26sin ≈︒,89.06.26cos ≈︒,50.06.26tan ≈︒)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在底面以上m 3.1处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高()m y 是其胸径()m x 的一次函数.已知这种树的胸径为m 2.0时,树高为m 20;这种树的胸径为m 28.0时,树高为m 22.(1)求y 与x 之间的函数表达式;(2)当这种树的胸径为m 3.0时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数.分组频数组内小西红柿的总个数3525<≤x 1284535<≤x n1545545<≤x 94526555<≤x 636624.(8分)如图,ABC ∆内接于☉O ,︒=∠45BAC ,过点B 作BC 的垂线,交☉O 于点D ,并与CA 的延长线交于点E ,作AC BF ⊥,垂足为M ,交☉O 于点F .(1)求证:BC BD =;(2)若☉O 的半径3=r ,6=BE ,求线段BF 的长.25.(8分)某校想将新建图书馆的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方、和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一:抛物线型拱门的跨度m ON 12=,拱高m PE 4=.其中,点N 在x 轴上,ON PE ⊥,EN OE =.方案二:抛物线型拱门的跨度m N O 8=',拱高m E P 6=''.其中,点N '在x 轴上,N O E P '⊥'',N E E O ''='.要在拱门中设置高为m 3的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD 的面积为1S ,点D A 、在抛物线上,边BC 在ON 上;方案二中,矩形框架D C B A ''''的面积为2S ,点D A ''、在抛物线上,边C B ''在N O '上.现知,小华已正确求出方案二中,当m B A 3=''时,22212m S =.请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一种,当m AB 3=时,求矩形框架ABCD 的面积1S ,并比较21S S ,的大小.26.(10分)(1)如图①,在OAB ∆中,OB OA =,︒=∠120AOB ,24=AB .若☉O 的半径为4,点P 在☉O 上,点M 在AB 上,连接PM ,求线段PM 的最小值.(2)如图②所示,五边形ABCDE 是某市工业新区的外环路,新区管委会在点B 处,点E 处是该市的一个交通枢纽.已知:︒=∠=∠=∠90AED ABC A ,m AE AB 10000==.m DE BC 6000==.根据新区的自然环境及实际需求,现要在矩形AFDE 区域内(含边界)修一个半径为m 30的圆形环道☉O ,过圆心O ,作AB OM ⊥,垂足为M ,与☉O 交于点N ,连接BN ,点P 在☉O 上,连接EP .其中,线段EP BN ,及MN 是要修的三条道路,要在所修道路EP BN ,之和最短的情况下,使所修道路MN 最短,试求此时环道☉O 的圆心O 到AB 的距离OM 的长.参考答案一、选择题题号12345678答案BCABDCAD二、填空题9.3-;10.22+;11.︒62;12.xy 18=;13.22三、解答题14.解:x x 453>-,543>-x x ,5>-x ,5-<x .15.解:原式12587258725+-=+--=-+--=.16.解:原式()()()()()()()111211121211113121111113-=-⋅--=-+⋅-++-=-+⋅⎦⎤⎢⎣⎡-++--+=a a a a a a a a a a a a a a a a a a 17.解:如图,点P 即为所求.18.证明:∵在ABC ∆中,︒=∠︒=∠2050C B ,,∴︒=∠-∠-︒=∠110180C B CAB ∵BC AE ⊥,∴︒=∠90AEC ,∴︒=∠+∠=∠110C AEC DAF .∴CABDAF ∠=∠又∵AB AF AC AD ==,,∴CAB DAF ∆≅∆∴CB DF =.19.解:(1)21(2)列表如下:由上表可知,共有16种等可能的结果,其中摸出的这两个小球上标有的数字之积是偶数的结果有7种.∴167=P .20.解:设该文具店中这种大笔记本的单价是x 元,根据题意得()62364=-+x x .解得8=x .∴该文具店中这种大笔记本的单价为8元.21.解:如图,∵FB AB FB CD ⊥⊥,,∴ABCD ∥∴FBFDAB CD =,∴AB AB CD AB FD FB 348.14.2==⋅=.过点E 作AB EF ⊥,垂足为H ,得矩形EFBH .∴6.16.1-=-====AB HB AB AH EF HB FB EH ,,.在AEH Rt ∆中,()6.125.06.16.26tan -=-=︒=AB AB AH EH .∴()6.1234-=AB AB ,∴8.4=AB .∴该景观灯的高AB 为m 8.4.22.解:(1)设()0≠+=k b kx y ,根据题意得⎩⎨⎧=+=+2228.0202.0b k b k ,解得⎩⎨⎧==1525b k .∴1525+=x y .(2)当3.0=x 时,5.22153.025=+⨯=y .∴当这种树的胸径为m 3.0时,其树高为m 5.22.23.解:(1)补全频数分布直方图如图所示;这20个数的众数为54.(2)()5036645215428201=+++⨯=x ∴这20个数的平均数是50.(3)所求总个数:1500030050=⨯.∴估计这300棵西红柿植株上小西红柿的总个数是15000个.24.(1)证明:如图,连接DC ,则︒=∠=∠45BAC BDC ∵BC BD ⊥,∴︒=∠-︒=∠4590BDC BCD ∴BDC BCD ∠=∠,∴BC BD =.(2)解:如图,∵︒=∠90DBC ,∴CD 为☉O 的直径,∴62==r CD ∴2345sin 6sin =︒=∠⋅=BDC CD BC .∴()632362222=+=+=BC BE EC ∵︒=∠=∠90EBC BMC ,BCM BCM ∠=∠,∴ECB BCM ∆∆~,∴CBCMEB BM EC BC ==.∴()()66323326362322====⨯=⋅=EC BC CM EC EB BC BM ,.连接CF ,则︒=∠=∠45BAC F ,∴︒=∠45MCF ,∴6==MC MF .∴632+=+=MF BM BF .25.解:(1)由题意知,方案一种抛物线的顶点()4,6P ,设()462+-=x a y 依题意得91-=a .∴()46912+--=x y .(2)令3=y ,则()346912=+--x ,解得9321==x x ,,∴6=BC .∴18631=⨯=⋅=BC AB S ∵2122=S ,而21218>,∴21S S >.26.解:(1)如图①,连接OM OP ,,过点O 作AB M O ⊥',垂足为M ',则OM PM OP ≥+.∵☉O 半径为4,∴44-'≥-≥M O OM PM .∵OB OA =,︒=∠120AOB ,∴︒=∠30A .∴3430tan 1230tan =︒=︒'='M A M O .∴4344-=-'≥M O PM ,∴线段PM 的最小值为434-.(2)如图②,分别在AE BC ,上作()m r A A B B 30=='='.连接E B OE OP O B B A '''',,,,.∵B B ON AB B B AB OM '=⊥'⊥,,,∴四边形ON B B '是平行四边形,∴O B BN '=.∵E B OE O B PE OP O B '≥+'≥++',∴r E B PE BN -'≥+.∴当点O 在E B '上时,PE BN +取得最小值.作☉O ',使圆心O '在E B '上,半径()m r 30=,作AB M O ⊥'',垂足为M ',并与B A ''交于点H 易证,A E B H O B ''∆''∆~∴A B HB A E H O '''=''∵☉O '在矩形AFDE 区域内(含边界),∴当☉O '与FD 相切时,H B '最短,即403030600010000=+-='H B .此时,H O '也最短.∵H O N M '='',∴N M ''也最短.()91.40171000040303010000=⨯-='''⋅'='A B H B A E H O .∴91.404730=+'=''H O M O ∴此时环道☉O 的圆心O 到AB 的距离OM 的长为m 91.4047.。
陕西省2023年度中考数学真题试题(含解析)第一部分选择题(共40分)1. 选择题(每题2分,共20题)1.已知函数y=kx+b的图象如下图所示,那么函数的解析式是()函数图象函数图象A. y = 2x + 1B. y = -2x + 1C. y = -2x - 1D. y = 2x - 1解析:根据图象,我们可以看出直线的斜率为2,且与y 轴的交点为(0,1)。
因此函数的解析式为y = 2x + 1。
答案选A。
2.若1/2x - 2 = 4,则x =()A. -12B. -4C. 0D. 12解析:将题目中的方程进行移项,得到1/2x = 6。
进一步将等式两边乘以2,就可以得到x = 12。
答案选D。
3.若x + y = 7,x - y = 1,则x =()A. 4B. 7C. 3D. 1解析:将两个方程相加,可以得到2x = 8,进而得到x = 4。
答案选A。
4.若m/n = 16/20,且m + n = 140,则n =()A. 56B. 60C. 64D. 70解析:根据题目中的等式可以得到m = 80。
将m的值代入第一个等式中,我们可以得到80/n = 16/20。
通过交叉相乘可以得到16n = 1600,进一步得到n = 100,答案选D。
5.若2x + y = 7,且2x - y = 1,则x + y =()A. 3B. 2C. 1D. 0解析:将两个方程相加,可以得到4x = 8,进而得到x = 2。
将x的值代入第一个方程中,可以得到y = 3。
因此 x + y 的值为2 + 3 = 5,答案选E。
2. 填空题(每题2分,共10题)1.在数轴上,点D的坐标为0,点A的坐标为4,点M的坐标为2,则AM的长度等于__\\。
解析:根据数轴上点的坐标,我们可以计算出AM的长度为4-2=2。
答案是2。
2.若正方形ABCD的边长为8cm,则它的面积等于__\\。
解析:正方形的边长为8cm,所以它的面积为8cm × 8cm = 64cm²。
2024陕西中考数学试卷真题及答案解析一、选择题1. 设加速度为 a,时间为 t,初速度为 v,加速后的速度为v’,则公式a = (v’ - v) / t 表示的是()。
A. 位移公式B. 牛顿第二定律C. 初速度公式D. 惯性原理正确答案:B. 牛顿第二定律解析:牛顿第二定律描述了物体受到的力与加速度之间的关系。
根据牛顿第二定律,加速度 a 等于物体的质量 m 乘以加速后的速度v’ 减去初速度 v,再除以时间 t,即a = (v’ - v) / t,因此该公式表示的是牛顿第二定律。
2. 若一个边长为 2 cm 的正方形顶点 O 恰好在一半径为 1 cm 的圆上,则正方形的面积是()。
A. 1 cm²B. 2 cm²C. 4 cm²D. 8 cm²正确答案:C. 4 cm²解析:正方形边长为 2 cm,对角线可以看作是圆的直径。
因为正方形的边长为圆的直径的两倍,所以正方形的对角线长为 4 cm。
由对角线定理可知,正方形的对角线等于边长的根号2倍。
设正方形的边长为 a,则有a√2 = 4。
解得a = 4 / √2 = 2√2 cm。
正方形的面积为 a²,代入a = 2√2,得正方形的面积为 4 cm²。
3. 若一种商品原价为 x 元,现在打折卖,只需支付 x - 20 元就可以购买。
这个打折幅度是原价的多少?A. 5%B. 10%C. 15%D. 20%正确答案:B. 10%解析:原价为 x 元,现价为 x - 20 元。
则打折幅度为 (x - 20) / x * 100%。
化简得打折幅度为 ((x - 20) / x) * 100% = (1 - 20 / x) * 100%。
将选项代入,可以发现当x = 200 时,打折幅度为 10%,因此答案为 B. 10%。
二、填空题4. 七年级五班有 55 名学生,其中女生占总数的 40%,男生人数是()人。
2022年陕西省中考数学真题(副卷)学校:___________姓名:___________班级:___________考号:___________A.3x-=的解,是一个一次函数的函数值为6.若方程3120个一次函数可以是()A.5B.8.若二次函数22y x=+一定是()A.13m>B.二、填空题9.分解因式:11.某县2019年粮食总产量为到121万吨,则该县这两年粮食总产量的年平均增长率为12.将函数12y x=-的图象沿y于点(,3)A n,则k的值为__.13.如图,在菱形ABCD中,AB三、解答题18.如图,点E,F在=.DE AC19.我国三国时期的杰出数学家赵爽在注解《周髀算经》时,巧妙地运用弦图证明了勾⨯的正方形网格中,将弦图股定理.如图,在1015对应点分别为A',B',C',(1)A C''与AC的比值为;''''.(2)补全弦图A B C D20.有三枚普通硬币,其面值数字分别为面朝上,则所得的数字为面值数字;若该硬币反面朝上,则所得的数字为22.在测浮力的实验中,将一长方体石块由玻璃器皿的上方,向下缓慢移动浸入水里的过程中,弹簧测力计的示数(温馨提示:当石块位于水面上方时,(1)求AB所在直线的函数表达式;(2)当石块下降的高度为8cm时,求此刻该石块所受浮力的大小.23.某校为了了解本校九年级学生的视力情况,随机抽查了统计,绘制了如下统计图.(1)这50名学生视力的众数为______,中位数为______;(2)求这50名学生中,视力低于4.7的人数占被抽查总人数的百分比;(3)若该校九年级共有400名学生,请估计该校九年级学生中,视力不低于4.8的人数.24.如图,在OAB 中,90OAB ∠=︒,2OA =,4AB =.延长OA 至点C ,使8AC =,连接BC ,以O 为圆心,OB 长为半径作O ,延长BA ,与O 交于点E ,作弦BF BE =,连接EF ,与BO 的延长线交于点D .(1)证明:BC 是O 的切线;(2)求EF 的长.25.已知抛物线24y ax bx =+-经过点(2,0)A -,(4,0)B ,与y 轴的交点为C .(1)求该抛物线的函数表达式;(2)若点P 是该抛物线上一点,且位于其对称轴l 的右侧,过点P 分别作l ,x 轴的垂线,垂足分别为M ,N ,连接MN .若PMN ∆和OBC ∆相似,求点P 的坐标.26.【问题提出】(1)如图①,在Rt ABC △中,90B Ð=°,3AB =,4BC =.若点P 是边AC 上一点,则BP 的最小值为______;【问题探究】(2)如图②,在Rt ABC △中,90B Ð=°,2AB BC ==,点E 是BC 的中点.若点P 是边AC 上一点,试求PB PE +的最小值;【问题解决】(3)某市一湿地公园内有一条四边形ABCD 型环湖路,如图③所示.已知2000AD =米,1000CD =米,60A ∠=︒,90B Ð=°,150C ∠=︒.为了进一步提升服务休闲功能,满足市民游园和健身需求,现要修一条由,,CE EF FC 连接而成的步行景观道,其中,点E ,F 分别在边,AB AD 上.为了节省成本,要使所修的这条步行景观道最短,即CE EF FC ++的值最小,求此时,BE DF 的长.(路面宽度忽略不计)参考答案:【点睛】本题主要考查了勾股定理的实际应用,是解题的关键.6.A17.见解析【分析】作AOB ∠的角平分线交 AB 于P ,则 AP BP =,即知PA PB =,P 即为符合条件的点.【详解】解:以点O 为圆心,适当长为半径画弧,分别交OA ,OB 于两点,再以两点为圆心,适当长为半径画弧交于一点,连接该点与点O 交 AB 于P ,即:作AOB ∠的角平分线交 AB 于P ,∵OP 平分AOB ∠,∴AOP BOP ∠=∠,∴ AP BP =,∴PA PB =,即:该点P 即为所求.【点睛】本题考查尺规作图——作角平分线,解题的关键是掌握作角平分线的方法.也考查了弦与圆心角、弧的关系.18.证明见解析【分析】由DE BC ,得DEF C ∠=∠,即可证明()ΔΔDEF ACB ASA ≅,从而DE AC =.【详解】DE BC ,DEF C ∴∠=∠,在DEF ∆和ACB ∆中,DEF C EF BC DFE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ΔΔDEF ACB ASA ∴≅,DE AC ∴=.【点睛】本题考查了勾股定理的几何意义,勾股定理,键.20.(1)0.4(2)作图见解析;1 4【分析】(1)根据频率=频数÷总数进行求解即可;(2)根据题意画树状图,根据树状图得到所有等可能性的结果数,再找到符合题意的结果数,最后根据概率计算公式求解即可.由树状图可知,一共有8∴所得数字之和是6的概率是【点睛】本题主要考查了求频率,树状图法求概率,正确画出树状图是解题的关键.21.河宽AB为4.25米∵,OG BF OA BE ⊥⊥,弦BF BE =,∴BG AB =,∵OB OB =,【点睛】本题考查二次函数的解析式,二次函数上点的坐标,相似三角形的性质,解题的关键是确定PMN ∆的形状.26.(1)125;(2)5;(【分析】(1)过点B 作BP 根据勾股定理和三角形面积公式求解即可;(2)作点E 关于直线AC 由垂线段最短可知,当∵90,ABC ∠=︒∴2AC =AB +∵2ABC S AB =⋅ ∴AB BC BP AC ⋅=∵E ,E '关于直线∴PE PE '=,∴PB PE PB +=+∴,,B P E '共线,∴此时PB PE +最小,最小值为∵90,B BC AB ∠=︒=∴45ACB ∠=︒,∵点E 是BC 的中点,∴1CE =,∴ACE ACB '∠=∠∴90BCE '∠=︒,在Rt BCE '△中,22BE BC CE ''=+∴PB PE +的最小值为(3)作C 关于AD ∵C ,N 关于AB 对称,C ,∴,CE NE CF MF ==,∴CE EF CF NE EF ++=+∴BE的长为500米,DF的长为1000米.【点睛】本题考查了四边形的综合应用,涉及等腰直角三角形的性质,含30度的直角涉及相对的性质,勾股定理,轴对称的性质,两点之间线段最短,解直角三角形等,解题的关键是作对称以及熟练掌握知识点.。
2023年陕西省中考数学试卷(副卷)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)计算:|﹣17|=()A.17B.﹣17C.D.2.(3分)如图,沿线段OA 将该圆锥的侧面剪开并展平,得到的圆锥的侧面展开图是()A.三角形B.正方形C.扇形D.圆3.(3分)如图,直线l 1∥l 2,点A 在l 2上,AB ⊥l 3,垂足为B .若∠1=138°,则∠2的度数为()A.32°B.38°C.42°D.48°4.(3分)计算:=()A.B.C.D.5.(3分)在平面直角坐标系中,直线y =﹣x +m (m 为常数)与x 轴交于点A ,将该直线沿x 轴向左平移6个单位长度后,与x 轴交于点A ′.若点A ′与A 关于原点O 对称,则m 的值为()A.﹣3B.3C.﹣6D.66.(3分)如图,在6×7的网格中,每个小正方形的边长均为1.若点A ,B ,C 都在格点上,则sin B 的值为()A.B.C.D.7.(3分)如图,⊙O 是△ABC 的外接圆,∠A =72°.过点O 作BC 的垂线交于点D ,连接BD ,则∠D 的度数为()A.64°B.54°C.46°D.36°8.(3分)如表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣3035…y…16﹣5﹣80…则下列关于这个二次函数的结论中,正确的是()A.图象的顶点在第一象限B.有最小值﹣8C.图象与x轴的一个交点是(﹣1,0)D.图象开口向下二、填空题(共5小题,每小题3分,计15分)9.(3分)在实数,﹣1,0,,π中,最小的无理数是.10.(3分)分解因式:3x2﹣12=.11.(3分)如图所示,是工人师傅用边长均为a的两块正方形和一块正三角形地砖绕着点O进行的铺设.若将一块边长为a的正多边形地砖恰好能无空隙、不重叠地拼在∠AOB处,则这块正多边形地砖的边数是.12.(3分)若点A(﹣1,2),B(1,m),C(4,n)都在同一个反比例函数的图象上,则m,n的大小关系是m n.(填“>”“=”或“<”)13.(3分)如图,在▱ABCD中,AB=3,AD=4,点E在AD的延长线上,且DE=2,过点E作直线l 分别交边CD,AB于点M,N.若直线l将▱ABCD的面积平分,则线段CM的长为.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)解不等式组:.16.(5分)解方程:.17.(5分)如图,已知四边形ABCD,AD∥BC.请用尺规作图法,在边AD上求作一点E,在边BC上求作一点F,使四边形BFDE为菱形.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC的延长线于点E.求证:CE=AB.19.(5分)“绿水青山就是金山银山”,希望中学每年都会组织学生进行植树活动.今年该校又买了一批树苗,并组建了植树小组.如果每组植5棵,就会多出6棵树苗;如果每组植6棵,就会缺少9棵树苗.求学校这次共买了多少棵树苗?20.(5分)从同一副扑克牌中选出四张牌,牌面数字分别为2,5,6,8.将这四张牌背面朝上,洗匀.(1)从这四张牌中随机抽出一张牌,这张牌上的牌面数字是偶数的概率是;(2)小明从这四张牌中随机抽出一张牌,记下牌面数字后,放回.背面朝上,洗匀.然后,小华从中随机抽出一张牌,请用画树状图或列表的方法,求小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的概率.21.(6分)小华想利用所学知识测量自家对面的两栋楼AB与CD的高度差.如图所示,她站在自家阳台上发现,在阳台的点E处恰好可经过楼CD的顶端C看到楼AB的底端B,即点E,C,B在同一直线上.此时,测得点B的俯角α=22°,点A的仰角β=16.7°,并测得EF=48m,FD=50m.已知,EF⊥FB,CD⊥FB,AB⊥FB,点F,D,B在同一水平直线上.求楼AB与CD的高度差.(参考数据:sin16.7°≈0.29,cos16.7°≈0.96,tan16.7°≈0.30,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)22.(7分)某农科所对当地小麦从抽穗期到灌浆期连续51天的累计需水量进行研究,得到当地每公顷小麦在这51天内累计需水量y(m3)与天数x之间的关系如图所示,其中,线段OA,AC分别表示抽穗期、灌浆期的y与x之间的函数关系.(1)求这51天内,y与x之间的函数关系式;(2)求当地每公顷小麦在整个灌浆期的需水量.23.(7分)某大型超市为优化停车收费标准,需了解车辆在本超市的停车场内停车一次的时长(简称:停车时长)的情况.超市的管理部门随机采集了该停车场的60个停车时长数据(单位:分钟),并将数据整理,绘制了如下统计图表:组别停车时长x/分钟组内平均停车时长/分钟A0<x≤3015B30<x≤6047C60<x≤9080D90<x≤120105E x>120200根据以上信息,解答下列问题:(1)请补全条形统计图;这60个数据的中位数落在组;(2)求本次采集的这60个数据的平均数;(3)如果超市想对停车时长不超过60分钟的车辆免收停车费,试估计该停车场内1000辆车中,有多少辆车免收停车费?24.(8分)如图,∠MPN=30°,点O在PM上,⊙O与PN相切于点A,与PM的交点分别为B,C.作CD∥PN,与⊙O交于点D,作CE⊥PN,垂足为E,连接EO并延长,交CD于点F.(1)求证:CD=PA;(2)若PA=4,求EF的长.25.(8分)某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度OM=12米,顶点P到底部OM的距离为9米.将该抛物线放入平面直角坐标系中,点M在x轴上.其内部支架有两个符合要求的设计方案:方案一是“川”字形内部支架(由线段AB,PN,DC构成),点B,N,C在OM上,且OB=BN=NC =CM,点A,D在抛物线上,AB,PN,DC均垂直于OM;方案二是“H”形内部支架(由线段A′B′,D′C′,EF构成),点B′,C′在OM上,且OB′=B′C′=C′M,点A′,D′在抛物线上,A′B′,D′C′均垂直于OM,E,F分别是A′B′,D′C′的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.26.(10分)(1)如图①,∠AOB =120°,点P 在∠AOB 的平分线上,OP =4.点E ,F 分别在边OA ,OB 上,且∠EPF =60°,连接EF .求线段EF 的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P 是拱桥的中点,桥下水面的宽度AB =24m ,点P 到水面AB 的距离PH =8m .点P 1,P 2均在上,=,且P 1P 2=10m ,在点P 1,P 2处各装有一个照明灯,图中△P 1CD 和△P 2EF 分别是这两个灯的光照范围.两灯可以分别绕点P 1,P 2左右转动,且光束始终照在水面AB 上.即∠CP 1D ,∠EP 2F 可分别绕点P 1,P 2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD ,EF 在AB 上,此时,线段ED 是这两灯照在水面AB 上的重叠部分的水面宽度.已知∠CP 1D =∠EP 2F =90°,在这两个灯的照射下,当整个水面AB 都被灯光照到时,求这两个灯照在水面AB 上的重叠部分的水面宽度.(可利用备用图解答)2023年陕西省中考数学试卷(副卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)计算:|﹣17|=()A.17B.﹣17C.D.【解答】解:|﹣17|=17.故选:A .2.(3分)如图,沿线段OA 将该圆锥的侧面剪开并展平,得到的圆锥的侧面展开图是()A.三角形B.正方形C.扇形D.圆【解答】解:沿线段OA 将该圆锥的侧面剪开并展平,得到的圆锥的侧面展开图是扇形,故选:C .3.(3分)如图,直线l 1∥l 2,点A 在l 2上,AB ⊥l 3,垂足为B .若∠1=138°,则∠2的度数为()A.32°B.38°C.42°D.48°【解答】解:∵直线l 1∥l 2,∴∠3=∠1=138°,∵AB ⊥l 3,∴∠ABC =90°,∵∠3=∠2+∠ABC ,∴∠2=48°.故选:D .4.(3分)计算:=()A.B.C.D.【解答】解:原式=﹣x6y3,故选:C.5.(3分)在平面直角坐标系中,直线y=﹣x+m(m为常数)与x轴交于点A,将该直线沿x轴向左平移6个单位长度后,与x轴交于点A′.若点A′与A关于原点O对称,则m的值为()A.﹣3B.3C.﹣6D.6【解答】解:∵直线y=﹣x+m(m为常数)与x轴交于点A,∴A(m,0),将该直线沿x轴向左平移6个单位长度后,得到y=﹣(x+6)+m=﹣x﹣6+m,∵将该直线沿x轴向左平移6个单位长度后,与x轴交于点A′,∴A′(m﹣6,0),∵点A′与A关于原点O对称,∴m﹣6+m=0,解得m=3,故选:B.6.(3分)如图,在6×7的网格中,每个小正方形的边长均为1.若点A,B,C都在格点上,则sin B 的值为()A.B.C.D.【解答】解:连接AD,则∠ADB=90°,∵AD==2,AB==,∴sin B===,故选:A.7.(3分)如图,⊙O是△ABC的外接圆,∠A=72°.过点O作BC的垂线交于点D,连接BD,则∠D的度数为()A.64°B.54°C.46°D.36°【解答】解:连接CD,∵四边形ABDC是圆内接四边形,∠A=72°,∴∠CDB+∠A=180°,∴∠BDC=180°﹣∠A=108°,∵OD⊥BC,∴E是边BC的中点,∴BD=CD,∴∠ODB=∠ODC=∠BDC=54°.故选:B.8.(3分)如表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣3035…y…16﹣5﹣80…则下列关于这个二次函数的结论中,正确的是()A.图象的顶点在第一象限B.有最小值﹣8C.图象与x轴的一个交点是(﹣1,0)D.图象开口向下【解答】解:设二次函数的解析式为y=ax2+bx+c,由题意知,解得,∴二次函数的解析式为y=x2﹣4x﹣5=(x﹣5)(x+1)=(x﹣2)2﹣9,∴函数的图象开口向上,顶点为(2,﹣9),图象与x轴的一个交点是(﹣1,0)和(5,0),∴顶点在第四象限,函数有最小值﹣9,故A、B、D选项不正确,选项C正确,符合题意.故选:C.二、填空题(共5小题,每小题3分,计15分)9.(3分)在实数,﹣1,0,,π中,最小的无理数是﹣.【解答】解:∵在实数,﹣1,0,,π中,无理数有:,﹣,π.∵≈1.414,≈﹣2.236,π≈3.142,∴﹣<<π.∴无理数最小的是﹣.故答案为:﹣.10.(3分)分解因式:3x2﹣12=3(x﹣2)(x+2).【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).11.(3分)如图所示,是工人师傅用边长均为a的两块正方形和一块正三角形地砖绕着点O进行的铺设.若将一块边长为a的正多边形地砖恰好能无空隙、不重叠地拼在∠AOB处,则这块正多边形地砖的边数是6.【解答】解:∵正三角形、正方边的内角分别为60°、90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°,∴这块正多边形地砖的边数是:=6.故答案为:6.12.(3分)若点A(﹣1,2),B(1,m),C(4,n)都在同一个反比例函数的图象上,则m,n的大小关系是m<n.(填“>”“=”或“<”)【解答】解:设反比例函数为y=,又A(﹣1,2)在反比例函数图象上,∴k=(﹣1)×2=﹣2.∴反比例函数为y=﹣.又点B(1,m)在反比例函数y=﹣的图象上,∴m=﹣2.∵C(4,n)都在反比例函数y=﹣图象上,∴n=﹣,∴m<n.故答案为:<.13.(3分)如图,在▱ABCD中,AB=3,AD=4,点E在AD的延长线上,且DE=2,过点E作直线l分别交边CD,AB于点M,N.若直线l将▱ABCD的面积平分,则线段CM的长为.【解答】解:连接AC交l于点O.∵直线l将▱ABCD的面积平分,AC为▱ABCD的对角线,∴O为AC的中点,为平行四边形的中心.∴OA=OC.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠NAO=∠MCO,=.又∠AON=∠COM,∴△AON≌△COM(ASA).∴AN=CM.∴=.又ED=2,AD=4,AB=3,∴=.∴CM=.故答案为:.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.【解答】解:原式=﹣3++1=2﹣3+1=2﹣2.15.(5分)解不等式组:.【解答】解:解第一个不等式可得x<5,解第二个不等式可得x<2,故原不等式组的解集为:x<2.16.(5分)解方程:.【解答】解:原方程两边同乘x(x+5)去分母得:2x2﹣x(x+5)=(x+5)2,去括号得:2x2﹣x2﹣5x=x2+10x+25,移项,合并同类项得:﹣15x=25,解得:x=﹣,经检验,x=﹣是分式方程的解,故原方程的解为:x=﹣.17.(5分)如图,已知四边形ABCD,AD∥BC.请用尺规作图法,在边AD上求作一点E,在边BC上求作一点F,使四边形BFDE为菱形.(保留作图痕迹,不写作法)【解答】解:如图所示:E、F即为所求.18.(5分)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC的延长线于点E.求证:CE=AB.【解答】证明:∵DC⊥AC于点C,∴∠ACB+∠DCB=90°∵∠ABC=90°,∴∠ACB+∠A=90°∴∠A=∠DCE∵DE⊥BC于点E,∴∠E=90°∴∠B=∠E.在△ABC和△CED中,,∴△ABC≌△CED(AAS).∴AB=CE.19.(5分)“绿水青山就是金山银山”,希望中学每年都会组织学生进行植树活动.今年该校又买了一批树苗,并组建了植树小组.如果每组植5棵,就会多出6棵树苗;如果每组植6棵,就会缺少9棵树苗.求学校这次共买了多少棵树苗?【解答】解:设学校这次共买了x棵树苗,则:=,解得:x=81,答:学校这次共买了81棵树苗.20.(5分)从同一副扑克牌中选出四张牌,牌面数字分别为2,5,6,8.将这四张牌背面朝上,洗匀.(1)从这四张牌中随机抽出一张牌,这张牌上的牌面数字是偶数的概率是;(2)小明从这四张牌中随机抽出一张牌,记下牌面数字后,放回.背面朝上,洗匀.然后,小华从中随机抽出一张牌,请用画树状图或列表的方法,求小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的概率.【解答】解:(1)∵共有四张扑克牌,分别是2,5,6,8,其中偶数有3张,∴从这四张牌中随机抽出一张牌,这张牌上的牌面数字是偶数的概率是.故答案为:;(2)列表如下:一共有16种等可能的情况,其中小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的有6种,则小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的概率是=.21.(6分)小华想利用所学知识测量自家对面的两栋楼AB与CD的高度差.如图所示,她站在自家阳台上发现,在阳台的点E处恰好可经过楼CD的顶端C看到楼AB的底端B,即点E,C,B在同一直线上.此时,测得点B的俯角α=22°,点A的仰角β=16.7°,并测得EF=48m,FD=50m.已知,EF⊥FB,CD⊥FB,AB⊥FB,点F,D,B在同一水平直线上.求楼AB与CD的高度差.(参考数据:sin16.7°≈0.29,cos16.7°≈0.96,tan16.7°≈0.30,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点C作CG⊥EF于G,过点E作EH⊥AB于H,∵EF⊥FB,CD⊥FB,AB⊥FB,∴得矩形CDFG,矩形EFBH,∴CG=FD=50m,HB=EF=48m,在Rt△CGE中,CG=50m,∠ECG=α=22°,则EG=CG•tan∠ECG≈50×0.40=20.00(m),∴CD=FG=EF﹣EG=48﹣20.0=28.00(m),在Rt△EFB中,EF=48m,∠EBF=α=22°,则EF=FB•tan∠EBF,∴48≈FB×0.40,∴FB=120.00(m),在Rt△AHE中,EH=FB=120m,∠AEH=β=16.7°,则AH=EH•tan∠AEH≈120×0.30=36.00(m),∴AB=AH+BH=AH+EF=36.00+48=84.00(m),∴AB﹣CD=84.00﹣28.00=56.00(m),答:楼AB与CD的高度差约为56.00m.22.(7分)某农科所对当地小麦从抽穗期到灌浆期连续51天的累计需水量进行研究,得到当地每公顷小麦在这51天内累计需水量y(m3)与天数x之间的关系如图所示,其中,线段OA,AC分别表示抽穗期、灌浆期的y与x之间的函数关系.(1)求这51天内,y与x之间的函数关系式;(2)求当地每公顷小麦在整个灌浆期的需水量.【解答】解:(1)由题意,当0≤x≤20时,设y=kx,∴20k=960.∴k=48.∴y=48x.当20<x≤51时,设关系式为y=mx+n,∴.∴.∴y=35x+260.综上,所求函数关系式为y=.(2)由题意,令x=51,∴y=35×51+260=2045.又当x=20时,y=960,∴每公顷小麦在整个灌浆期的需水量=2045﹣960=1085(m3).23.(7分)某大型超市为优化停车收费标准,需了解车辆在本超市的停车场内停车一次的时长(简称:停车时长)的情况.超市的管理部门随机采集了该停车场的60个停车时长数据(单位:分钟),并将数据整理,绘制了如下统计图表:组别停车时长x/分钟组内平均停车时长/分钟A0<x≤3015B30<x≤6047C60<x≤9080D90<x≤120105E x>120200根据以上信息,解答下列问题:(1)请补全条形统计图;这60个数据的中位数落在B组;(2)求本次采集的这60个数据的平均数;(3)如果超市想对停车时长不超过60分钟的车辆免收停车费,试估计该停车场内1000辆车中,有多少辆车免收停车费?【解答】解:(1)B组的频数为60﹣16﹣11﹣8﹣5=20,补全条形统计图如下:∵中位数是数据从小到大排列后第30个和31个数据的平均数,第30个和31个数据都在B组,∴这60个数据的中位数落在B组;故答案为:B;(2)=65(分钟),答:本次采集的这60个数据的平均数为65分钟;(3)1000×=600(辆),答:估计该停车场内1000辆车中,有600辆车免收停车费.24.(8分)如图,∠MPN=30°,点O在PM上,⊙O与PN相切于点A,与PM的交点分别为B,C.作CD∥PN,与⊙O交于点D,作CE⊥PN,垂足为E,连接EO并延长,交CD于点F.(1)求证:CD=PA;(2)若PA=4,求EF的长.【解答】(1)证明:如图,连接BD,OA,∵⊙O与PN相切于点A,∴OA⊥PA,∴∠OAP=90°,∵BC是⊙O的直径,∴∠BDC=90°,∵CD∥PN,∴∠MPN=∠BCD=30°,∴BD=BC=OA,∴CD=BD,PA=OA,∴CD=PA;(2)解:如图,过点O作OH⊥CE于点H,∵CE⊥PN,OA⊥PA,∴∠OHE=∠HEA=∠OAE=90°,∴四边形OAEH是矩形,∴OA=HE,OH=AE,OH∥AE,∵∠MPN=30°,PA=4,∴OA=PA=,∴EH=OA=,∵PO=2OA,OA=OC,∴CP=OC+PO=3OC,∵OH∥AE,∴==,∴=,∴OH=2,∵∠COH=30°,OH=2,∴CH=OH=,∴CE=EH+CH=2,∵CD∥PN,∴===,∴=,∴CF=3,∵CD∥PN,CE⊥PN,∴CE⊥CF,∴EF===.25.(8分)某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度OM=12米,顶点P到底部OM的距离为9米.将该抛物线放入平面直角坐标系中,点M在x轴上.其内部支架有两个符合要求的设计方案:方案一是“川”字形内部支架(由线段AB,PN,DC构成),点B,N,C在OM上,且OB=BN=NC =CM,点A,D在抛物线上,AB,PN,DC均垂直于OM;方案二是“H”形内部支架(由线段A′B′,D′C′,EF构成),点B′,C′在OM上,且OB′=B′C′=C′M,点A′,D′在抛物线上,A′B′,D′C′均垂直于OM,E,F分别是A′B′,D′C′的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.【解答】解:(1)∵该抛物线型构件的底部宽度OM=12米,顶点P到底部OM的距离为9米,∴顶点P的坐标为P(6,9),点O的坐标为O(0,0),点M的坐标为M(12,0),设抛物线的解析式为:y=a(x﹣6)2+9,将O(0,0)的横纵坐标代入,得0=a(0﹣6)2+9,解得a=,∴该抛物线的函数表达式为y=,即y=;(2)方案二的内部支架节省材料.理由如下:第21页(共23页)方案一:∵OB =BN =NC =CM ,OM =12米,∴OB =3米,OC =9米,当x =3时,y=,即AB =米,当x =9时,y=,即CD =米,∴方案一内部支架材料长度为AB +NP +CD =(米),方案二:∵OB ′=B ′C ′=C ′M ,OM =12米,∴OB ′=4米,OC ′=8米,EF =B ′C ′=4米,当x =4时,y=,即A ′B ′=8米,当x =8时,y=,即C ′D ′=8米,∴方案二内部支架材料长度为A ′B ′+EF +C ′D ′=8+4+8=20(米),∵>20,∴方案二的内部支架节省材料.26.(10分)(1)如图①,∠AOB =120°,点P 在∠AOB 的平分线上,OP =4.点E ,F 分别在边OA ,OB 上,且∠EPF =60°,连接EF .求线段EF 的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P是拱桥的中点,桥下水面的宽度AB =24m ,点P 到水面AB 的距离PH =8m .点P 1,P 2均在上,=,且P 1P 2=10m ,在点P 1,P 2处各装有一个照明灯,图中△P 1CD 和△P 2EF 分别是这两个灯的光照范围.两灯可以分别绕点P 1,P 2左右转动,且光束始终照在水面AB 上.即∠CP 1D ,∠EP 2F 可分别绕点P 1,P 2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD ,EF 在AB 上,此时,线段ED 是这两灯照在水面AB 上的重叠部分的水面宽度.已知∠CP 1D =∠EP 2F =90°,在这两个灯的照射下,当整个水面AB 都被灯光照到时,求这两个灯照在水面AB 上的重叠部分的水面宽度.(可利用备用图解答)【解答】解:(1)过P 作PC ⊥OB 于C ,作PD ⊥OA 于D ,如图:第22页(共23页)∵∠AOB =120°,∠EPF =60°,∴∠OEP +∠OFP =180°,∵∠OEP +∠PED =180°,∴∠OFP =∠PED ,即∠PFC =∠PED ,∵OP 平分∠AOB ,PC ⊥OB ,PD ⊥OA ,∴PC =PD ,∵∠PCF =∠PDE =90°,∴△PCF ≌△PDE (AAS ),∴CF =DE ,∴OE +OF =(OD ﹣DE )+(OC +CF )=OD +OC ,∵∠POD =∠POC =60°,∴∠OPD =∠OPC =30°,∴OD =OC =OP =2,∴OE +OF =4,设OF =x ,则OE =4﹣x ,过F 作FG ⊥AO 于G,如图:∵∠OFG =∠AOB ﹣∠G =120°﹣90°=30°,∴OG =x ,GF=x ,∴EG =OE +OG=4﹣x ,∴EF ====,∴当x =2时,EF 取最小值=2,∴线段EF 的最小值是2;(2)当整个水面AB 都被灯光照到时,C 与A 重合,F 与B 重合,设PH 交P 1P 2于K ,圆心为O ,连接HO ,AO ,P 1O ,过P 1作P 1T ⊥AB 于T ,如图:第23页(共23页)∵点P 是拱桥的中点,PH ⊥AB ,∴O ,P ,H 共线,AH =BH =AB =12m ,设⊙O 半径为rm ,则OH =OP ﹣PH =(r ﹣8)m ,在Rt△AHO 中,AH 2+OH 2=OA 2,∴122+(r ﹣8)2=r 2,解得r =13,∴OP 1=13m ,∵=,且P 1P 2=10m ,∴P 1K =P 2K =5m ,∴OK ===12(m ),∴PK =OP ﹣OK =13﹣12=1(m ),∴KH =PH ﹣PK =8﹣1=7(m ),∴P 1T =KH =7m ,∵AT =AH ﹣TH =12﹣5=7(m ),∴AT =P 1T ,∴∠P 1AT =45°,∵∠CP 1D =90°,即∠AP 1D =90°,∴△AP 1D 是等腰直角三角形,∴AD =2AT =14(m ),即CD =14m ,∴DB =AB ﹣AD =26﹣14=12(m ),同理可得BE =14m ,即FE =14m ,∴DE =EF ﹣DB =14﹣12=2(m ),∴这两个灯照在水面AB 上的重叠部分的水面宽度为2m .。
2015年陕西省中考数学副题
一、选择题(共10小题,每小题3份,计30份,每小题只有一个选项符合题意) 1、下列四个实数中,最大的是( )
A. 2
B.
C. 0
D. ﹣1
2、如图是一枚古钱币的示意图,它的左视图是( )
A.
B. C. D.
3、下列计算正确的是( )
A.22(1)1a a +=+
B. 26(2)3a b ab a ÷-=-
C. 235a a a +=
D. 33(2)6a a -=-
4、如图,AB ∥CD ,直线EF 交直线AB 、CD 于点E 、F ,FH 平分∠CFE 。
若∠EFD=70°,则∠EHF 的度数为( )
A. 70°
B. 65°
C. 55°
D. 35°
5、对于正比例函数3y x =-,当自变量x 的值增加1时,函数y 的值增加( ) A.
13
B. 1
3- C. 3 D. ﹣3
6、如图,点P 是△ABC 内一点,且PA=PB=PC ,则点P 是( )
A.△ABC 三边垂直平分线的交点
B. △ABC 三条角平分线的交点
C. △ABC 三条高的交点
D. △ABC 三条中线的交点
7、张老师准备用200元购买A 、B 两种笔记本共30本,并将这些笔记本奖给期末进步的学生。
已知A 种笔记本每本5元。
B 种笔记本每本8元,则张老师最多能购买B 种笔记本( )
A. 18本
B. 17本
C. 16本
D. 15本
8、已知一次函数y kx b =+的图象经过点(1,2),且y 的值随x 的值的增大而减小,则下列判断正确的是( ) A.00k b >> B. 0
0k b <> C. 0
0k b >< D. 0
0k b <<
9、如图,△ABC 和△DBC 均为等腰三角形,∠A=60°,∠D=90°,AB=12,若点E 、F 、G 、H 分别为边AB 、AC 、CD 、BD 的中点,则四边形EFGH 的面积为( )
A.1)
B. 1)
C. 1)
D. 1)
B
D
第4题 第6题 第9题
10、在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为26y x x m =++,则m 的值是( ) A.﹣4或﹣14 B. ﹣4或14 C. 4或﹣14 D. 4或14
二、填空题(共4个小题)
11、﹣8的立方根是 。
12、请从以下两个小题任选一个作答,若多选,则按第一题计分。
A. 一个n 边形的内角和为900°,则n= 。
B. 如图,一个山坡的坡长AB=400米,铅直高度BC=150米,则坡角∠A 的大小为 (用科学计数法计算,结果精确到1°) 13、在平面直角坐标系中,反比例函数k
y x
=
的图象位于第二、四象限,且经过点(1,22k -),则k 的值为 。
14、如图,A 、B 是半圆O 上的两点,MN 是直径,OB ⊥MN ,AB=4,OB=5,P 是MN 上一个动点,则PA+PB 的最小值为 。
N
第12题B 第14题
三、解答题(共11小题,计78分,解答应写出过程)
15、(本题满分5
分)计算:21
2|5|()3
-⨯-+-
16、(本题满分5分)解分式方程:
32222
x
x x +=
+- 17、(本题满分5分)如图,请用尺规在△ABC 的边BC 上找一点D ,使得点D 到AB 、AC 的距离相等(保留作图痕迹,不写作法)
A
B
C
18、(本题满分5分)我们根据《2014年陕西省国民经济运行情况统计》提供的三大产业总产值的信息,绘制了如下的两幅统计图。
2014年陕西省三大产业总产值统计图
总产值产业
产业
产业
请你根据以上信息,解答下列问题: (1)补全上面的条形统计图;
(2)2014年陕西省三大产业的平均总产值是 亿元(结果精确到1亿元)
(3)如果2015年陕西省生产总值(第一、二、三产业总产值之和)必上年增长8.5%,那么请求出2015年陕西省生产总值约为多少亿元?(结果精确到1亿元) 19、(本题满分7分)如图,在△ABC 中,AB=AC ,D 是BC 延长线上一点,连接AD ,过
点S 、D 分别作AE ∥BD ,DE ∥AB,AE 、DE 交于点E ,连接CE 。
求证:AD=CE
20、(本题满分7分)周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳篷的宽度。
如图,由于无法直接测量,小凯便在楼前面的地面上选择了一条直线EF ,通过在直线EF 上选点观测,发现当他位于N 点时,他的视线从M 点通过露台D 点正好落在遮阳篷A 点处;当他位于N'点时,视线从M'点通过露台D 点正好落在遮阳篷B 点处。
这样观测到的两个点A 、B 间的距离即为遮阳篷的宽。
已知AB ∥CD ∥EF ,点C 在AG 上,AG 、DE 、MN 、M'N'均垂直于EF ,MN=M'N',露台的宽CD=GE 。
测得GE=5米,EN=12.3米,NN'=6.2.请你根据以上信息,求出遮阳篷的宽AB 是多少米?(结果精确到0.01米)
21、(本题满分7分)常温下,有一种烧水壶加热1.5升的纯净水时,加热中的水温y(℃)与加热时间x(秒)之间近似地满足一次函数关系,经试验,在常温下用这种壶将1.5升的纯净水加热到70℃时,所用时间为3分16秒;再加热40秒,水温正好达到80℃。
(1)求出y与x的函数关系式;
(2)在常温下,若用这种烧水壶将1.5升的28℃纯净水烧开(温度为100度),则需要加热多长时间?
22、(本题满分7分)小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为A1,A2)能打开教室前门锁,而剩余的3把钥匙(记为B1,B2,B3)不能打开教室前门锁。
(1)请求出小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率。
(2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回)。
而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率。
23、(本题满分8分)如图,在Rt△ABC中,∠BAC=90°,∠BAD=∠C,点D在BC边上,以AD为直径的⊙O交AB于点E,交AC于点F。
(1)求证:BC是⊙O的切线
(2)已知:AB=6,AC=8,求AF的长。
24、(本题满分10分)如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C 。
已知A (﹣3,0),该抛物线的对称轴为直线1
2
x =-。
(1)求该抛物线的函数表达式 (2)求点B 、C 的坐标
(3)假设将线段BC 平移,使得平移后线段的一个端点在这条抛物线上,另一个端点在x 轴上,若将点B 、C 平移后的对应点分别记为点D 、E ,求以B 、C 、D 、E 为顶点的四边形面积的最大值。
25、(本题满分12分)问题探究:
(1)如图①,AB 为⊙O 的弦,点C 是⊙O 上的一点,在直线AB 上方找一个点D ,使得∠ADB=∠ACB ,画出∠ADB ,并说明理由
(2)如图②,AB 是⊙O 的弦,点C 是⊙O 上的一个点,在过点C 的直线l 上找一点P ,使得∠APB<∠
ACB ,画出∠APB ,并说明理由
(3)如图③,已知足球门宽AB
约为B 点C 点(点A 、B 、C 均在球场的底线上),沿与AC 成45°的CD 方向带球。
试问,该球员能否在射线CD 上找一点P ,使得点P 最佳射门点(即∠APB 最大)?若能找到,求出这时点P 与点C 的距离;若找不到,请说明理由。
C。