《三角形的复习》教学设计
- 格式:doc
- 大小:60.00 KB
- 文档页数:7
《三角形的复习与整理》(教案)四年级下册数学人教版一、教学内容:本次教学主要针对人教版四年级下册数学第五章《三角形》进行复习与整理。
该章节主要内容包括:三角形的定义、性质、分类和三角形的三边关系。
二、教学目标:1. 使学生掌握三角形的定义和性质,能够识别和分类三角形;2. 培养学生运用三角形知识解决实际问题的能力;3. 帮助学生理解和掌握三角形的三边关系。
三、教学难点与重点:1. 教学难点:三角形的三边关系的理解和运用;2. 教学重点:三角形的分类和性质的运用。
四、教具与学具准备:1. 教具:黑板、粉笔、三角板;2. 学具:练习本、尺子、铅笔。
五、教学过程:1. 实践情景引入:让学生观察教室里的三角形物体,引导学生发现三角形在日常生活中的应用。
2. 知识回顾:复习三角形的基本概念,如三角形的定义、性质等。
3. 例题讲解:利用三角板演示三角形的三边关系,讲解三角形的分类及识别方法。
4. 随堂练习:让学生自主完成练习本上的相关习题,巩固所学知识。
六、板书设计:板书内容主要包括三角形的定义、性质、分类和三边关系。
用简洁的语言和图示展示三角形的各种特点,方便学生理解和记忆。
七、作业设计:1. 作业题目:a. 有一个角是直角的三角形是直角三角形。
b. 两边之和大于第三边的三角形是锐角三角形。
c. 等边三角形的三个角都相等。
a. 三角形的______叫做三角形的底。
b. 有一个角是直角的三角形叫做______三角形。
c. 等腰三角形的两个底角______。
2. 答案:(1)判断题答案:a. 正确 b. 错误 c. 正确;(2)填空题答案:a. 任意两边 b. 直角 c. 相等。
八、课后反思及拓展延伸:1. 课后反思:回顾课堂教学,检查教学目标是否达成,学生掌握情况如何,针对存在的问题进行改进;2. 拓展延伸:让学生在生活中寻找三角形,并运用三角形知识解释相关现象,如解释自行车的三角形架构为什么稳定。
重点和难点解析:1. 三角形的三边关系的讲解;2. 三角形分类方法的引导学生自主发现;3. 实践情景引入环节的设计;对于这些重点细节,我将进行详细的补充和说明。
北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
人教版数学八年级上册《三角形全等的判定(复习)》教学设计一. 教材分析人教版数学八年级上册《三角形全等的判定(复习)》这一节的内容主要包括SSS、SAS、ASA、AAS四种三角形全等的判定方法,以及三角形全等的应用。
学生在学习这一节内容时,需要掌握三角形全等的判定方法,并能够灵活运用到实际问题中。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,掌握了三角形的基本性质和判定方法。
但是,部分学生对于三角形全等的判定方法理解不深,不能灵活运用到实际问题中。
因此,在教学过程中,需要引导学生深入理解三角形全等的判定方法,并通过实际例题让学生学会如何运用这些判定方法。
三. 教学目标1.让学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法。
2.培养学生灵活运用三角形全等的判定方法解决实际问题的能力。
3.培养学生合作交流、归纳总结的能力。
四. 教学重难点1.重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法。
2.难点:如何灵活运用三角形全等的判定方法解决实际问题。
五. 教学方法采用讲授法、案例分析法、小组合作法、归纳总结法等教学方法,引导学生通过自主学习、合作交流,深入理解三角形全等的判定方法,并能够灵活运用到实际问题中。
六. 教学准备1.教材、教案、PPT等教学资料。
2.三角板、直尺、圆规等几何作图工具。
3.练习题、案例分析题等教学素材。
七. 教学过程1.导入(5分钟)通过复习已学过的三角形性质和判定方法,引导学生回顾三角形全等的判定方法,为新课的学习做好铺垫。
2.呈现(10分钟)讲解SSS、SAS、ASA、AAS四种三角形全等的判定方法,并通过PPT展示相关例题,让学生直观地理解这些判定方法。
3.操练(10分钟)让学生分成小组,利用几何作图工具,根据四种全等判定方法,相互判断给出的三角形是否全等。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些判断题和应用题,让学生独立完成,检验学生对三角形全等判定方法的掌握程度。
人教版下册四年级数学《复习三角形知识》
教案
教学目标
- 复习三角形的定义和性质
- 认识不同类型的三角形
- 掌握判断和画出不同类型三角形的方法
教学准备
- 教材:人教版下册四年级数学教材
- 教具:直尺、量角器、彩色铅笔
教学过程
导入
1. 利用多媒体展示图片,让学生回顾三角形的定义和性质。
复习三角形的定义和性质
1. 提问学生对三角形的定义和性质进行回答,鼓励学生积极参
与讨论。
2. 引导学生总结三角形的性质,例如三条边的长度关系、角的
和等于180度等。
认识不同类型的三角形
1. 利用多媒体展示不同类型的三角形图片,如等边三角形、等
腰三角形、直角三角形等。
2. 引导学生观察并讨论不同类型的三角形的特点,例如等边三
角形三条边相等、直角三角形有一个角为直角等。
判断和画出不同类型三角形的方法
1. 引导学生通过观察三角形的边长和角度来判断三角形的类型。
2. 提示学生使用直尺和量角器来画出不同类型的三角形,帮助
他们理解三角形的构成。
拓展练习
1. 分发练习册,让学生自主完成相关练习题,巩固所学的知识。
2. 教师巡视并及时解答学生的疑惑。
总结
1. 总结本节课所学的内容,强调三角形的定义、性质以及不同类型的三角形。
2. 鼓励学生通过课后练习巩固所学知识。
课后作业
1. 完成练习册上的相关练习题。
2. 复习并总结本节课所学的知识。
全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。
教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。
内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。
二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。
2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。
3. 培养学生的空间想象力,提高学生的逻辑思维能力。
三、教学难点与重点重点:全等三角形的定义、性质及判定方法。
难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。
四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。
学具:练习本、彩笔、剪刀、胶水。
五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。
2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。
(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。
3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。
4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。
5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。
教师巡回指导,解答学生疑问。
6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。
六、板书设计板书内容:全等三角形的定义、性质、判定方法。
七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。
()b. 全等三角形的对应角相等。
()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。
《三角形复习课》教学设计
一、教学目标
1.巩固三角形的特征和分类,掌握三角形的高的画法。
2.提高学生的空间观念和图形分析能力。
3.培养学生的观察能力和动手操作能力。
二、教学重难点
1.重点:三角形的特征、分类和高的画法。
2.难点:三角形知识的综合应用。
三、教学方法
图形演示法、实践操作法。
四、教学过程
1.知识回顾
(1)展示三角形图形,回顾三角形的特征。
(2)复习三角形的分类方法。
2.画高练习
(1)教师示范画三角形的高。
(2)学生动手操作,练习画高。
3.图形辨析
(1)出示一些不同类型的三角形,让学生判断并分析。
(2)进行三角形知识的综合应用练习。
4.总结归纳
(1)总结三角形的复习要点。
(2)鼓励学生在生活中观察三角形的应用。
5.布置作业
布置一些三角形综合分析的作业。
三角形(复习)学习目标:1、学会整理知识点提纲,能熟练掌握三角形的相关知识。
2、利用三角形的知识解决实际问题。
一、复习旧知1、同学们,我们学习了“认识图形”,哪位同学能回顾一下怎样对图形进行分类?2、生:我把学过的图形分为平面图形和立体图形两大类。
平面图形有长方形、正方形、平行四边形、三角形、圆,立体图形有长方体、正方体、圆柱体、球等。
我把平面图形按照是否由线段围成的来分为两类,分别是由线段围成的图形和由曲线围成的图形。
由线段围成的图形有三角形、长方形、正方形、平行四边形和圆,由曲线围成的图形有圆。
我把由线段围成的图形按照边的数量分为三角形和四边形两类。
(1人回答,课件配合演示。
)二、板题示标1、师:你的概括能力很强,由于这部分知识很多,这节课就让我们复习三角形的相关知识。
板书课题:三角形(复习)2、师:(课件)请看本节课的学习目标:1、学会整理知识点提纲,能熟练掌握三角形的相关知识。
2、利用三角形的知识解决实际问题。
目标明确的请举手,有信心完成目标的手放下,默记目标。
为了更好地完成本节课的学习目标,请看本节课的自学指导。
三、自学指导师:(课件)自学指导:快速看书24页—31页内容,想一想,我们都学习了哪些有关三角形的知识?1、把三角形按角、按边进行分类。
2、梳理“三角形内角和”的知识。
3、梳理“三角形边的关系”的知识。
4、归纳关于三角形知识点提纲,并作好记录。
先自学,再在小组内交流,5分钟后,比一比谁的提纲整理得最完整。
(1人读)四、先学师:请同学们按照自学指导上的要求自学。
生:带着思考在规定的时间内自学相关内容。
五、后教1、师:现在谁来汇报你整理的三角形知识提纲?生:展台展示:我是按照三角形分类、三角形内角和、三角形边的关系三方面来整理三角形知识提纲的。
我分别按照三角形的角和边把三角形进行分类。
按角分,有锐角三角形、直角三角形、钝角三角形,三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形叫直角三角形……2、你认为他整理的知识提纲有问题吗?生:他整理的知识提纲比较完整,如果能把等腰直角三角形也是特殊的等腰三角形的知识点总结出来就更好了。
人教版数学四年级下册《三角形的整理与复习》教学设计一. 教材分析人教版数学四年级下册《三角形的整理与复习》这一章节主要让学生复习和整理之前学过的三角形相关知识,包括三角形的定义、性质、分类以及三角形的周长和面积计算等。
通过对这部分知识的复习,使学生能够巩固和加深对三角形概念的理解,提高解决问题的能力。
二. 学情分析四年级的学生已经学习了三角形的相关知识,对三角形的定义、性质、分类等有了初步的了解。
但部分学生在计算三角形的周长和面积时,容易出错。
因此,在复习过程中,需要针对这部分学生进行重点辅导,帮助他们理解和掌握计算方法。
三. 教学目标1.知识与技能:通过复习,使学生能够熟练掌握三角形的相关知识,提高解决问题的能力。
2.过程与方法:培养学生独立思考、合作交流的能力,提高他们的数学思维水平。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极进取的精神。
四. 教学重难点1.重点:三角形的相关知识点的理解和运用。
2.难点:三角形周长和面积的计算方法。
五. 教学方法采用启发式教学法、讨论式教学法和练习法,引导学生主动参与、积极思考,通过合作交流,提高解决问题的能力。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.学具:学生自带三角形相关习题。
3.课件:三角形的相关知识点和习题。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的相关知识,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件呈现三角形的相关知识点,包括三角形的定义、性质、分类等,并简要讲解。
3.操练(10分钟)教师给出一些三角形的相关习题,让学生独立完成,并及时给予反馈和讲解。
4.巩固(10分钟)教师学生进行小组讨论,共同解决一些关于三角形的综合性问题,加深学生对知识点的理解。
5.拓展(10分钟)教师引导学生思考三角形在实际生活中的应用,让学生举例说明,拓宽学生的知识视野。
6.小结(5分钟)教师引导学生总结本节课所学内容,加深学生对三角形知识的理解。
治学之法2014-02《三角形的复习课》教学设计文/石忠富【教学内容】三角形的特征、特性、分类、内角和、三角形的高。
【教学目标】1.使学生进一步掌握三角形各部分的名称与意义、三角形内角和、三角形分类的有关知识。
2.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180°。
3.知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。
4.引导学生开展自主复习,初步掌握复习方法,形成基本复习技能。
5.提高复习课学习的兴趣,培养积极的学习态度,使学生获得成功的情感体验。
复习重点:复习三角形单元相关基础知识,初步掌握单元复习的基本方法。
复习难点:通过复习活动,提高学生上复习课的学习兴趣,培养学生积极的学习态度,并使学生获得成功的情感体验。
【教学设想】《三角形的复习》这一内容安排在学生已经学习了三角形的有关知识之后,学生对三角形已经有了直观的认识,并且已经初步认识了三角形的特性,知道了三角形的两边之和大于第三边,还学会了三角形的分类,知道了三角形的内角和是180°。
本节课主要是通过对三角形知识的梳理,把整个单元的知识从零碎的片段整理成一个完整的三角形知识体系,并且让学生在对知识的梳理过程中更加深入对三角形知识的理解。
使学生由比较“混沌”的状态到“深刻清晰”地掌握,是本节课的灵魂所在。
对于这类目标的达成,心理学研究告诉我们,按需要的是“体验”和“思辨”并行,在体验中感受、积累,在思辨中提炼、内化。
具体到教学流程,我先借用直观的三角形图,引导学生对三角形进行整理和思考,在大脑中初步梳理出三角形由三条线段围成的封闭图形,并且三角形有三个角、三个顶点、三条边。
然后根据三角形边的特点和边所需的要求对三角形进行分类,并且让学生思考怎样才能围成三角形。
然后再根据角的特点对三角形进行分类。
在按边分类和按角分类的过程中,讨论如何用集合的形式表示出三角形的分类。
课题:全等三角形复习课一、教材分析:本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;掌握角的平分线的性质和判定的证明及运用。
其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以及展望中考的习题训练,提高学生综合运用全等三角形解决问题的能力,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。
在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯.二、学情分析在知识上,学生经历全等三角形全章的学习,对全等三角形和角平分线的概念、性质、判定以及应用基本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。
对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形的概念及角平分线的性质,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定及角平线的性质解决有关问题.2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重难点重点:全等三角形及角平分线的性质与判定的应用.难点:能理解运用三角形全等解题的基本过程,灵活应用角平分线的判定的证明及运用.五、教法与学法以“尝试指导效果回授”为主,以自学、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的.六、教具准备多媒体课件,三角尺,圆规.七、课时安排1课时八、教学过程问题与情境活动1创设情境,引出课题.1、某同学把一块三角形玻璃打碎成三片,现在他只需带上第块就可配到与原来一样的三角形玻璃.师:上述问题实质是判断三角形全等需要什么条件的问题.2.有一个简易平分角的仪器(如图),其中AB二AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是NBAD的平分线,为什么?◊E今天我们这节课来复习全等三角形章节.(引出课题)师生互动设计理念【教师活动】1.创设情境,引出课题.2.板书课题.【学生活动】独立思考,并小组交流意见.1、让学生在情境中明白这节课学习的重点.2、复习旧知识,回忆全等三角形的概念、性质及判定方法和实际应用的解决;3、角的平分线的定义,让学生体验利用证明三角形全等的方法来对画法角形;已知两角及两边作三角形;作一个角等于已知角;作角的平分线。
“直角三角形的性质的复习”教学设计与反思教学设计:一、教学目标:1.知识目标:复习直角三角形的性质,包括勾股定理、正弦定理和余弦定理等。
2.能力目标:能够根据已知条件解决与直角三角形相关的问题,并应用所学知识进行推理和论证。
3.情感目标:培养学生对数学的兴趣,增强学生分析和解决问题的能力。
二、教学过程:1.导入(5分钟):通过出示一些图片或实际生活中的问题,唤起学生对直角三角形的记忆以及相关性质的想法,并引导学生讨论。
2.复习直角三角形的性质(15分钟):a.勾股定理:讲解勾股定理的定义和推导过程,并通过几个例题巩固学生对勾股定理的理解。
b.正弦定理和余弦定理:通过公式的介绍和几个应用题的解答,巩固学生对正弦定理和余弦定理的理解。
3.综合运用(30分钟):让学生通过解答一些综合性的题目,综合运用所学的勾股定理、正弦定理和余弦定理。
同时,鼓励学生阐释自己的解题思路和方法。
4.拓展(25分钟):引导学生思考,利用已经学过的知识,解决一些较为复杂的问题。
同时,鼓励学生进行团队合作,共同解决难题。
5.总结(10分钟):对本节课所学的知识进行总结,引导学生归纳直角三角形的性质以及运用方法。
同时,鼓励学生提出对这些性质的理解和应用的思考。
三、教学反思:在这节课中,通过复习直角三角形的性质,我旨在帮助学生巩固和理解直角三角形相关知识,并能够应用到实际问题中。
通过设计了多个不同难度的题目,将学生针对具体问题进行思考,并能够合理使用已学知识进行解答。
整节课的设计中,我较好地引导学生进行了思考和讨论,充分调动了学生的积极性。
通过多种方式的教学,我能够达到预期的教学目标,让学生掌握直角三角形的性质以及运用方法。
然而,在教学过程中,我也发现了一些问题。
首先,学生在应用直角三角形性质解题时,有的只是简单地机械运用公式,而缺乏实际问题的理解和分析能力。
其次,学生在解答问题时,有时没有运用所学知识的意识,导致答案错误或者无法解题。
B 、 3cm, 5cm, 9cmC 、 14cm, 9cm, 6cmD 、 5cm, 6cm, 11cm2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定4.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )第4题图第2A B CD于O,则∠AOC+∠DOB=()第6题图A、900B、1200C、1600D、1800题组三:1、已知两条线段的长分别是3cm、8cm ,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多少长?2、有两边相等的三角形一边的长是5 cm,另一边的长是8cm,求它的周长3、指导复习题7第3、6、7、9、10拓展思维1、如图:D是△ABC中BC 边上一点,试说明2AD<AB+BC+AC。
2、有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。
活动5推荐作业,补充升华必做题:习题复习题7第2、8题选做题:习题:设计出多边形镶嵌的图案吗?【师生互动】提示:由AC+CD>AD与AB+BD>AD相加可得。
【课件展示】六边形,截去一三角形,内角和会发生怎样变化?【设计意图】鼓励学生能用所学知识,解决实际问题。
【设计意图】为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。
B AD CB。
人教版数学四年级下册《三角形的整理与复习》教案一. 教材分析人教版数学四年级下册《三角形的整理与复习》这一课的主要内容是让学生复习和掌握三角形的性质和分类。
通过这一课的学习,学生能够进一步理解三角形的特性,提高解决实际问题的能力。
本节课的内容包括三角形的定义、三角形的性质、三角形的分类以及三角形的应用等。
二. 学情分析四年级的学生已经学过三角形的基本知识,对三角形的定义和性质有一定的了解。
但是,对于三角形分类的掌握程度参差不齐,部分学生对于直角三角形、锐角三角形和钝角三角形的区分还不够清晰。
因此,在教学过程中,需要针对学生的实际情况进行讲解,使学生能够更好地理解和掌握三角形的相关知识。
三. 教学目标1.知识与技能:使学生掌握三角形的定义、性质和分类,能够运用三角形的相关知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:使学生掌握三角形的定义、性质和分类。
2.教学难点:三角形分类的判断和应用。
五. 教学方法采用情境教学法、问题教学法、合作学习法等多种教学方法,引导学生主动探究,培养学生的动手操作能力和解决问题的能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件等。
2.学具:学生自带三角形物品、练习本等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示各种三角形,引导学生观察和思考:这些三角形有什么共同的特点?从而引出三角形的定义和性质。
2.呈现(10分钟)讲解三角形的定义、性质和分类,让学生通过观察、操作、思考,进一步理解和掌握三角形的相关知识。
3.操练(10分钟)学生分组讨论,根据三角形的性质和分类,对给定的三角形进行判断。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成练习题,教师及时批改,指出错误,帮助学生巩固所学知识。
直角三角形复习的教学设计简介直角三角形是初中数学中重要的几何概念之一,也是后续高中数学中三角函数和解析几何的基础。
因此,正确复习直角三角形知识是非常重要的。
本文将介绍一种适用于初中二年级学生的直角三角形复习教学设计。
教学目标通过本教学设计,学生应该达到以下几个目标:1.理解直角三角形定义及相关概念;2.掌握求直角三角形斜边、直角边、角度的基本方法;3.熟练运用直角三角形的知识解决简单问题。
教学内容1.直角三角形的定义与性质;2.熟练运用勾股定理求解直角三角形的斜边、直角边;3.熟练运用正弦、余弦、正切函数求解直角三角形的角度;4.解决部分实际问题。
教学过程第一步:复习直角三角形的定义和性质,引入勾股定理首先,我们将复习直角三角形的定义和性质。
教师可以采用白板或投影仪展示直角三角形的图形,并引导学生回顾直角三角形的定义及重要性质,如直角边、斜边等。
接着,引入勾股定理。
教师可以通过三角形的图形,先让学生猜测勾股定理的内容,然后再通过简单的证明让学生理解并掌握勾股定理的表述方式。
第二步:集中训练求斜边、直角边的方法在学生掌握勾股定理后,我们可以让学生通过练习掌握求解直角三角形斜边、直角边的基本方法。
教师可以给学生提供一些直角三角形的图形,让学生自己解决问题,并通过讲解、答疑等形式帮助学生理解。
第三步:掌握正弦、余弦、正切函数求角度方法在学生掌握了求解直角三角形斜边、直角边后,我们将学习使用正弦、余弦、正切函数求解直角三角形角度的方法。
教师可以通过三角函数的定义及说明,帮助学生理解正弦、余弦、正切函数的概念,并通过实例让学生掌握如何运用函数求解角度。
第四步:解决部分实际问题在学生掌握了直角三角形的基础知识后,我们将通过讲解一些简单的实际问题来让学生加深对知识的理解。
教师可以设置一些与生活有关的问题,比如解决梯形的高度、电线杆倾斜角度等问题,并通过引导和答疑的方式,让学生学会如何将数学知识运用于实际生活中。
第十一章三角形章节复习教学设计一、教学目标:1.梳理本章的知识结构网络,回顾与复习本章知识.2.结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上进行典型题、热点题的较大量的训练,旨在提高同学们对三角形有关知识、多边形内角和、外角和知识综合运用能力.3.通过初步的几何证明的学习培养学生的推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力,以达到培养学生良好学习习惯的目的.二、教学重点、难点:重点:三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.难点:简单的几何证明及几何知识的简单应用.三、教学过程:知识网络知识梳理1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.△ABC的三边,有时也用a,b,c来表示.顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.2.三角形的分类:3.三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边.已知三角形的两边a、b(a>b),则第三边的范围“a-b<第三边<a+b”4.三角形的高、中线与角平分线:高:顶点与对边垂足间的线段,三条高或其延长线相交于一点,如图.中线:顶点与对边中点间的线段,三条中线相交于一点(重心),如图.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.三条角平分线相交于一点,如图.5.三角形的内角和与外角:(1)三角形的内角和等于180°;(2)直角三角形的两个锐角互余;(3)直角三角形的判定:有两个角互余的三角形是直角三角形;(4)三角形的一个外角等于与它不相邻的两个内角的和;(5)三角形的一个外角大于和它不相邻的任何一个内角.6.多边形及其内角和:(1)在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.正多边形是各个角都相等,各条边都相等的多边形.(2)从n边形的一个顶点出发,能引出(n﹣3)条对角线;(3)经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形;(4)n边形一共有n(n-3)�条对角线.(5)n边形内角和等于(n-2)×180°(n≥3的整数)(6)n边形的外角和等于360°(7)正多边形的每个内角的度数是n n 180)2( 或n360180 (8)正多边形的每个外角的度数是n360考点解析考点一:三角形的三边关系例1.已知a 、b 、c 为△ABC 的三边长,且a 2+b 2=6a +10b ﹣34,其中c 是△ABC 中最长的边长,且c 为整数,求c 的值.解:∵a 2+b 2=6a +10b ﹣34,∴a 2﹣6a +9+b 2﹣10b +25=0,∴(a ﹣3)2+(b ﹣5)2=0,∴a =3,b =5,∴5﹣3<c <5+3,即2<c <8.又∵c 是△AB C 中最长的边长,∴c =5、6、7.例2.已知a,b,c 是△ABC 的三边长.(1)若a ,b ,c 满足,(a -b )2+�−�=0,试判断△ABC 的形状;(2)化简:�−�−�+�−�+�-�−�−�.解:(1)∵(a -b )2+|�−�|=0,∴(a -b )2=0且|�−�|=0,∴a =b =c ,∴△ABC 是等边三角形.(2)∵a ,b ,c 是△ABC 的三边长,∴b -c -a <0,a -b +c >0,a -b -c <0,原式=-(b -c -a )+a -b +c -[-(a -b -c )]=a +c -b +a -b +c -b -c +a=3a -3b +c.例3.已知a ,b ,c 分别为△ABC 三边的长,且满足a +b =3c -2,a -b =2c -6.(1)求c 的取值范围;(2)若△ABC 的周长为18,求c 的值.(1)解:∵a ,b ,c 分别为△ABC 三边的长,a +b =3c -2,a -b =2c -6,3-226c c c c>∴<∴解得2<c <6.(2)∵△ABC 的周长为18,a +b =3c -2,∴a +b +c =4c -2=18.解得c =5.【迁移应用】【1-1】下列长度的三条线段能组成三角形的是()A .3cm 、3cm 、6cmB .3cm 、5cm 、7cmC .2cm 、4cm 、6cmD .2cm 、9cm 、6cm答案:B【1-2】已知三角形的三边长分别为2,a -1,4,则化简|a -3|-|a -7|的结果为___________.答案:2a -10【1-3】已知a ,b ,c 是ABC 的三边长,a 、b 满足2|7|(2)0a b ,且ABC 的周长为偶数,则边长c 的值为多少?解:∵a ,b 满足|a −7|+(b −2)2=0,∴a −7=0,b −2=0,解得a =7,b =2,根据三角形的三边关系,得7−2<c <7+2,即:5<c <9,又∵三角形的周长为偶数,a +b =9,∴c =7.考点二:三角形中的重要线段例4.如图,在△AB C 中,∠ABC =40°,∠C =60°,AD ⊥BC 于D,AE 是∠BAC 的平分线.(1)求∠DAE 的度数;(2)指出AD 是哪几个三角形的高.解:(1)AD ⊥BC 于D,∴∠ADB =∠ADC =90°∵∠ABC =40°,∠C =60°,∴∠BAD =50,∠CAD =30°∴∠BAC =50°+30°=80°∵AE 是∠BAC 的平分线,∴∠BAE =40°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.例5.如图,在△AB C中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长;(2)求BC边的取值范围.解:(1)∵AD是BC边上的中线,∴BD=C D.∵△ABD的周长-△ADC的周长=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,即AB—AC=2①.又AB+AC=10②,①+②得2AB=12,解得AB=6.∴AC=4.(2)∵AB=6,AC=4,∴2<BC<10.例6.如图,在△AB C中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,求S△ADF-S△BEF的值.解:∵点D 是AC 的中点,∴AD =12A C.∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,∴S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.【点睛】三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.【迁移应用】【2-1】如图,在△AB C 中,∠ACB =90°,CD ⊥AB 于D ,图中可以作为△ACD 的高的线段有()A .0条B .1条C .2条D .3条【2-2】如图,在△AB C 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是()A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB【2-3】如图,在△AB C中,点D是BC上的一点,DC=2BD,点E是AC的中点,S△ABC=20cm2,则S△ADE=_____cm2.答案:【2-1】C;【2-2】C;【2-3】� �.考点三:有关三角形内、外角的计算例7.如图,AD平分∠BAC,∠EAD=∠ED A.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD=��∠BA C.∵∠EDA=∠B+∠BAD,∠EAD=∠CAD+∠EAC,∠EDA=∠EAD,∴∠EAC=∠B.(2)解:由(1)可知∠EAC =∠B =50°.设∠CAD =x ,则∠E =3x ,∠EAD =∠ADE =x +50°,∴50°+x +50°+x +3x =180°.∴x =16°.∴∠E =3x =48°.例8.如图,在△AB C 中,三条内角平分线AD ,BE ,CF 相交于点O ,OG ⊥BC于点G .(1)若∠ABC =40°,∠BAC =60°,求∠BOD 和∠COG 的度数;解:∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =50°,∠COG =90°-∠OCG=90°-12(180°-∠ABC -∠BAC )=90°-40°=50°.解:∠BOD =∠COG .理由如下:∵∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =12(180°-∠ACB )=90°-12∠ACB ,∠COG =90°-∠OCG =90°-12∠ACB ,∴∠BOD=∠COG.【迁移应用】【3-1】如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°答案:B【3-2】一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β答案:B【3-3】如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是_______.答案:50°,【3-4】一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的15则这个锐角三角形三个内角的度数为___________________.答案:17°、78°、85°考点4:多边形的内角和与外角和例9.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:∵∠A+∠D+∠F=180°,∠B+∠C+∠E+∠G=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°+360°=540°.例10.一个多边形剪去一个内角后,得到一个内角和为1980°的新多边形,求原多边形的边数.解:设新的多边形的边数为n,∵新的多边形的内角和是1980°,∴180°×(n﹣2)=1980°,解得:n=13,∵一个多边形从某一个顶点出发截去一个角后所形成的新的多边形是十三边形,①若截去一个角后边数增加1,则原多边形边数为12,②若截去一个角后边数不变,则原多边形边数为13,③若截去一个角后边数减少1,则原多边形边数为14,∴原多边形的边数可能是:12或13或14.例11.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为(C)A.80米B.96米C.64米D.48米【迁移应用】【4-1】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是_______________________________.答案:十七边形或十八边形或十九边形【4-2】一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.11答案:D【4-3】如图,已知正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°答案:B考点六:本章中的思想方法:1.方程思想:例13.如图,在△AB C中,∠C=∠ABC,BE⊥AC,△BDE是等边三角形,求∠C的度数.解:设∠C=x°,则∠ABC=x°∵△BDE是等边三角形∴∠ABE=60°∴∠EBC=x°-60°∵BE⊥AC,∴∠BEC=90°在△BCE中,根据三角形内角和定理得90+x+x-60=180,解得x=75∴∠C=75°【点睛】在角的求值问题中,常常利用图形关系或内角、外角之间的关系进行转化,然后通过三角形内角和定理列方程求解.【迁移应用】如图,△AB C中,BD平分∠ABC,∠1=∠2,∠3=∠C,求∠1的度数.解:设∠1=x,根据题意得∠2=x.因为∠3=∠1+∠2,∠4=∠2,所以∠3=2x,∠4=x,又因为∠3=∠C,所以∠C=2x.在△AB C中,根据三角形内角和定理,得x+2x+2x=180°,解得x=36°,所以∠1=36°.2.分类讨论思想:例13.已知等腰三角形的两边长分别为10和6,则三角形的周长是________.【解析】由于没有指明等腰三角形的腰和底,所以要分两种情况讨论:第一种10为腰,则6为底,此时周长为26;第二种10为底,则6为腰,此时周长为22.【点睛】别忘了用三边关系检验能否组成三角形这一重要解题环节.3.化归思想:如图,△AOC与△BOD是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论:∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.例14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:连接CD,由“8字型”模型图可知∠F+∠G=∠FCD+∠GDC,∴∠A+∠B+∠BCF+∠EDG+∠E+∠F+∠G=∠A+∠B+∠BCF+∠EDG+∠E+∠FCD+∠GDC=∠A+∠B+∠BCD+∠CDE+∠E=(5-2)×180°=540°.。
初二数学《三角形的有关证明复习》课时教案【课题】《三角形的有关证明复习》【课型】复习【教学目标】1.了解三角形全等的识别方法和三角形全等的性质,能够证明与等腰三角形、直角三角形、线段垂直平分线、角平分线相关的性质定理和判定定理.2.理解互逆命题、互逆定理,体会反证法的含义.3.能够利用尺规作图作等腰三角形、直角三角形、已知线段的垂直平分线和已知角的角平分线.【教学方法】自主探究法【教具与教学准备】导学案、PPT、多媒体【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。
【教学过程】一、激趣导入,交代目标:(一)激趣导入设计意图(以旧引新,从学生熟知的知识入手,起点低,让全体同学都参与,也为类比探索新知做好准备。
)知识回顾(15分钟)【课堂梳理】知识点一全等三角形1.判断三角形全等的方法:①(三个公理)______、______、_____、②(一个定理)_____.2.全等三角形的性质:①线段相等:对应边相等、对应边上的_______、对应中线、______相等.②角相等:相等.注:利用全等三角形证明线段或角相等知识点二等腰三角形3.等腰三角形性质:①定理: .(等边对等角)②推论: .(三线合一)4.等腰三角形的判断方法:①定义: .②定理: .(等角对等边)知识点三等边三角形5.等边三角形概念: .6.等边三角形的性质:①等边三角形的三条边______.(边)②等边三角形的三个内角都等于______.(角)7.等边三角形的判定:①______相等的三角形是等边三角形.②三个角相等的三角形是 .③有一个角等于____的等腰三角形是等边三角形.注:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.知识点四直角三角形8.直角三角形的性质:①直角三角形的两个锐角 .②直角三角形两条直角边的平方和等于 .③在直角三角形中,如果有一个锐角等于____,那么它所对的直角边等于斜边的 .9.直角三角形的判定:①有两个角的三角形是直角三角形.②如果三角形两边的平方和等于,那么这个三角形为直角三角形.10.直角三角形全等的判定方法:(HL) . 注:(HL)只适用于直角三角形.知识点五线段垂直平分线11.段垂直平分线的定理: .12.线段垂直平分线的逆定理: .13.三角形垂直平分线定理: .知识点六角平分线14.角平分线的定理: .15.角平分线的逆定理: .16.三角形角平分线定理: .注:若一个点到三角形三边以及到三角形三个顶点的距离相等,这个点一定为三角形三边垂直平分线与三个内角角平分线的交点.(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。
人教版数学八年级上册《全等三角形的复习课》教学设计一. 教材分析人教版数学八年级上册《全等三角形的复习课》是对全等三角形概念、性质和判定方法的回顾和巩固。
全等三角形是初中数学中的重要内容,是学习几何的基础知识。
本节课通过对全等三角形的复习,使学生能够熟练掌握全等三角形的性质和判定方法,提高解决问题的能力。
二. 学情分析学生在之前的学习中已经掌握了全等三角形的概念、性质和判定方法,但部分学生对于全等三角形的应用还不够熟练,对于一些复杂图形的全等判定还存在困难。
因此,在复习课中,需要通过具体的例子和练习,帮助学生巩固全等三角形的基本知识,提高解决问题的能力。
三. 教学目标1.知识与技能:通过复习,使学生能够熟练掌握全等三角形的性质和判定方法,能够运用全等三角形的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力、动手能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:全等三角形的性质和判定方法。
2.难点:复杂图形的全等判定和应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生主动探索全等三角形的性质和判定方法。
2.互动法:教师与学生进行互动,让学生通过实际操作,体验全等三角形的性质和判定方法。
3.讨论法:学生分组讨论,共同解决问题,培养学生的团队合作意识。
六. 教学准备1.教师准备:全等三角形的复习资料、PPT、黑板、粉笔等。
2.学生准备:全等三角形的复习资料、笔记本、尺子、圆规等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等三角形的概念、性质和判定方法,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT或黑板,呈现全等三角形的性质和判定方法,引导学生观察、思考。
3.操练(15分钟)教师给出一些全等三角形的例子,让学生分组讨论,运用全等三角形的性质和判定方法进行判定。
人教版数学八年级上册《全等三角形复习》教学设计一. 教材分析人教版数学八年级上册《全等三角形复习》主要包括全等三角形的定义、性质、判定和应用。
本节内容是学生在学习了全等三角形的基础上进行的复习,旨在加深学生对全等三角形知识的理解,提高学生的解题能力。
二. 学情分析学生在七年级时已经学习了全等三角形的基本知识,对本节内容有一定的了解。
但部分学生在理解上还存在一定的困难,如对全等三角形的判定条件的理解,以及如何运用全等三角形解决实际问题。
因此,在教学过程中,教师需要针对学生的实际情况进行讲解,引导学生深入理解全等三角形的性质和判定方法。
三. 教学目标1.理解全等三角形的定义和性质;2.掌握全等三角形的判定方法;3.能够运用全等三角形解决实际问题;4.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.全等三角形的定义和性质;2.全等三角形的判定方法;3.运用全等三角形解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,提高学生的理解能力和解决问题的能力。
六. 教学准备1.教学PPT;2.相关练习题;3.教学黑板。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等三角形的基本知识,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现全等三角形的定义、性质和判定方法,引导学生认真观察和思考。
3.操练(10分钟)教师给出几个全等三角形的例子,让学生分组讨论,判断给出的三角形是否全等。
通过实际操作,让学生加深对全等三角形知识的理解。
4.巩固(10分钟)教师针对学生的讨论结果,进行讲解和总结,巩固学生对全等三角形的判定方法的掌握。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用全等三角形知识进行解决。
学生分组讨论,分享解题过程和结果。
6.小结(5分钟)教师引导学生对本次课程的内容进行总结,巩固所学知识。
7.家庭作业(5分钟)教师布置一些有关全等三角形的练习题,让学生课后巩固所学知识。
本课教学流程:设疑导入f合作探究一学以致用(找、选、造)基于基本图形的问题导向式复习课例—以《相似三角形专题复习》为例课题】九年级总复习第二轮专题复习《相似三角形专题复习》教学设计【所需课时】1课时【课标要求及分析】课标要求:了解相似三角形的定义、判定定理、性质定理,并会解决简单的实际问题.课标分析:《标准》的要求定位在“了解”和“简单”的层面,因此在复习过程中要注重对相似三角形相关基础知识和常见题型的把握. 【教材及学情分析】北师大版九年级上册《图形的相似》是在研究“图形的全等”的基础上集中研究“图形的相似”.在前面的学习中,学生已经较为系统的学习了线段的比、成比例线段、平行线分对应线段成比例定理、相似图形、相似多边形、位似图形等,具备了一定的合情推理和演绎推理能力,为该章节中的重点内容《相似三角形专题复习》做好了知识和能力的准备.【学习目标】1.掌握相似三角形的定义、判定定理、性质定理;2.能根据相似三角形的判定定理和性质定理以及已经学习过的其他知识解决简单的实际问题,进一步体会类比、分类、归纳、数形结合的思想方法.【教学重、难点分析】教学重点为相似三角形的判定定理和性质定理,教学难点为相似三角形性质定理的灵活应用.【教学方式与方法的选择】设疑引导、讲练结合教学设计思路】首先通过小组合作把学生的个人课前作业进行讨论、完善和展示,总结出相似三角形的常见基本图形,为本节专题复习做好知识铺垫.接着以问题为导向,以“找”“选”“造”三道低起点、缓坡度的例题,引导学生自主探究相似三角形的相关问题,感受基本图形在相似三角形问题中的应用,并总结归纳出相关的解题方法.课后作业设计了两道有梯度的题目,既加深对知识本质的理解,又强化知识之间的联系,在巩固检测所学知识的同时,激发和提升学生的数学思维能力和创新意识。
【教学资源】学案图表资料、多媒体课件、几何画板合作探究学以致用(找相似型)学以致用(选相似型)学以致用(造相似型)【例1】如图,在\ABC中,DE〃BC,AE:EC=2:3,则BC等于()A.10B.8C.9D.6【设疑】这题用到什么相似基本型?【学生回答】A型.【追问】选D的同学错在哪里?【学生回答】把AE:EC=2:3当作A型相似三角形的相似比了,应该是2:5才对.【例2】如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.独立完成学生说题学生体会找相似基本型是解题的关键,培养学生的表达能力【设疑】这题用到什么相似基本型?【学生回答】A型,X型.【追问】从哪个基本型入手?怎么解决?【学生回答】因为已知的AB和CD在X型中,所以从乂型厶ABEs^DCE入手,知道BE:EC=1:3,所以在人型厶BEFs^BCD中,EF:CD=1:4,从而求3出EF二4【追问】还有别的方法吗?【学生回答】选A型厶DEFs^DAB也可以.【例3】如图,在口ABCD中,对角线AC与BD相交于点0,在DC的延长线上取一点E,连接0E交BC于点F.已知AB=a,BC=b,CE=c,求CF的长.【设疑】这题有相似基本型?能否直接解决问题?【学生回答】有X型,但是与CF无关,不能求CF.【追问】有什么好办法解决这个问题?独立完成后小组讨论学生说题思考分析学生体会有多个相似基本型时,如何进行选择并解题,培养学生的数学思维能力从“找”到“选”到“造”相似基本型,突出重难点,并使学生的探究变得自然,使思维得到有层次的提升△EDG ,所以CF DG ECED'CFc即='b -CFa +c从而解得CFbe a +2 e讨论交流 相互补充 鼓励学生从多角度多方面考虑问题,实现一题多解,增加学生思维的灵活性总结经验归纳方法 【学生回答】利用平行构造相似•在△CEF 中,已知CE二c,求CF,所以应构造一个与ACEF 相似的三角形.从而有OH 二2CD L-iHFOH再证△OFHS ^EFC ,所以FC =EC【师生总结】通过前面三个例题,我们学会了“找”“选”“造”相似基本型,而“造”相似基本型的常用方法是作平行。
《三角形的复习》教学设计
(二)精准检测
(三)精准释难
《三角形的复习》教学过程
一、课前预学检测
老师:昨天我们复习了第三单元,今天改复习第四单元了,还记得第四单元是什么内容吗?(生:三角形)
老师:接下来有请今天的小老师带领大家复习三角形的知识。
小老师:昨天老师布置了整理三角形这个单元的知识点任务,老师评选出几张结构清晰,内容完整的知识清单,让我们去看看吧。
(出示ppt) 第一张的主人是谁?请上来给大家讲讲你的设计。
(学生1讲自己的设计)
小老师:请大家为他的设计点评(学生点评学生1的设计)
小老师:第二张的主人是谁?请上来给大家分享你的设计理念吧。
(学生2讲自己的设计)
小老师:请大家认为他的设计怎样?(学生点评学生2的设计)
老师补充:欣赏其余同学的知识整理清单(出示ppt)
二、预学检测
小老师:同学们的知识清单整理的很完善,下面我想看看你们的知识知识掌握的怎样。
请同学们拿出课前预学检测单,哪一组的同学愿意
带领大家学习检测单的内容?
(小组分工讲解课前预学检测单的内容)
小老师:请大家为他们小组点评(学生点评)
小老师:我觉得第一小题很重要,我们一起来读一读(生齐读第一题)小老师:我还想考考大家,三角形的高与底是什么关系呢?
(生:三角形的高与底是互相垂直且一一对应)
小老师:第二题中运用哪个知识点?
(生:第二题运用三角形边的关系)
小老师:怎样又对又快的判断三条线段是否能围成三角形?
(生:用最短的两条边相加得到的和与第三边比较,如果大于第三边就能围成三角形,如果小于或等于第三边就不能围成三角形)
小老师:他讲得很清楚,掌声送给她。
你们觉得第三题和第四题都运用哪个知识点?(生:三角形的内角和是180度)
三、课中释难
小老师:同学们发挥团队合作精神完成了课前预学检测单的学习,下面请继续发挥团队合作精神解决任务单上的问题。
解决前先来读一读合作要求。
(学生齐读要求,再小组合作完成任务单)
小老师:那一组同学愿意来讲解你们的方法?
(抽生讲解,学生点评)
老师质疑:这道题为什么会有两种情况?像这种只告诉我们一个等腰梯形的一个内角度数时我们应该怎样解决?
(学生回答)
老师:如果有一个等腰梯形的一个内角是50度,那么这个三角形一定是钝角三角形。
这种说法对吗?(学生回答)
四、课中练习
小老师:我相信同学们有新收获,下面请把学到的知识学以致用,请拿出课中练习巩固单,独立完成。
完成后举手示意。
(学生独立完成)
小老师抽生讲解课中练习巩固单的题目
小老师:记下来的时间交给王老师。
老师:老师之前除了让大家整理知识点,还让大家收集有价值的题目,并分享你做这类题的金点子。
谁愿意上来拿出你的题考考大家。
(展示学生收集的题目,并请学生帮忙解决)
五、课堂总结
老师:通过这节课的学习你有什么新的收获?
六、作业布置
完成课后作业单上的题目
《复习三角形》教学效果及反思
本节课是在期末复习阶段帮助学生对西师版四年级下册第四单元《三角形》这个单元的知识掌握情况进行复习检测。
为了让学生复习本单元的基础知识,我安排了学生用自己喜欢的方式整理本单元的知识点这个环节,并进行评比。
这样是为
了激发学生的学习兴趣,让枯燥的看书变得更有趣味性。
预学指导单明确了学生需要做的工作,为学生的独立自主的学习提供了指导方向。
让学生回去通过看书整理单元的知识点,进一步巩固基础知识。
预学效果检测单的题目设计了关于三角形高与底的关系、三角形三边关系,三角形的内角和是180度等重要知识点,这里的题目主要检测学生对三角形的基础知识的掌握情况。
为后面进一步运用这些知识解决问题做铺垫。
课中任务单是对本单元较难题目的释难。
任务单的题目较难,所以采用了小组合作形式完成。
课中训练巩固单是对学生的知识灵活运用情况进行检测。
同时对未掌握的学生进行再一次的知识补救。
所以采用了独立完成的方式。
在这节课的教学过程中注重了培养学生的独立思考解决问题的能力和团队合作意识,同时打破了传统的教学模式,不再是老师满堂讲,而是把主体的地位让给了学生,让学生成为学习的主人。
学生在讲的过程中得到了好的锻炼。
但还有很多不足的地方,比如:学生之间的互动较少,学生之间的小组合作分工不够明确,小老师的评价语言单一,学生上台来表现不够自信,对后进生关注不够等等。
在今后的教学中我一定继续学习研究自导式教学模式,不断改进自己在教学中的不足。
有了尝试就会有进步,我相信自导式教学一定会让我们老师教得
更轻松,让学生学得更快乐。
课前预学指导单
预学要求:
1、根据本单元的学习内容,选择你喜欢的方式整理本单元的知识点。
2、收集你认为有价值的题目,分享你做这类题的金点子。
课前预学检测单
1、过三角形的一个顶点画对边的()线,(顶点)
与(垂足)之间的线段是三角形的(),对边是
三角形的()。
2、在能围成三角形的3条线段后面画√。
(1)5厘米、5厘米、5厘米()(2)4厘米、6厘米、6厘米()(3)3厘米、3厘米、7厘米()(4)4厘米、6厘米、7厘米()3、一个三角形中,其中一个角是直角,一个锐角是35°,另一个锐角是()度。
4、等腰三角形的底角是45°,顶角是()°,这个三角形按角分类是
()三角形。
课中练习巩固单
1、一个等腰三角形的两边分别是6厘米和5厘米,它的周长是()厘米。
2、一个等腰三角形的一个底角是20°,它的顶角是(),按角分类它是()
三角形;一个等腰三角形的顶角是20°,它的一个底角是()度。
3、一个三角形的三边长都是整厘米数,已知三角形的两边长分别是8厘米和15厘米,第三边最短是()厘米,最长是()厘米。
课后作业训练单
一、填空。
1.三角形有()条高,高与对应的底互相()。
2.()叫做等边三角形,等边三角形的3个内角都是
()。
3.三角形任意两边之和()第3边,三角形的内角和是()。
4.一个三角形有两个内角分别是35°、55°,它的第三个角是()度,这个三角形是()三角形。
5、一个等腰三角形的两边分别是12厘米和5厘米,它的周长是()厘米。
二、判断。
(1)等边三角形是轴对称图形,有3条对称轴。
()
(2)等边三角形是特殊的等腰三角形。
()
(3)有3条线段组成的图形是三角形。
()
(4)三角形最多有一个钝角或直角,至少有2个锐角。
()
(5)等腰三角形一定是锐角三角形。
()。