离散数学模拟题(开卷)
- 格式:docx
- 大小:82.07 KB
- 文档页数:7
离散数学模拟试题填空题30分1. 数理逻辑研究的中⼼问题是推理,命题必须具备:其⼀,语句是_______;其⼆,语句有_______。
命题的真值就是命题的逻辑取值。
若⼀个命题是真命题,其真值为____ ;若⼀个命题是假命题,其真值为___ 。
2. 基本的逻辑联结词包括 ____、____、____、____、____。
含有n 个命题变项的公式A 共有____个赋值。
n 个命题变项只能⽣成____个真值不同的公式。
3. 在⼀阶逻辑中,简单命题被分解成_______和_______。
命题中常出现的量词有_______和_______。
4. 集合是⼀些事物汇集到⼀起组成的⼀个整体,不含任何元素的集合叫做_____,它是所有集合的⼀个⼦集。
设集合}b ,a { A ,它的全体⼦集构成的集合叫做A的_____,P (A )=_______________________________________________。
5. ⼏个集合之间的关系和运算可以⽤⽂⽒图给与形象的描述。
⽤公式表⽰下列阴影部分的集合1=_________________,2=_________________1 .2 .6. ⼀个⾮空集合,且它的元素都是有序对或者集合是空集,则称该集合为⼀个⼆元关系。
任何集合都有三个特殊的⼆元关系________、________、________。
7.关系的运算中R 的逆关系R -1=____________,关系的性质有_____________________________。
如果}a a,,c a,,b ,a {><><><=F ,},c b,,b ,c ,b b,,c c,,a a,,b ,a {><><><><><><=H ,则F?H=____________________________ 8.图论中所说的图是描述事物之间关系的⼀种⼿段,许多事物之间的关系可抽象成点及它们之间的连线,集合论中⼆元关系的关系图就是简单的图。
离散数学考试模拟试题及详细参考答案共四套a 离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)d eb c图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→F)→C, B→(A∧S)B→Eb)x(P(x)→Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠,关系R满足:<,>∈R,当且仅当< x1, x2>∈R1且∈R2。
一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。
5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。
设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。
4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。
二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。
4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。
一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。
2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。
3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。
4.幂集P(P(∅)) =________________。
5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。
6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。
7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。
8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。
9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。
10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。
二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。
2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。
2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。
3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。
4.证明:R是传递的⇔R*R⊆R。
5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。
北京语言大学网络教育学院《离散数学》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3[B] 8[C]9[D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。
[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的子集,则一定有( )。
[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X4、下列关系中是等价关系的是( )。
[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。
[A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A 到A 的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通图G具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一次回到该结点()。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是()。
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
《离散数学》模拟试题3一、填空题(每小题2分,共20分)1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。
2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。
3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,ρ(A)-ρ(B)=_____ _ _。
4. 已知命题公式RQPG→∧⌝=)(,则G的析取范式为。
5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。
”符号化,其真值为。
二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。
)1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().A.{1}B. {1, 3}C. {3,4}D. {1,2}2. 下列式子中正确的有()。
A. φ=0B. φ∈{φ}C. φ∈{a,b}D. φ∈φ3. 设集合X={x, y},则ρ(X)=()。
A. {{x},{y}}B. {φ,{x},{y}}C. {φ,{x},{y},{x, y}}D. {{x},{y},{x, y}}4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},则R不具备().三、计算题(共50分)1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C={n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))(3)B-(A∩C) (4)(~A∩B) ∪D2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A,R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。
网络学院离散数学模拟试题1 考试时间120 分钟考试方式:开卷专业年级姓名学号一、选择填空题(每个空格3分,共30分)1.设A,B是集合,且φA,则_____必定成立。
D-B=A.A=B B.B⊆A C.A∩B=φD.A⊆B 2.{φ,{φ}}-φ=_____;CA. φ B. {φ} C. {φ,{φ}} D. {{φ}}3.设集合A={{0}},则P(A) =_____。
DA. P(P({0}))B. P({0})∪φC. P({0})∪{{0}}D. {φ,{{0}}}4.设有集合A={1,2,3,4},则从A到{0,1}的不同的函数有____个。
EA.0 B.1 C.4 D.12 E. 16 F. 24 G. 32 5.设G=(a)为12阶循环群,则G没有____阶子群。
EA.1 B.2 C.3 D.4 E. 5 F. 66.凡_____都满足消去律。
DA. 代数系统B. 半群C. 独异点D. 群7.从无向完全图K中至少删除____条边后,所得的图将成为平面图。
B5A.0 B.1 C.2 D.38.若无向图G是有99个结点,9个连通分量,则G中的边数必_____。
C A. ≤90 B. =90 C. ≥90 D. =100 E. ≥1009.下列句子中为命题的是_____。
AA.今天不是星期六。
B.考场内禁用手机!C.今天是周末吗?D.今天真冷呀!10. 任意两个不同极大项的析取式必为______。
AA. 永真公式B. 可满足公式C. 永假公式D. 等值公式二、求出谓词公式(,)(,,)u v F u v w G u v w ∃∃→∀的前束范式。
(10分)解:(,)(,,)u v F u v w G u v w ∃∃→∀ ⇔1111(,)(,,)u u F u v w G u v w ∃∃→∀ ⇔111(,)(,,)u v F u v w G u v w ⌝∃∃∨∀ ⇔1111(,)(,,)u y F u v w G u v w ∀∀⌝∨∀⇔1111(,)(,,)u v wF u vG u v w ∀∀∀⌝∨()三、用形式证明的方法证明下列论证的有效性:“本班有些同学是有经验的C++程序员,任何C++程序员都知道对象的概念。
《离散数学》模拟题(补)一.单项选择题1.下面四组数能构成无向图的度数列的有( )。
A 、 2,3,4,5,6,7; B 、 1,2,2,3,4; C 、 2,1,1,1,2; D 、 3,3,5,6,0。
2.图 的邻接矩阵为( )。
A 、;B 、;C 、;D 、。
3.设S 1={1,2,…,8,9},S 2={2,4,6,8},S 3={1,3,5,7,9},S 4={3,4,5}, S 5={3,5},在条件下X 与( )集合相等。
A 、X=S 2或S 5 ;B 、X=S 4或S 5;C 、X=S 1,S 2或S 4;D 、X 与S 1,…,S 5中任何集合都不等。
4.下列图中是欧拉图的有( )。
5.下述命题公式中,是重言式的为( )。
A 、;B 、;C 、;D 、。
6.的主析取范式中含极小项的个数为( )。
A 、2;B 、 3;C 、5;D 、0⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001101110100001⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111111111111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001101111000010⎪⎪⎪⎪⎪⎭⎫⎝⎛000110111010001031S X S X ⊄⊆且)()(q p q p ∨→∧))())(()(p q q p q p →∧→↔↔q q p ∧→⌝)(q p p ↔⌝∧)(r q p wff→∧⌝)(7.给定推理① P ② US ① ③ P ④ ES ③ ⑤ T ②④I ⑥ UG ⑤推理过程中错在( )。
A 、①->②;B 、②->③;C 、③->④;D 、④->⑤8.设S 1={1,2,…,8,9},S 2={2,4,6,8},S 3={1,3,5,7,9},S 4={3,4,5}, S 5={3,5},在条件下X 与( )集合相等。
A 、X=S 2或S 5 ;B 、X=S 4或S 5;C 、X=S 1,S 2或S 4;D 、X 与S 1,…,S 5中任何集合都不等。
9.设R 和S 是P 上的关系,P 是所有人的集合,,则表示关系 ( )。
A 、;B 、;C 、 ;D 、。
10.下面函数( )是单射而非满射。
A 、; B 、;C 、;))()((x G x F x →∀)()(y G y F →)(x xF ∃)(y F )(y G )(x xG ∀)())()((x xG x G x F x ∀⇒→∀∴31S X S X ⊄⊆且},|,{的父亲是y x P y x y x R ∧∈><=},|,{的母亲是y x P y x y x S ∧∈><=R S ο1-},|,{的丈夫是y x P y x y x ∧∈><},|,{的孙子或孙女是y x P y x y x ∧∈><Φ},|,{的祖父或祖母是y x P y x y x ∧∈><12)(,:2-+-=→x x x f R R f x x f R Z f ln )(,:=→+的最大整数表示不大于x x x x f Z R f ][],[)(,:=→D 、。
11.其中R 为实数集,Z 为整数集,R +,Z +分别表示正实数与正整数集。
1、 设S={1,2,3},R 为S 上的关系,其关系图为则R 具有( )的性质。
A 、自反、对称、传递;B 、什么性质也没有;C 、反自反、反对称、传递;D 、自反、对称、反对称、传递。
12.设,则有( )。
A 、{{1,2}} ;B 、{1,2 } ; C 、{1} ; D 、{2} 。
13.设A={1 ,2 ,3 },则A 上有( )个二元关系。
A 、23; B 、32; C 、; D 、二.填空题1.任何(n,m) 图G = (V,E) , 边与顶点数的关系是 。
2.当n 为 时,非平凡无向完全图Kn 是欧拉图。
3.已知一棵无向树T 有三个3顶点,一个2度顶点,其余的都是1度顶点, 则T 中有 个1度顶点。
4.n 阶完全图Kn 的点色数X(KN)= 。
5.设集合A={1,2,3,4,5,6,7,8,9,10},定义A 上的二元关系“≤”为 x ≤ y = x|y , 则= 。
6.设,定义A 上的二元运算为普通乘法、除法和加法,则代数系统<A,*>中运算*关于 运算具有封闭性。
7.在群坯、半群、独异点、群中 满足消去律。
8.设<G,*>是由元素生成的循环群,且|G|=n ,则G = 。
三.证明题1. 设G 为具有n 个结点的简单图,且则G 是连通图。
12)(,:+=→x x f R R f }}2,1{},1{,{Φ=S S ⊆322232y x ∨},2|{N n x x A n∈==G a ∈)2)(1(21-->n n m2. 设G是(n,m)简单二部图,则。
3.证明:在6个结点12条边的连通平面简单图中,每个面的面度都是3。
4.对代数系统<A,*>,*是A上二元运算,e为A中幺元,如果*是可结合的且每个元素都有右逆元,则(1)<A,*>中的每个元素在右逆元必定也是左逆元。
(2)每个元素的逆元是唯一的。
5.证明任一环的同态象也是一环。
四.中国邮递员问题求带权图G中的最优投递路线。
邮局在v1点。
五.应用题某年级共有9门选修课程,期末考试前必须提前将这9门课程考完,每人每天只在下午考一门课,若以课程表示结点,有一人同时选两门课程,则这两点间有边(其图如右),问至少需几天?参考答案:一、单项选择题题目123456789答案B C B B C C C C A 题目10111213答案A B D D42nm二.填空题 1.2.奇数3.54.n5.LCM (x,y )6.乘法7.群 8.三.证明题1、反证法:若G 不连通,不妨设G 可分成两个连通分支G 1、G 2,假设G 1和G 2的顶点数分别为n 1和n 2,显然。
与假设矛盾。
所以G 连通。
2、设G=(V ,E ),对完全二部图有当时,完全二部图的边数m 有最大值。
故对任意简单二部图有。
3、证:n=6,m=12 欧拉公式n-m+f=2知 f=2-n+m=2-6-12=8 由图论基本定理知:,而,所以必有,即每个面用3条边围成。
4.证明:(1)设,b 是a 的右逆元,c 是b 的右逆元,由于,所以b 是a 的左逆元。
(2)设元素a 有两个逆元b 、c ,那么∑∈=Vv mv d 2)(},,{12e a a a a G nn ==-,Λn n n =+2111112121-≤-≤∴≥≥n n n n n n Θ2)2)(1(2)2)(1(2)1(2)1(212211--=-+-≤-+-≤∴n n n n n n n n n m nn n n Y n X Y X V =+==⋃=2121,,,则4)2()(2211211121n n n n n n n n n n n m +--=+-=-=⋅=21nn =),(m n 42n ),(m n 42n m ≤242)deg(=⨯=∑m F 3)deg(≥iF 3)deg(=iF A c b a ∈,,b e b b a b ==*)*(*a b e a b c b a b c b a b c b e **)*()*(*)*(*)*(**=====a 的逆元是唯一的。
5.证明:设是一环,且是关于同态映射f 的同态象。
由是Abel 群,易证也是Abel 群。
是半群,易证也是半群。
现只需证:对是可分配的。
于是同理可证因此也是环。
四.中国邮递员问题解:图中有4个奇数结点,(1) 求任两结点的最短路再找两条道路使得它们没有相同的起点和终点,且长度总和最短:(2) 在原图中复制出,设图G ‘,则图G‘中每个结点度数均为偶数的图G ‘存在欧拉回路,欧拉回路C 权长为43。
五.应用题c c e c a b c a b e b b =====**)*()*(**>•+<,,A >⊗⊕<,,)(A f >+<,A >⊕<,)(A f >•<,A >⊗<,)(A f ⊗⊕3,2,1,)(:,,),(,,321321==∈∀i b a f a a a A f b b b i i 使得则必有相应的)()())()(())()(()()())()(())(())(()())()(()()(3121312131213121321321321321b b b b a f a f a f a f a a f a a f a a a a f a a a f a a f a f a f a f a f b b b ⊗⊕⊗=⊗⊕⊗=⋅⊕⋅=⋅+⋅=+⋅=+⊗=⊕⊗=⊕⊗)()()(1312132b b b b b b b ⊗⊕⊗=⊗⊕>⊗⊕<,,)(A f 5)(, 3)( ,5)( ,3)(5321====v d v d v d v d 5321,,,v v v v 5736562532457133212211535232513221 , , , , ,4)( , 3)( ,2)( ,4)(, 5)( ,3)(v v v p v v v p v v p v v v p v v v p v v p v v d v v d v v d v v d v v d v v d ============, ,3245713v v p v v v p ==43 ,p p 157123.5726542371v v v v v v v v v v v v v v v v C =解:即为最少考试天数。
用Welch-Powell 方法对G 着色:第一种颜色的点 ,剩余点第二种颜色的点 ,剩余点第三种颜色的点所以≤3 任构成一圈,所以≥3故=3所以三天下午即可考完全部九门课程。
)(G χ685421739v v v v v v v v v 6419v v v v 85273v v v v v 573v v v 82v v 82v v )(G χ932v v v )(G χ)(G χ。