数学奥林匹克初中训练六 Word版,含答案
- 格式:doc
- 大小:549.50 KB
- 文档页数:5
初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。
这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。
无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。
本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。
第一套试题:平方和试题:假设我们有两个正整数 a 和 b。
如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。
我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。
解析:我们可以用比率法解决这个题目。
首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。
然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。
现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。
第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。
2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。
两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。
两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。
3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。
4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。
7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
数学奥林匹克初中训练题(1)第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定 ( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC 且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.数学奥林匹克初中训练题(2)第一试一. 选择题.(每小题7分,共42分)( )1.有铅笔,练习本,圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1件,共需:(A)1.2元 (B)1.05元 (C)0.95元 (D)0.9元( )2.三角形的三边,,a b c 都是整数,且满足7abc bc ca ab a b c ++++++=,则此三角形的面积等于:(A)2 (B)4 (C)4 (D)2( )3.如图1,ΔABC 为正三角形,PM ⊥AB,PN ⊥AC.设四边形AMPN, ΔABC 的周长分别是,m n ,则有: (A)1325m n (B)2334m n (C)80%83%m n (D)78%79%mn( )4.满足22(3)(3)6x y -+-=的所有实数对(,)x y ,使y x取最大值,此最大值为:(A)3+4+5+ (D)5( )5.设p .其中,,,a b c d 是正实数,且满足1a b c d +++=.则p 满足: (A)p >5(B)p <5 (C)p <2 (D)p <3( )6.如图2,点O 是正六边形ABCDEF 的中心,OM ⊥CD,N为OM 的中点.则:ABN BCN S S 等于:(A)9:5 (B)7:4 (C)5:3 (D)3:2二. 填空题.(每小题7分,共28分)1.若实数,x y 满足(1x y =,则x y += .2.如图3,CD 为直角ΔABC 斜边AB 上的高,DE ⊥AC.设ΔADE,ΔCDB,ΔABC 的周长分别是12,,p p p .当12p p p + 取最大值时,∠A= .3.若函数2543kx y kx kx +=++中自变量的取值范围是一切实数,则实数k 的取值范围是 .4.如图4所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= .第 二 试一.(共20分)n 是一个三位数,b 是一个一位数,且22,1a a b b ab ++都是整数,求a b +的最大值与最小值.二.(共25分)如图5,在ΔABC 中,∠A=60O ,O,I,H 分别是它的外心,内心,垂心.试比较ΔABC 的外接圆与ΔIOH 的外接圆的大小,证明你的论断.三.(共25分)求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.参考答案一.1.(B)数学奥林匹克初中训练题(四)第 一 试三. 选择题.(每小题7分,共42分)( )1.在11,,0.2002,7223πn 是大于3的整数)这5个数中,分数的个数为: (A)2 (B)3 (C)4 (D)5( )2.如图1,正方形ABCD 的面积为256,点F 在AD上,点E 在AB 的延长线上,Rt ΔCEF 的面积为200,则BE 的长为:(A)10 (B)11 (C)12 (D)15( )3.已知,,a b c 均为整数,且满足2223a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次方程是:(A)2320x x -+= (B)2280x x +-=(C)2450x x --= (D)2230x x --=( )4.如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O ,且BD=DC=FC=1,则AC 为:( )5.若222a b c a b c k c b a+++===,则k 的值为: (A)1 (B)2 (C)3 (D)非上述答案( )6.设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: (A)272(B)18 (C)20 (D)不存在四. 填空题.(每小题7分,共28分)1.方程222111013x x x x++=+的实数根是 . 2.如图3,矩形ABCD 中,E,F 分别是BC,CD 上的点,且2,3,4A B E C E F A D F S S S ===,则AEF S = .3.已知二次函数2(1)y x a x b =+++(,a b 为常数).当3x =时,3;y =当x 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离为 .4.如图4,半径为2cm ,圆心角为90O 的扇形OAB 的AB 上有一运动的点P.从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心为I,当点P 在AB 上从点A 运动到点B 时,内心I 所经过的路径长为 .第 二 试一.(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值. 二.(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A,距公路30km 的地方有一居民点B,A,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?三.(25分)从1,2,3,……,3919中任取2001个数。
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中数学奥林匹克比赛题及答案奥数题一一、选择题〔每题 1 分,共10 分〕1.假如a,b 都代表有理数,而且a+b=0,那么( )A.a,b 都是0B.a,b 之一是0C.a,b 互为相反数D.a,b 互为倒数答案:C分析:令a=2 ,b=-2,知足2+(-2)=0 ,由此a、b 互为相反数。
2.下边的说法中正确的选项是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D分析:x2,x3 都是单项式.两个单项式x3,x2之和为x3+x2是多项式,清除A。
两个单项式x2,2x2 之和为3x2 是单项式,清除B。
两个多项式x3+x2 与x3-x2 之和为2x3 是个单 项式,清除C,所以选D。
3.下边说法中不正确的选项是( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C分析:最大的负整数是-1,故 C 错误。
4.假如a,b 代表有理数,而且a+b 的值大于a-b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D.b>0答案:D5.大于-π而且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案:C分析:在数轴上简单看出:在-π右侧0 的左侧〔包含0 在内〕的整数只有-3,-2,-1,0 共4 个.选C。
6.有四种说法:甲.正数的平方不必定大于它自己;乙.正数的立方不必定大于它自己;丙.负数的平方不必定大于它自己;丁.负数的立方不必定大于它自己。
这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D.3 个答案:B分析:负数的平方是正数,所以必定大于它自己,故C错误。
7.a 代表有理数,那么,a 和-a 的大小关系是( )A.a 大于-aB.a 小于-aC.a 大于-a 或a 小于-aD.a 不必定大于-a答案:D分析:令a=0 ,立刻能够清除A、B、C,应选D。
初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。
b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。
两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。
两个多项式x3+x2式x2x,与。
,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。
C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。
个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。
,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
数学奥林匹克初中训练题(3)第 一 试一、选择题(每小题7分,共42分)1. 给出如下4个命题:①若m 、n 为已知数,单项式2x 5y n- 2与(m+5) x | m- n+4|y 的和为单项式,则m+ n 的值为- 3或7. ②若M 、N 都是只含有一个字母x 的多项式,M 、N 的次数分别为6次、3次,则M-N 2是次数不超过6的多项式.③若m 为自然数,则关于x 的方程 (- x) m+1 (- x) 2m- 2 (- x) 3m+ 1=x x+1x6m- 1的解是x= -1,0 ,1. ④已知AM 、DN 分别是△AB C 、△DEF 的高,AB=DE,AC=DF,AM=DN. 若∠BAC=40°, ∠AB C= 35°,则∠DFE= 105°,其中,错误命题的个数是( )个.(A)0 (B)1或2 (C)3 (D)42. 如图1,AB CD 是边长为1的正方形,图1对角线AC所在的直线上有两点M 、N,使∠MBN= 135°. 则MN的最小值是( ).3. 已知实数a 、b 、c 满足()211104b c b c a a ⎧⎫⎧⎫+++-=⎨⎬⎨⎬⎩⎭⎩⎭.则代数式ab+ac 的值是( ). (A) – 2 (B) - 1 (C)1 (D)23. 如图4,四边形AB CD 的对角线AC 、BD 相交于点O, E 、F 、G 分别是AB 、OC 、OD 的中点, OA=AD, OB=B C, CD= 3AB. 则∠FEG 的度数是.4. 如图5所示的四边形AB CD 是一片沙漠地的示意图,点A 、B 在x 轴上, E(2,6) , F(3,4). 折线OFE 是流过这片沙漠的水渠,水渠东边的沙漠由甲承包绿化,水渠西边的沙漠由乙承包绿化.现甲乙两人协商:在绿化规划中需将流经沙漠中的水渠取直,并且要保持甲乙两人所承包的沙漠地的面积不变.若准备在AB 上找一点P,使得水渠取直为EP,则点P 的坐标为________.。
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
数学奥林匹克初中训练题(六)
第 一 试
一. 选择题.(每小题7分,共42分)
( )1.正实数,x y 满足1xy =,那么44
114x y +的最小值为:
(A)12 (B)58( )2.33333333(21)(31)(41)(1001)(21)(31)(41)(1001)
----++++ 的值最接近于: (A)12 (B)23 (C)35 (D)58
( )3.如图1, ΔABC 中,AB=AC,∠A=40O ,延长AC 到D,使
CD=BC,点P 是ΔABD 的内心,则∠BPC=:
(A)145O (B)135O (C)120O (D)105O
( )4.,,,a b c d 为两两不同的正整数,且,a b cd ab c d +==+,则满足上述要求的
四元数组 ,,,a b c d 共有: (A)4组 (B)6组 (C)8组 (D)10组
( )5. ΔABC 的三边长皆为整数,且24a bc b ca +++=,当ΔABC 为等腰三角形时,
它的面积的答案有:(A)1种 (B)2种 (C)3种 (D)4种
( )6. ΔABC 的∠A,∠B 皆为锐角,CD 是高,已知2()AD AC DB BC
=,则ΔABC 是: (A) 直角三角形 (B)等腰三角形 (C)等腰直角三角形 (D)等腰三角形或直角三角形
二. 填空题.(每小题7分,共28分)
1.使方程1223x x x c ---+-=恰好有两个解的
所有实数c 为 .
2.如图2,正方形ABCD 中,延长边BC 到E,AE 分别交
BD,CD 于点P,Q.当AP=QE 时,PQ:AE= .
3.如图3, ΔABC 内接于⊙O,,,BC a CA b ==∠A -∠B=90O
,则⊙O 的面积为 . 4.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x 元.一日到达某地,该地有两处招待所A,B.A 有甲级床位8个,乙级床位11个;B 有甲级床位10个,乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B 处,则整数x = .
第 二 试
一.(20分)一批货物准备运往某地,有甲,乙,丙三辆卡车可雇用.已知甲,乙,丙三辆车每次运货量不变,且甲乙两车单独运这批货物分别用2,a a 次;若甲,丙两车合运相同次数,运完这批货物,甲车共运了180t ;若乙,丙两车合运相同次数,运完这批货物,乙车共运了270t .现甲,乙,丙合运相同次数把这
批货物运完,货主应付车方运费各多少元?(按每吨运费
20元计算)?
二.(25分)如图4,在圆外切凸六边形ABCDEF 中,AB ∥DE,BC
∥EF,CD ∥FA.
求证: 凸六边形ABCDEF 是中心对称图形.
三.(25分)试求出所有这样的正整数a 使得关于x 的二次
方程22(21)4(3)0ax a x a +-+-=至少有一个整数
根.。