高高考数学中档大题规范练(圆锥曲线)
- 格式:docx
- 大小:49.30 KB
- 文档页数:8
专题05 五类圆锥曲线题型-2024年高考数学大题秒杀技巧及专项训练(解析版)【题型1 圆锥曲线中的轨迹方程问题】【题型2 圆锥曲线中齐次化处理斜率乘积问题】【题型3 圆锥曲线中的三角形(四边形)面积问题】【题型4 圆锥曲线中的定点、定值、定直线问题】【题型5 圆锥曲线中的极点与极线】题型1 圆锥曲线中的轨迹方程问题曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系:①曲线C 上的点的坐标都是方程(,)0F x y =的解;②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件写出等式;(4)用坐标表示这个等式,并化简;(5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围.y x 、求轨迹方程的方法:定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。
高三数学圆锥曲线试题1.过抛物线的焦点且倾斜角为的直线与抛物线在第一、四象限分别交于两点,则等于()A.5B.4C.3D. 2【答案】C【解析】如图,过作准线的垂线,垂足分别为,过作于,由垂直及抛物线的定义可知,所以,所以,所以.【考点】抛物线的定义.2.已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为()A.B.C.D.【答案】D【解析】由题意知,,利用点差法,设过点的直线(显然,斜率存在)为,交点联立椭圆方程得:,则,又的中点坐标为,即,,故,又,所以,,联立得,所以椭圆方程为,选D.【考点】直线点斜式方程、椭圆方程.3.抛物线的准线截圆所得弦长为2,则= .【答案】2【解析】抛物线的准线为,而圆化成标准方程为,圆心,,圆心到准线的距离为,所以,即.【考点】1.抛物线的准线方程;2.勾股定理.4.如图, 在等腰梯形ABCD中, AB//CD, 且AB="2CD," 设∠DAB=, ∈(0, ), 以A, B为焦点且过点D的双曲线的离心率为e1, 以C, D为焦点且过点A的椭圆的离心率为e2, 设的大致图像是()【答案】D【解析】根据题意,由于等腰梯形ABCD中, AB//CD, 且AB="2CD," 设∠DAB=, ∈(0, ),那么结合双曲线的定义,以A, B为焦点且过点D的双曲线的离心率为e1, 以C, D为焦点且过点A的椭圆的离心率为e2,BD-DA=2a,AB=2c,AD+DC=2a’,且,因为a在增大,c不变可知离心率e1增大,而对于离心率e2,不变,那么可知正确的图象为D。
【考点】双曲线的性质,椭圆的性质点评:主要是考查了双曲线以及椭圆性质的运用,属于中档题。
5.在平面直角坐标系中,设点为圆:上的任意一点,点(2,) (),则线段长度的最小值为.【答案】【解析】根据题意,由于点为圆:上的任意一点,由于圆心(1,0),且点(2,) (),则线段长度的最小值为圆心到Q的距离减去圆的半径2,那么可知,故可知答案为。
圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。
同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。
所以称A,B和C,D称为调和共轭。
2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。
若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。
3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。
由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。
4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。
圆锥曲线精选中档题练习及答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆锥曲线精选中档题练习椭 圆1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )(A)31 (B)33 (C)21 (D)232.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) (A)-1 (B)1(C)5(D)5-3.椭圆131222=+y x 的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( ) (A)43±(B)23±(C)22±(D)43±4.设椭圆的两个焦点分别是F 1、F 2,过F 1作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2是等腰直角三角形,则椭圆的离心率为( ) (A)22 (B)212- (C)22- (D)12-5.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( ) (A)23(B)62(C)72(D)246.已知椭圆中心在原点,一个焦点为)0,32(-F ,且长轴长是短轴长的2倍,则该椭圆的标准方程是______.7.已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,则△ABF 2的周长为______.8.曲线3x 2+ky 2=6表示焦点在x 轴上的椭圆,则实数k 的取值范围是______.9.如图,F 1、F 2分别为椭圆)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆上,若△POF 2是正三角形,则椭圆的离心率为______.10.椭圆14922=+y x 的焦点为F 1、F 2,点P 为椭圆上的一个动点,1PF ·2PF <0,则点P 横坐标的取值范围是______.11.求曲线的方程:(1)求中心在原点,左焦点为),0,3(-F 且右顶点为D (2,0)的椭圆方程.(2)在平面直角坐标系中,B (-4,0),C (4,0),P 为一个动点,且|PB |+|PC |=10,求动点P 的轨迹方程.12.已知椭圆C 的焦点分别为)0,22(1-F 和)0,22(2F ,长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.13.设F 1、F 2分别是椭圆1422=+y x 的左、右焦点.若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值.1.D 2.B 3.A 4.D 5.C6.141622=+y x 7.20 8.k >3 9.13- 10.5353<<-x 11.解:(1)设椭圆方程为,12222=+by a x3=c ,a =2,∴b =1,则椭圆方程为.1422=+y x(2)由题意,动点P 的轨迹为椭圆,且2a =10,c =4,所以b 2=a 2-c 2=9,所以动点P 的轨迹方程.192522=+y x 12.解:设椭圆C 的方程为,12222=+by a x由题意a =3,22=c ,于是b =1.∴椭圆C 的方程为.1922=+y x由⎪⎩⎪⎨⎧=++=19222y x x y 得10x 2+36x +27=0,因为该二次方程的判别式>0,所以直线与椭圆有两个不同的交点, 设A (x 1,y 1),B (x 2,y 2), 则,518,2021636,20216362121-=+--=+-=x x x x故线段AB 的中点坐标为).51,59(-13.解法一:易知a =2,b =1,,3=c所以)0,3(),0,3(21F F -设P (x ,y ),则),3(),3(·21y x y x PF --⋅---= ),83(413)41(322222-=--+=-+=x x x y x因为x ∈[-2,2],故当x =0,即点P 为椭圆短轴端点时,1·2PF 有最小值-2 当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1.解法二:易知a =2,b =1,3=c ,所以)0,3(),0,3(21F F -,设P (x ,y ),则1PF ·2PF =|1PF |·|2PF |·cos ∠F 1PF 2=|1|·|2PF |||||2212212221PF PF F F PF PF ⋅=3]12)3()3[(21222222-+=-+-+++y x y x y x (以下同解法一).双 曲 线1.双曲线898222=-y x 的渐近线方程是( )(A)x y 34±= (B)x y 43±=(C)x y 169±= (D)x y 916±=2.双曲线)0,0(12222>>=-b a bx a y 的两条渐近线互相垂直,那么该双曲线的离心率是( )(A)2 (B)3(C)2(D)233.设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( ) (A)1 (B)25 (C)2 (D)54.已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么双曲线的渐近线方程是( )(A)y x 215±= (B)x y 215±= (C)y x 43±= (D)x y 43±=5.设a >1,则双曲线1)1(2222=+-a y a x 的离心率e 的取值范围是( ) (A))2,2((B))5,2((C)(2,5)(D))5,2(6.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为______.7.若双曲线1422=-m y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是______.8.双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为______.9.已知双曲线)0,0(1:2222>>=-b a by a x C ,以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是______.10.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是______.11.已知双曲线C 的中心是原点,右焦点为),0,3(F 一条渐近线02:=+y x m ,设斜率为k 的直线l 过点A (0,1).(1)求双曲线C 的方程;(2)若双曲线C 与l 无交点,求k 的取值范围.12.已知直线x -y +m =0与双曲线12:22=-y x C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.13.在正△ABC 中,D 、E 分别为AB 、AC 的中点,设双曲线W 是以B 、C 为焦点,且过D 、E 两点.(1)求双曲线W 的离心率;(2)若|BC |=2,建立适当的坐标系,给出双曲线W 的标准方程.1.B 2.C 3.A 4.D 5.B6.116922=-y x 7.)0,7(± 8.516 9.b 10.31611.解:(1)设双曲线的方程为)0,0(12222>>=-b a b y a x ,则⎪⎩⎪⎨⎧==+22322ab b a ,解得⎪⎩⎪⎨⎧==12b a , 所以双曲线的方程为1222=-y x . (2)直线l :y =kx +1,由⎪⎩⎪⎨⎧+==-11222kx y y x ,消去y 得(1-2k 2)x 2-4kx -4=0, 因为直线l 与C 无交点,所以1-2k 2≠0,且判别式=16k 2+16(1-2k 2)<0, 解得k >1或k <-1.12.解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎪⎩⎪⎨⎧=+-=-01222m y x y x 得x 2-2mx -m 2-2=0(判别式>0), m x x x =+=∴2210,y 0=x 0+m =2m , ∵点M (x 0,y 0)在圆x 2+y 2=5上,∴m 2+(2m )2=5, ∴m =±1.13.解:(1)如图,设|BC |=m ,则,23||,2||m BE m CE ==设双曲线W 的长轴长为2a ,焦距为2c , 则,||2,213||||2m BC c m CE BE a ==-=-= 所以离心率.131324132+=-=-==m mace(2)以BC 的中点O 为坐标原点,BC 为x 轴,向右为正方向,过O 作BC 的垂线为y 轴,向上为正方向,建立平面直角坐标系. 因为,1,13=+=c e所以,23,213222=-=-=a cb a 故所求的双曲线方程为.12323222=--y x抛 物 线1.抛物线y 2=-8x 的焦点坐标是( ) (A)(-2,0) (B)(2,0) (C)(-4,0) (D)(4,0)2.设椭圆)0,0(12222>>=+n m n y m x 的右焦点与抛物线y 2=8x 的焦点相同,离心率为21,则此椭圆的方程为( )(A)1161222=+y x (B)1121622=+y x (C)1644822=+y x (D)1486422=+y x3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上的一点,若OA ·AF =-4,则点A 的坐标为( ) (A))22,2(±(B)(1,±2) (C)(1,2)(D))22,2(4.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(1,1)的距离与P 到该抛物线焦点的距离之和的最小值为( ) (A)2(B)3(C)2(D)235.过抛物线y 2=4x 的焦点做一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) (A)有且仅有一条 (B)有且仅有两条 (C)有无穷多条 (D)不存在6.抛物线x 2=4y 的准线方程是______,焦点坐标是______.7.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P (2,4),则该抛物线的方程是______.8.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =______.9.抛物线y 2=4x 上的一点M 到焦点的距离为2,则点M 的横坐标为______.10.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是______.11.过抛物线y 2=4x 的焦点作直线交抛物线于A 、B 两点,若线段AB 的中点横坐标为4,求|AB |.12.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A 、B两点,求证:以AB 为直径的圆与抛物线的准线相切.13.已知A ,B 是抛物线y 2=4x 上的两点,O 为坐标原点,OA ⊥OB ,求证:A ,B 两点的纵坐标之积为常数.14.设点)23,0(F ,动圆P 经过点F 且和直线23-=y 相切.记动圆的圆心P 的轨迹为曲线W .(1)求曲线W 的方程;(2)过点F 作互相垂直的直线l 1,l 2,分别交曲线W 于A ,B 和C ,D .求四边形ACBD 面积的最小值.1.A 2.B 3.B 4.D 5.B6.y =-1 (0,1) 7.y 2=8x 8.2 9.1 10.34 11.解:设A (x 1,y 1),B (x 2,y 2),焦点F ,由抛物线定义,得,2||,2||21p x BF p x AF +=+= 所以|AB |=|AF |+|BF |=x 1+x 2+p ,又线段AB 的中点横坐标为4,即x 1+x 2=8, 所以|AB |=x 1+x 2+p =8+2=10.12.证明:设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),由抛物线定义,得|AB |=x 1+x 2+p ,所以以AB 为直径的圆的半径⋅++=221px x r 又,2210x x x +=因为以AB 为直径的圆的圆心为M ,所以圆心M 到抛物线的准线2px -=的距离为,221p x x ++ 则以AB 为直径的圆与抛物线的准线相切. 13.证明:设A (x 1,y 1),B (x 2,y 2),因为OA ⊥OB ,所以OA ·OB =0,即x 1x 2+y 1y 2=0,所以y 1y 2=-x 1x 2,(y 1y 2)2=(x 1x 2)2,又A ,B 在抛物线上,所以y 12=4x 1,y 22=4x 2,(y 1y 2)2=16x 1x 2,则16x 1x 2=(x 1x 2)2,即x 1x 2=16,所以y 1y 2=-16,即A ,B 两点的纵坐标之积为常数.14.解:(1)过点P 作PN 垂直直线23-=y 于点N .依题意得|PF |=|PN |,所以动点P 的轨迹为是以F )23,0(为焦点,直线23-=y 为准线的抛物线,即曲线W 的方程是x 2=6y .(2)依题意,直线l 1,l 2的斜率存在且不为0, 设直线l 1的方程为,23+=kx y 由l 1⊥l 2得l 2的方程为⋅+-=231x k y将23+=kx y 代入x 2=6y ,化简得x 2-6kx -9=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6k ,x 1x 2=-9. 221221)()(||y y x x AB -+-=∴]4))[(1(212212x x x x k -++==6(k 2+1), 同理可得⋅+=)11(6||2k CD ∴ 四边形ACBD 的面积)11)(1(18||||2122++=⋅=k k CD AB S ,72)21(1822≥++=kk 当且仅当221kk =,即k =±1时,S min =72. 故四边形ACBD 面积的最小值是72.。
圆锥曲线中的仿射变换、非对称韦达、光学性质问题【题型归纳目录】题型一:仿射变换问题题型二:非对称韦达问题题型三:椭圆的光学性质题型四:双曲线的光学性质题型五:抛物线的光学性质【方法技巧与总结】一、仿射变换问题仿射变换有如下性质:1、同素性:在经过变换之后,点仍然是点,线仍然是线;2、结合性:在经过变换之后,在直线上的点仍然在直线上;3、其它不变关系.我们以椭圆为例阐述上述性质.椭圆x2a2+y2b2=1a>b>0,经过仿射变换x′=xy′=a b y,则椭圆变为了圆x 2+y′2=a2,并且变换过程有如下对应关系:(1)点P x0,y0变为P′x0,a b y0;(2)直线斜率k变为k′=a b k,对应直线的斜率比不变;(3)图形面积S变为S′=a b S,对应图形面积比不变;(4)点、线、面位置不变(平⾏直线还是平⾏直线,相交直线还是相交直线,中点依然是中点,相切依然是相切等);(5)弦长关系满足A′B′AB=1+k′21+k2,因此同一条直线上线段比值不变,三点共线的比不变总结可得下表:变换前变换后方程x2a2+y2b2=1a>b>0x 2+y′2=a2横坐标x x纵坐标y y =ab y斜率k=ΔyΔx k =ΔyΔx =abΔyΔx=ab k面积S=12Δx⋅Δy S =12Δx ⋅Δy =ab S弦长l=1+k2Δxl =1+k 2Δx =1+a2b2k2Δx=1+a2b2k21+k2l不变量平行关系;共线线段比例关系;点分线段的比二、非对称韦达问题在一元二次方程ax 2+bx +c =0中,若Δ>0,设它的两个根分别为x 1,x 2,则有根与系数关系:x 1+x 2=-b a ,x 1x 2=c a ,借此我们往往能够利用韦达定理来快速处理x 1-x 2 ,x 21+x 22,1x 1+1x 2之类的结构,但在有些问题时,我们会遇到涉及x 1,x 2的不同系数的代数式的应算,比如求x 1x 2,3x 1x 2+2x 1-x 22x 1x 2-x 1+x 2或λx 1+μx 2之类的结构,就相对较难地转化到应用韦达定理来处理了.特别是在圆锥曲线问题中,我们联立直线和圆锥曲线方程,消去x 或y ,也得到一个一元二次方程,我们就会面临着同样的困难,我们把这种形如x 1+2x 2,λx 1y 2+μx 2y 1,x 1x 2或3x 1x 2+2x 1-x 22x 1x 2-x 1+x 2之类中x 1,x 2的系数不对等的情况,这些式子是非对称结构,称为“非对称韦达”.三、光学性质问题1.椭圆的光学性质从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点(如图1).【引理1】若点A ,B 在直线L 的同侧,设点是直线L 上到A ,B 两点距离之和最小的点,当且仅当点P 是点A 关于直线L 的对称点A 与点B 连线A B 和直线L 的交点.【引理2】若点A ,B 在直线L 的两侧,且点A ,B 到直线的距离不相等,设点P 是直线L 上到点A ,B 距离之差最大的点,即PA -PB 最大,当且仅当点P 是点A 关于直线L 的对称点A 与点B 连线A B 的延长线和直线L 的交点.【引理3】设椭圆方程为x 2a 2+y 2b2=1a >b >0 ,F 1,F 2分别是其左、右焦点,若点D 在椭圆外,则DF 1+DF 2>2a .2.双曲线的光学性质从双曲线的一个焦点发出的光从双曲线的一个焦点发出的光线经过双曲线的另一个焦点(如图).【引理4】若点A ,B 在直线L 的同侧,设点是直线L 上到A ,B 两点距离之和最小的点,当且仅当点P 是点A 关于直线L 的对称点A 与点B 连线A B 和直线L 的交点.【引理5】若点A ,B 在直线L 的两侧,且点A ,B 到直线的距离不相等,设点P 是直线L 上到点A ,B 距离之差最大的点,即PA -PB 最大,当且仅当点P 是点A 关于直线L 的对称点A 与点B 连线A B 的延长线和直线L 的交点.【引理6】设双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,F 1,F 2分别是其左、右焦点,若点D 在双曲线外(左、右两支中间部分,如图),则DF 1-DF 2<2a .3.抛物线的光学性质从抛物线的焦点发出的光线,经过抛物线上的一点反射后,反射光线与抛物线的轴平行(或重合).反之,平行于抛物线的轴的光线照射到抛物线上,经反射后都通过焦点.【结论1】已知:如图,抛物线C :x 2=2py p >0 ,F 0,p2为其焦点,j 是过抛物线上一点D x 0,y 0 的切线,A ,B 是直线j 上的两点(不同于点D ),直线DC 平行于y 轴.求证:∠FDA =∠CDB .(入射角等于反射角)【结论2】已知:如图,抛物线C :y 2=2px p >0 ,F 是抛物线的焦点,入射光线从F 点发出射到抛物线上的点M ,求证:反射光线平行于x 轴.【典例例题】题型一:仿射变换问题例1.(2022·全国·高三专题练习)MN 是椭圆x 2a 2+y 2b2=1a >b >0 上一条不过原点且不垂直于坐标轴的弦,P 是MN 的中点,则k MN ⋅k OP =_________,A ,B 是该椭圆的左右顶点,Q 是椭圆上不与A ,B 重合的点,则k AQ ⋅k BQ =_________.CD 是该椭圆过原点O 的一条弦,直线CQ ,DQ 斜率均存在,则k CQ ⋅k DQ =_________.【答案】 -b 2a 2 -b 2a 2 -b 2a 2【解析】作变换x ′=xy ′=a by,那么椭圆变为圆,方程为:x 2+y 2=a 2,P ′是M ′N ′中点,那么k M ′N ′⋅k OP ′=-1,∴k MN ⋅k OP =b a k M ′N ′ ⋅b a k OP ′ =b 2a 2k M ′N ′⋅k OP ′=-b 2a 2,A ′B ′是圆的左右顶点即直径,那么A ′Q '⊥B ′Q ′⇒k A ′Q '⋅k B ′Q ′=-1,∴k AQ ⋅k BQ =b a k A ′Q ′ ⋅bak B ′Q ′ =b 2a 2k A ′Q ′⋅k B ′Q ′=-b 2a2,C ′D ′是过圆心O 的一条弦即直径,那么C ′Q '⊥D ′Q '⇒k C ′Q ′⋅k D ′Q ′=-1,∴k CQ ⋅k DQ =b a k C ′Q ′ ⋅b a k D ′Q ′ =b 2a 2k C ′Q ′⋅k D ′Q ′=-b 2a2.例2.(2022·全国·高三专题练习)如图,作斜率为12的直线l 与椭圆x 24+y 2=1交于P ,Q 两点,且M 2,22 在直线l 的上方,则△MPQ 内切圆的圆心所在的定直线方程为__________________________.【答案】x =2【解析】如图,作仿射变换:x =2xy =y ,椭圆变为x 2+y 2=1,直线PQ 的斜率12变为直线P Q 的斜率1,M 2,22 变为M22,22 ∴kONk PQ=-1,∴O N ⊥P Q ,由垂径定理M N 平分∠P M Q ,其方程为x =1,∴MN 平分∠PMQ ,∴△MPQ 内切圆的圆心所在的定直线方程为x =2.故答案为:x =2例3.(2022·全国·高三专题练习)Р是椭圆x 24+y 23=1上任意一点,O 为坐标原点,PO =2OQ ,过点Q 的直线交椭圆于A ,B 两点,并且QA =QB ,则△PAB 面积为______________.【答案】92【解析】作变换x '=xy '=32y之后椭圆变为圆,方程为x ′2+y ′2=4,∵P 'O =2OQ 'A 'Q '=B 'Q ' ,∴O 是△P ′A ′B ′的重心,又O 是△P ′A ′B ′的外心∴△P ′A ′B ′′是等边三角形,∴S △P ′A ′B ′=343R 2=33.∴S △PAB =32S △P 'A 'B '=92故答案为:92变式1.(2022·全国·高三专题练习)已知直线l 与椭圆x 24+y 22=1交于M ,N 两点,当k OM ⋅k ON =______,△MON 面积最大,并且最大值为______.记M (x 1,y 1),N (x 2,y 2),当△MON 面积最大时,x 21+x 22=_____﹐y 21+y 22=_______.Р是椭圆上一点,OP =λOM +μON ,当△MON 面积最大时,λ2+μ2=______.【答案】 -122 4 2 1【解析】作变换x '=xy '=2x此时椭圆变为圆,方程为x ′2+y ′2=4,当OM ′⊥ON ′时,S △M ′ON ′=12OM ′ ON ′ sin ∠M ′ON ′最大,并且最大为12×22=2,此时k OM ⋅k ON =12k OM ′ ⋅12k ON ′ =12k OM ′⋅k ON ′=-12,S △MON =12S △M ′ON ′=2.由于OM ′⊥ON ′,OM '=ON ',∴x 1'=y 2'y 1'=x 2' ,∴x 21+x 22=x ′21+x ′22=x ′21+y ′21=4,y 21+y 22=y ′12 2+y ′22 2=y ′21+y ′222=x ′22+y ′222=2,因为OP =λOM +μON ,所以OP 2=λ2OM 2+μ2ON 2+2λμOM ⋅ON∴4=4λ2+μ2 ,∴λ2+μ2=1.故答案为:-12;2;4;2;1.变式2.(2022·全国·高三专题练习)已知椭圆C :x 22+y 2=1左顶点为A ,P ,Q 为椭圆C 上两动点,直线PO 交AQ 于E ,直线QO 交AP 于D ,直线OP ,OQ 的斜率分别为k 1,k 2且k 1k 2=-12,AD=λDF ,AE =μEQ(λ,μ是非零实数),求λ2+μ2=______________.【答案】1【解析】解法1:可得点A -2,0 ,设P x 1,y 1 ,D x 0,y 0 ,则y 1=k 1x 1,y 0=k 2x 0,由AD =λDP 可得x 0+2=λx 1-x 0 ,y 0=λy 1-y 0 ,即有x 0=λx 1-21+λ,y 1=1+λλy 0,∵k 1x 1=y 1,∴1+λλy 0=1+λλk 2x 0=k 2x 1-2λ ,两边同乘以k 1,可得k 21x 1=k 1k 2x 1-2λ=-12x 1-2λ ,解得x 1=2λ1+2k 21 ,y 1=2λ1+2k 21k 1,将P x 1,y 1 代入椭圆方程可得λ2=11+2k 21,由AE =μEQ 可得μ2=11+2k 22=2k 1+2k 21,可得λ2+μ2=1;故答案为:1.解法2:作变换x '=xy '=2y之后椭圆变为圆,方程为x ′2+y ′2=2,k QP ′⋅k OQ ′=2k OP ⋅2k OQ =2k OP ⋅k OQ =-1⇒OP ′⊥OQ ′,设∠P ′A ′O =α,∠Q ′A ′O =β,则α+β=∠P ′A ′Q ′=12∠P ′A ′Q ′=π4,D ′P ′=R cos α,E ′Q ′=Rcos β,A ′P ′=2R cos α,A ′Q ′=2R cos β,∴λ=AD DP =A ′D ′D ′P ′=A ′P ′-D ′P ′D ′P ′=2cos 2α-1=cos2α,μ=AE EQ =A ′E ′E ′Q ′=A ′Q ′-E ′Q ′E ′Q ′=2cos 2β-1=cos2β,∴λ2+μ2=cos 22α+cos 2β=cos 22α+cos 2π2-2α =cos 22α+sin 22α=1.故答案为:1.题型二:非对称韦达问题例4.(2022·全国·高三专题练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点是F 1、F 2,左右顶点是A 1、A 2,离心率是22,过F 2的直线与椭圆交于两点P 、Q (不是左、右顶点),且ΔF 1PQ 的周长是42,直线A 1P 与A 2Q 交于点M .(1)求椭圆的方程;(2)(ⅰ)求证直线A 1P 与A 2Q 交点M 在一条定直线l 上;(ⅱ)N 是定直线l 上的一点,且PN 平行于x 轴,证明:PF 2PN是定值.【解析】(1)设椭圆的焦距是2c ,据题意有:c a =224a =42,a =2,c =1,则b =1,所以椭圆的方程是x 22+y 2=1.(2)(ⅰ)由(1)知A 1-2,0 ,A 22,0 ,F 21,0 ,设直线PQ 的方程是x =my +1,代入椭圆方程得:m 2+2 y 2+2my -1=0,易知Δ=4m 2+4m 2+2 =8m 2+8>0,设P x 1,y 1 ,Q x 2,y 2 ,y 1>y 2,则y 1+y 2=-2m m 2+2y 1y 2=-1m 2+1y 2-y 1=-y 1+y 2 2-4y 1y 2=-22m 2+2m 2+2,直线A1P的方程是:y=y1x1+2x+2①,直线A2P的方程是:y=y2x2-2x-2②,设M x,y,既满足①也满足②,则x=2⋅x2y1+x1y2+2y2-y1x1y2-x2y1+2y2+y1=2⋅2my1y2+y1+y2+2y2-y12y1+y2+y2-y1=2⋅-2mm2+2-2mm2+2-222m2+2m2+2-22mm2+2-22m2+2m2+2=2⋅4m+22⋅2m2+222m+22m2+2=2,故直线A1P与A2P交点M在一条定直线l:x=2上. (ⅱ)设N2,t,P x1,y1,x1∈-2,2,则PN=2-x1,∴PF2PN=x1-12+y212-x1=x1-12+1-x222-x1=12x1-222-x1=22.例5.(2022·全国·高三专题练习)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,短轴长为23.(1)求椭圆C的方程;(2)设A,B分别为椭圆C的左、右顶点,若过点P4,0且斜率不为0的直线l与椭圆C交于M、N两点,直线AM与BN相交于点Q.证明:点Q在定直线上.【解析】(1)因为椭圆的离心率12,∴ca=12,∴a=2c,又2b=23,∴b=3.因为b2=a2-c2=3c2=3,所以c=1,a=2,所以椭圆C的方程为x24+y23=1.(2)解法一:设直线MN:x=ty+4,M x1,y1,N x2,y2,x=ty+4x2 4+y23=1,可得3t2+4y2+24ty+36=0,所以y1+y2=-24t3t2+4y1y2=363t2+4 .直线AM的方程:y=y1x1+2x+2①直线BN的方程:y=y2x2-2x-2②由对称性可知:点Q在垂直于x轴的直线上,联立①②可得x=2ty1y2+6y2+2y13y2-y1.因为y1+y2y1y2=-23t,所以x=2ty1y2+6y2+2y13y2-y1=-3y1+y2+6y2+2y13y2-y1=1所以点Q在直线x=1上.解法二:设M x1,y1,N x2,y2,Q x3,y3,x1,x2,x3两两不等,因为P ,M ,N 三点共线,所以y 1x 1-4=y 2x 2-4⇒y 21x 1-4 2=y 22x 2-4 2⇒31-x 214 x 1-4 2=31-x 224x 2-4 2,整理得:2x 1x 2-5x 1+x 2 +8=0.又A ,M ,Q 三点共线,有:y 3x 3+2=y 1x 1+2①又B ,N ,Q 三点共线,有y 3x 3-2=y 2x 2-2②将①与②两式相除得:x 3+2x 3-2=y 2x 1+2 y 1x 2-2 ⇒x 3+2x 3-2 2=y 22x 1+2 2y 21x 2-2 2=31-x 224 x 1+2 231-x 214x 2-2 2=x 2+2 x 1+2x 1-2 x 2-2 即x 3+2x 3-2 2=x 2+2 x 1+2x 1-2 x 2-2=x 1x 2+2x 1+x 2 +4x 1x 2-2x 1+x 2 +4,将2x 1x 2-5x 1+x 2 +8=0即x 1x 2=52x 1+x 2 -4=0代入得:x 3+2x 3-2 2=9解得x 3=4(舍去)或x 3=1,(因为直线BQ 与椭圆相交故x 3≠4)所以Q 在定直线x =1上.【点晴】求解直线与圆锥曲线定点定值问题:关键在于运用设而不求思想、联立方程和韦达定理,构造坐标点方程从而解决相关问题.例6.(2022·全国·高三专题练习)点A ,B 是椭圆E :x 24+y 23=1的左右顶点若直线l :y =k (x -1)与椭圆E 交于M ,N 两点,求证:直线AM 与直线BN 的交点在一条定直线上.【解析】由题意得,A -2,0 ,B 2,0 ,设M x 1,y 1 ,N x 2,y 2 ,联立x 24+y 23=1y =k (x -1),化简得(3+4k 2)x 2-8k 2x +4k 2-12=0,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,直线AM 的方程为y =y 1x 1+2x +2 ,直线BN 的方程为y =y 2x 2-2(x -2),联立y =y 1x 1+2x +2y =y 2x 2-2(x -2) ,即y =k (x 1-1)x 1+2x +2y =k (x 2-1)x 2-2(x -2),解得x =2(2x 1x 2-3x 1+x 2)x 1+3x 2-4原式=22x 1x 2-3x 1+x 2 +4x 2 x 1+x 2 +2x 2-4=22⋅4k 2-123+4k 2-3⋅8k 23+4k 2+4x 2 8k 23+4k 2+2x 2-4=2-16k 2-243+4k 2+4x 2 -8k 2-123+4k 2+2x 2=4-8k 2-123+4k 2+2x 2 -8k 2-123+4k 2+2x2=4,故直线AM 与直线BN 交点在定直线x =4上.变式3.(2022·全国·高三专题练习)已知A 1、A 2分别是离心率e =22的椭圆E :x 2a 2+y 2b2=1(a >b >0)的左右项点,P 是椭圆E 的上顶点,且PA 1 ⋅PA 2=-1.(1)求椭圆E 的方程;(2)若动直线l 过点0,-4 ,且与椭圆E 交于A 、B 两点,点M 与点B 关于y 轴对称,求证:直线AM 恒过定点.【解析】(1)由题意得A 1-a ,0 ,A 2a ,0 ,P 0,b ,则PA 1 ⋅PA 2=(-a ,-b )⋅(a ,-b )=-a 2+b 2=-c 2=-1,所以c =1,又e =c a =22a 2=b 2+c 2,所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1.(2)当直线l 的斜率存在时,设直线l :y =kx -4,A x 1,y 1 ,B x 2,y 2 ,则M -x 2,y 2 ,由x 22+y 2=1y =kx -4,消去y 得1+2k 2 x 2-16kx +30=0.由Δ=(-16k )2-1201+2k 2 >0,得k 2>152,所以x 1+x 2=16k 1+2k 2,x 1x 2=301+2k 2.k AM =y 1-y 2x 1+x 2=kx 1-4-kx 2+4x 1+x 2=k x 1-x 2 x 1+x 2,直线AM 的方程为y -y 1=k x 1-x 2x 1+x 2x -x 1 ,即y =y 1+k x 1-x 2 x 1+x 2x -x 1 =kx 1-4+k x 1-x 2 x 1+x 2x -x 1 =kx 1-4 x 1+x 2 +k x 1-x 2 x -x 1x 1+x 2=2kx 1x 2-4x 1+x 2 +kx x 1-x 2 x 1+x 2=k x 1-x 2 x 1+x 2x +2kx 1x 2x 1+x 2-4,因为x 1+x 2=16k 1+2k 2,x 1x 2=301+2k2,所以2kx 1x 2x 1+x 2-4=2k 301+2k216k 1+2k2-4=-14,直线AM 的方程为可化为y =k x 1-x 2 x 1+x 2x -14,则直线AM 恒过定点0,-14.当直线l 的斜率不存在时,直线AM 也过点0,-14 ,综上知直线AM 恒过定点0,-14 .变式4.(2022·全国·高三专题练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P 2,2 ,且离心率为22.(1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为A ,B ,过点0,4 斜率为k 的直线与椭圆C 交于M ,N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.【解析】(1)由椭圆过点P 2,2 ,且离心率为22,所以4a 2+2b 2=1c a=22a 2=b 2+c 2 ,解得a 2=8b 2=4 故所求的椭圆方程为x 28+y 24=1.(2)由题意得A 0,2 ,B 0,-2 ,直线MN 的方程y =kx +4,设M x 1,y 1 ,N x 2,y 2 ,联立y =kx +4x 28+y 24=1,整理得1+2k 2 x 2+16kx +24=0,∴x 1+x 2=-16k 1+2k 2,x 1x 2=241+2k 2.由求根公式可知,不妨设x 1=-8k -24k 2-61+2k 2,x 2=-8k +24k 2-61+2k 2,直线AN 的方程为y -2=y 2-2x 2x ,直线BM 的方程为y +2=y 1+2x 1x ,联立y -2=y 2-2x 2x y +2=y 1+2x 1x,得y -2y +2=y 2-2 x 1y 1+2 x 2=kx 2+2 x 1kx 1+6 x 2=kx 1x 2+2x 1kx 1x 2+6x 2代入x 1,x 2,得y -2y +2=24k 1+2k 2+-16k -44k 2-61+2k 224k 1+2k 2+-48k +124k 2-61+2k 2=8k -44k 2-6-24k +124k 2-6=-13,解得y =1,即直线BM 与AN 的交点G 在定直线y =1上.题型三:椭圆的光学性质例7.(2022·全国·高三专题练习)如图①,椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.如图②,双曲线的光学性质:从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图③,一个光学装置由有公共焦点F 1,F 2的椭圆C 1与双曲线C 2构成,已知C 1与C 2的离心率之比为2:5.现一光线从右焦点F 2发出,依次经C 1与C 2的反射,又回到了点F 2,历时3×10-8秒.将装置中的C 2去掉,如图④,此光线从点F 2发出,经C 1两次反射后又回到了点F 2,历时___________.秒【答案】10-7【解析】设F 1F 2 =2c ,椭圆的长轴长为2a 1,双曲线的实轴长为2a 2,光速为v ,而C 1与C 2的离心率之比为2:5,即c a 1c a 2=25,即a 2=25a 1,在图③BF 1 +BF 2 =2a 1,AF 1 -AF 2 =2a 2,两式相减得:BF 1 +BF 2 +AF 2 -AF 1 =2a 1-2a 2,即BF 2 +AB +AF 2 =2a 1-2a 2.在图④中,BF 1 +DF 1 +DF 2 +BF 2 =4a 1,设图④,光线从点F 2发出,经C 1两次反射后又回到了点F 2,历时t 秒,由题意可知:3×10-8×v =2a 1-2a 2,tv =4a 1,则3×10-8t =2a 1-2a 24a 1=310,故t =10-7(秒),故答案为:10-7例8.(2022·全国·高三专题练习)如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C 切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l '与椭圆长轴交于点M ,则|F 1M |:|F 2M |=()A.2:3B.1:2C.1:3D.1:3【答案】C【解析】由椭圆的光学性质得到直线l '平分角F 1PF 2,因为S △PMF1S △PMF2=F 1M F 2M =12F 1P PMsin ∠F 1PM12F 2P PM sin ∠F 2PM =PF 1 PF 2 由PF 1 =1,PF 1 +PF 2 =4得到PF 2 =3,故F 1M : F 2M =1:3.故答案为C .例9.(2022·全国·高三专题练习)圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l :x +2y -8=0与椭圆C :x 216+y 212=1相切于点P ,椭圆C的焦点为F 1,F 2,由光学性质知直线PF 1,PF 2与l 的夹角相等,则∠F 1PF 2的角平分线所在的直线的方程为( )A.2x -y -1=0B.x -y +1=0C.2x -y +1=0D.x -y -1=0【答案】A【解析】x +2y -8=0x 216+y 212=1⇒x =2y =3 ⇒P 2,3 ,直线l 的斜率为-12,由于直线PF 1,PF 2与l 的夹角相等,则∠F 1PF 2的角平分线所在的直线的斜率为2,所以所求直线方程为y -3=2x -2 ,2x -y -1=0.故选:A 题型四:双曲线的光学性质例10.(2022·全国·高三专题练习)双曲线的光学性质是:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.已知双曲线C :x 216-y 29=1的左、右焦点分别为F 1,F 2,从F 2发出的光线射向C 上的点P 8,y 0 后,被C 反射出去,则入射光线与反射光线夹角的余弦值是( )A.1314B.-1114C.1114D.-1314【答案】C【解析】设P (8,y 0)在第一象限,6416-y 029=1⇒y 0=33,PF 2=(8-5)2+(33)2=6PF 1=6+8=14,F 1F 2=10,cos ∠F 1PF 2=142+62-1022×14×6=1114故选:C例11.(2022·全国·高三专题练习)根据圆锥曲线的光学性质,从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,连双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下列问题:已知F 1、F 2分别是双曲线C :x 2-y 2=1的左.右焦点,若从F 2发出的光线经双曲线右支上的点A x 0,1 反射后,反射光线为射线AM ,则∠F 2AM 的角平分线所在的直线的斜率为( )A.-3 B.-2 C.-1 D.-22【答案】D【解析】由已知可得A x 0,1 在第一象限,将点A 的坐标代入双曲线方程可得:x 20-1=1,解得x 0=2,所以A 2,1 ,又由双曲线的方程可得a =1,b =1,所以c =2,则F 2(2,0),所以|AF 2|=1,且点A ,F 2都在直线x =2上,又|OF 1|=|OF 2|=2,设过点A 与双曲线相切的直线方程为y =k x -2 +1,代入x 2-y 2=1所以tan ∠F 1AF 2=|F 1F 2||AF 2|=221=22,设∠F 2AM 的角平分线为AN ,则∠F 2AN =(180°-∠F 1AF 2)×12,所以直线AN 的倾斜角为90°+∠F 2AN =180°-12∠F 1AF 2,所以直线AN 的斜率为tan 180°-12∠F 1AF 2 =-tan 12∠F 1AF 2,因为tan ∠F 1AF 2=2tan 12∠F 1AF 21-tan 12∠F 1AF 2=22,解得tan 12∠F 1AF 2=22所以直线AN 的斜率为-22故选:D .题型五:抛物线的光学性质例12.(2022·全国·高三专题练习)抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必经过抛物线的焦点.已知抛物线y 2=4x 的焦点为F ,一平行于x 轴的光线从点M (3,1)射入,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( )A.43B.-43C.±43D.-169【答案】B【解析】由题意可知点A 的纵坐标为1.将y =1代入y 2=4x ,得x =14,则A 14,1 ,由抛物线的光学性质可知,直线AB 经过焦点F (1,0),所以直线AB 的斜率k =1-014-1=-43.故选:B .例13.(2022·全国·高三专题练习)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线y 2=4x 的焦点为F ,一条平行于x 轴的光线从点M (3,1)射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则△ABM 的周长为( )A.9+10 B.9+26C.7112+26 D.8312+26【答案】B【解析】如下图所示:因为M3,1,所以y A=y M=1,所以x A=y2A4=14,所以A14,1 ,又因为F1,0,所以l AB:y-0=1-014-1x-1,即l AB:y=-43x-1,又y=-43x-1y2=4x,所以y2+3y-4=0,所以y=1或y=-4,所以y B=-4,所以x B=y2B4=4,所以B4,-4,又因为AB=AF+BF=x A+x B+p=14+4+2=254,AM=x M-x A=3-14=114,BM=4-32+-4-12=26,所以△ABM的周长为:AB+AM+BM=254+114+26=9+26,故选:B.例14.(2022·全国·高三专题练习)已知:如图,抛物线C:x2=2py p>0,F0,p 2为其焦点,j是过抛物线上一点D x0,y0的切线,A,B是直线j上的两点(不同于点D),直线DC平行于y轴.求证:∠FDA=∠CDB.(入射角等于反射角)【解析】作抛物线的准线m:y=-p2,延长CD交m于点D x0,-p2,则DF=DD ;由C:x2=2py p>0得C:y=x22p,因此y =1p x ,当x0≠0时直线j的斜率k j=x0p,直线FD 的斜率k FD =-p2-p2x0=-px0,两条直线斜率乘积为-1,所以直线j垂直平分线段FD ,则∠FDA=∠D DA=∠CDB.当x0=0时,点D(0,0),此时直线j为x轴,结论显然成立.综上所述,结论成立.变式5.(2022·全国·高三专题练习)已知:如图,抛物线C:y2=2px p>0,F是抛物线的焦点,入射光线从F点发出射到抛物线上的点M,求证:反射光线平行于x轴.【解析】证明:设My202p,y0,过点M的抛物线的切线为l,且x=t y-y0+y202p,入射光线FM经抛物线壁反射后的反射光线为MN,由y2=2pxx=t y-y0+y202p得y2-2pty+2pty0-y2=0,故Δ=4p2t2-8pt+4y20=0即t=y0p,故切线l的斜率k=py0.设直线l到直线FM的角为α,直线MN到直线l的角为β,则由tanα=tanβ得k FM-k1+k FM⋅k=k-k MN1+k⋅k MN,即y 0x -p 2-py 01+y 0x -p 2⋅py 0=py 0-k MN 1+p y 0⋅k MN ,解得k MN =0,∴反射光线平行于x 轴.【过关测试】一、单选题1.(2022·全国·高三专题练习)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:x 216+y 29=1,点A 、B是它的两个焦点,当静止的小球放在点A 处,从A 点沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最长路程是A.20 B.18C.16D.14【答案】C【解析】由题知,椭圆长半轴长a =4依题意可知小球经两次椭圆壁反弹后回到A 点,根据椭圆的定义可知所走的路程正好是4a =4×4=16故选:C2.(2022·全国·高三专题练习)双曲线的光学性质为:从双曲线一个焦点发出的光,经过反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上,若双曲线E 的焦点分别为F 1,F 2,经过F 2且与F 1F 2垂直的光线经双曲线E 反射后,与F 1F 2成45°角,则双曲线E 的离心率为( )A.2B.2+1C.22D.22-1【答案】B【解析】由题意得:∠AF 1F 2=π4,则AF 2=F 1F 2=2c ,将x =c 代入到x 2a 2-y 2b2=1,y =b 2a ,即AF 2=b 2a ,故2c =b 2a ,即c 2-2ac -a 2=0,同除以a 2得:e 2-2e -1=0,解得:e =2+1或e =1-2<0(舍去)故选:B二、多选题3.(2022·全国·高三专题练习)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点F 1,F 2是它的焦点,长轴长为2a ,焦距为2c ,静放在点F 1的小球(小球的半径不计),从点F 1沿直线出发,经椭圆壁反弹后第一次回到点F 1时,小球经过的路程可以是( )A.4a B.4cC.2a +cD.2a -c【答案】ACD【解析】由题意,不妨令椭圆的焦点在x 轴上,以下分为三种情况:(1)球从F 1沿x 轴向左直线运动,碰到左顶点必然原路反弹,这时第一次回到F 1路程是2a -c ;(2)球从F 1沿x 轴向右直线运动,碰到右顶点必然原路反弹,这时第一次回到F 1路程是2a +c ;(3)球从F 1不沿x 轴,斜向上(或向下)运动,碰到椭圆上的点C ,反弹后经过椭圆的另一个焦点F 2,再弹到椭圆上一点D ,经D 反弹后经过点F 1.此时小球经过的路程是CF 1 +CF 2 +DF 2 +DF 1 =4a .综上所述,从点F 1沿直线出发,经椭圆壁反射后第一次回到点F 1时,小球经过的路程是4a 或2a +c 或2a -c .故选:ACD .4.(2022·全国·高三专题练习)圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知F 1、F 2分别是双曲线C :x 2-y 22=1的左、右焦点,点P 为C 在第一象限上的点,点M 在F 1P 延长线上,点Q 的坐标为33,0,且PQ 为∠F 1PF 2的平分线,则下列正确的是( )A.PF 1 PF 2=2B.PF 1 +PF 2=23C.点P 到x 轴的距离为3D.∠F 2PM 的角平分线所在直线的倾斜角为150∘【答案】AD【解析】先证明结论双曲线C :x 2-y 22=1在其上一点P x 0,y 0 的切线的方程为x 0x -y 0y 2=1,由已知x 20-y 202=1,联立x 0x -y 0y 2=1x 2-y 22=1可得x 2-2x 0x +x 20=0,即x -x 0 2=0,解得x =x 0,所以,双曲线C :x 2-y 22=1在其上一点P x 0,y 0 的切线的方程为x 0x -y 0y 2=1.本题中,设点P x 0,y 0 ,则直线PQ 的方程为x 0x -y 0y2=1,将点Q 33,0代入切线方程可得x 0=3,所以P 3,2 ,即点P 到x 轴的距离为2,C 错;在双曲线C 中,a =1,b =2,则c =a 2+b 2=3,则F 1-3,0 、F 23,0 ,所以,PF 1 =23 2+22=4,PF 2 =02+22=2,所以,PF 1 PF 2=2,A 对;PF 1 =-23,-2 ,PF 2 =0,-2 ,所以,PF 1 +PF 2 =-23,-4 ,则PF 1 +PF 2=-23 2+-4 2=27,B 错;因为∠F 2PM 的角平分线交x 轴于点N ,则∠QPF 2+∠NPF 2=12∠F 1PF 2+∠F 2PM =90∘,所以,PN ⊥PQ ,∵k PQ =23-33=3,则k PN =-1k PQ =-33,故∠F 2PM 的角平分线所在直线的倾斜角为150∘,D 对.故选:AD .三、填空题5.(2022·全国·高三专题练习)过椭圆x 24+y 23=1的右焦点F 的直线与椭圆交于A ,B 两点,则△AOB 面积最大值为_______.【答案】32【解析】作变换x =xy =23y之后椭圆变为圆,方程为x 2+y 2=4,F 1,0 ,由于OF =1<22r =2,因此A B ⊥OF 时面积最大,此时S △A OB=12⋅OF ⋅A B =12×1×23=3,那么S △AOB =32S △A OB=32,故答案为:326.(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆x 24+y 23=1上的三个动点,则△ABC 面积最大值为_____________.【答案】92【解析】作变换x '=xy '=y '=23y之后椭圆变为圆,方程为x 2+y ′2=4,△A ′B ′C ′是圆的内接三角形,设△A ′B ′C ′的半径为R ,设A ,B ,C 所对应边长为a ,b ,c ,所以S △ABC=12a b sin C =12⋅2R sin A ⋅2R sin B ⋅sin C =2R 2sin A ⋅sin B ⋅sin C≤2R 2sin A +sin B +sin C 3 3,当且仅当A =B =C =π3时取等,因为y =sin x 在0,π 上为凸函数,则sin A +sin B +sin C 3≤sin A +B +C3,S △ABC=2R 2sin A +sin B +sin C 3 3≤2R 2sin A +B +C 33=2R 2sin π3 3=334R 2,当且仅当A =B =C =π3时取等,所以圆的内接三角形面积最大时为等边三角形,因此S △A ′B ′C ′=334R 2=334×4=33,又因为S △ABCS △ABC=b a,∴S △ABC =b a S △A ′B ′C ′=32×33=92.故答案为:92.7.(2022·全国·高三专题练习)已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1、F 2分别为椭圆左右焦点,过F 1、F 2作两条互相平行的弦,分别与椭圆交于M 、N 、P 、Q 四点,若当两条弦垂直于x 轴时,点M 、N 、P 、Q 所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.【答案】0,22【解析】作仿射变换,令x =x ,y =aby ,可得仿射坐标系x O y ,在此坐标系中,上述椭圆变换为圆x 2+y 2=a 2,点F 1、F 2坐标分别为(-c ,0)、(c ,0),过F 1、F 2作两条平行的弦分别与圆交于M 、N 、P 、Q 四点.由平行四边形性质易知,三角形O P Q 的面积为M 、N 、P 、Q 四点所形成的平行四边形面积的14,故只需令三角形O P Q 面积的最大值在弦P Q 与x 轴垂直时取到即可.当c ∈0,22a时,三角形O P Q面积的最大值在弦P Q 与x 轴垂直时取到.故此题离心率的取值范围为0,22.故答案为:0,22.8.(2022·全国·高三专题练习)古希腊数学家阿波罗尼奥斯在研究圆锥曲线时发现了它们的光学性质.比如椭圆,他发现如果把椭圆焦点F 一侧做成镜面,并在F 处放置光源,那么经过椭圆镜面反射的光线全部都会经过另一个焦点.设椭圆方程x 2a 2+y 2b2=1(a >b >0),F 1,F 2为其左、右焦点,若从右焦点F 2发出的光线经椭圆上的点A 和点B 反射后,满足∠BAD =90°,tan ∠ABC =34,则该椭圆的离心率为_________.【答案】22【解析】由椭圆的光学性质可知,BC ,AD 都经过F 1,且在△ABF 1中∠BAF 1=90°,tan ∠ABF 1=34,如图,所以|AF1|=3k ,|AB |=4k ,|BF 1|=5k ,由椭圆的定义可知3k +4k +5k =4a ,即a =3k ,又|AF 1|+|AF 2|=2a ,可得|AF 2|=6k -3k =3k ,在Rt △AF 1F 2中,|AF 1|2+|AF 2|2=|F 1F 2|2,所以|F 1F 2|=2c =32k ,所以e =2c 2a =32k 6k=22.故答案为:22四、解答题9.(2022·全国·高三专题练习)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,AF =2FB .(1)求椭圆C 的离心率;(2)如果|AB |=154,求椭圆C 的方程.【解析】(1)设A (x 1,y 1),B (x 2,y 2),由题意知y 1>0,y 2<0.直线l 的方程为y =3x +c ,其中c =a 2-b 2.联立y =3x +c x 2a 2+y 2b2=1得3a 2+b 2 y 2-23b 2cy -3b 4=0,解得y 1=3b 2c +2a 3a 2+b 2,y 2=3b 2c -2a3a 2+b 2.因为AF =2FB ,所以-y 1=2y 2.即-3b 2c +2a 3a 2+b 2=23b 2c -2a3a 2+b 2,得离心率e =c a =23.(2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b 2=154.由c a =23得b =53a .所以54a =154,得a =3,b =5.椭圆C 的方程为x 29+y 25=110.(2022·全国·高三专题练习)椭圆有两个顶点A (-1,0),B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AC 与BD 交于点Q .(1)当CD =322时,求直线l 的方程;(2)当P 点异于A ,B 两点时,证明:OP ⋅OQ为定值.【解析】(1)由题意,椭圆的方程为y 22+x 2=1易得直线l 不与两坐标轴垂直,故可设l 的方程为y =kx +1k ≠0,k ≠±1 ,设C x 1,y 1 ,D x 2,y 2 ,由y =kx +1,y 22+x 2=1,消去y 整理得k 2+2 x 2+2kx -1=0,判别式Δ=8k 2+1 >0.由韦达定理得x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2,①故CD =1+k 2⋅x 1-x 2 =1+k 2⋅8k 2+1 k 2+2=322,解得k =±2,即直线l 的方程为y =±2x +1.(2)证明:直线AC 的斜率为k AC =y 1x 1+1,故其方程为y =y 1x 1+1x +1 ,直线BD 的斜率为k BD =y 2x 2-1,故其方程为y =y 2x 2-1x -1 ,由y =y 1x 1+1x +1 ,y =y 2x 2-1x -1,两式相除得x +1x -1=y 2x 1+1 y 1x 2-1 =kx 2+1 x 1+1 kx 1+1 x 2-1 =kx 1x 2+kx 2+x 1+1kx 1x 2-kx 1+x 2-1即x Q +1x Q -1=kx 1x 2+kx 2+x 1+1kx 1x 2-kx 1+x 2-1.由(1)知x 1=-2kk 2+2-x 2,故x Q +1x Q -1=-k k 2+2+kx 2-2k k 2+2-x 2+1-k k 2+2-k -2k k 2+2-x 2 +x 2-1=k -1 k -2 k 2+2+k -1 x 2k -2 k +1 k 2+2+k +1 x 2=k -1k +1解得x Q =-k .易得P -1k ,0 ,故OP ⋅OQ =x P x Q =-1k⋅-k =1,所以OP ⋅OQ为定值111.(2022·全国·高三专题练习)已知A 、B 分别是椭圆x 22+y 2=1的右顶点和上顶点,C 、D 在椭圆上,且CD ⎳AB ,设直线AC 、BD 的斜率分别为k 1、k 2,证明:k 1k 2为定值.【解析】证明:由题意得A 2,0 ,B 0,1 ,则k AB =-22,设直线CD 的方程为y =-22x +t ,设点C x 1,y 1 、D x 2,y 2 .由y =-22x +tx 22+y 2=1,消去y 得x 2-2tx +t 2-1=0,Δ=2t 2-4t 2-1 =4-2t 2>0,可得-2<t <2,且有t ≠1,由韦达定理可得x 1+x 2=2t ,x 1x 2=t 2-1,y 1y 2=-22x 1+t -22x 2+t =12x 1x 2-22t x 1+x 2 +t 2=12t 2-1 ,∴k 1k 2=y 1x 1-2⋅y 2-1x 2=y 1y 2-y 1x 1x 2-2x 2=12t 2-12+22x 1-tt 2-1-2x 2,又由x 1+x 2=2t 得x 1=2t -x 2,代入上式得:k 1k 2=12t 2-12+222t -x 2 -t t 2-1-2x 2=12t 2-12-22x2t 2-1-2x 2=12,所以,k 1k 2为定值12.12.(2022·全国·高三专题练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1-c ,0 ,F 2c ,0 ,M ,N 分别为左右顶点,直线l :x =ty +1与椭圆C 交于A ,B 两点,当t =-33时,A 是椭圆的上顶点,且△AF 1F 2的周长为6.(1)求椭圆C 的方程;(2)设直线AM ,BN 交于点Q ,证明:点Q 在定直线上.(3)设直线AM ,BN 的斜率分别为k 1,k 2,证明:k1k 2为定值.【解析】(1)当t =-33时,直线l :x =-33y +1,令x =0,得y =3,即椭圆的上顶点为0,3 ,则b =3,又△AF 1F 2的周长为6,即2a +2c =6,a +c =3,又a 2-c 2=b 2=3,解得a =2,c =1,所以椭圆C 的方程为x 24+y 23=1.(2)由(1)知,M -2,0 ,N 2,0 ,设A x 1,y 1 ,B x 2,y 2 ,依题意,点A ,B 不在x 轴上,由x =ty +1x 24+y 23=1消去x 并整理得:3t 2+4 y 2+6ty -9=0,y 1+y 2=-6t 3t 2+4y 1y 2=-93t 2+4,直线AM 的方程为y =y 1x 1+2x +2 ,直线BN 的方程为y =y 2x 2-2x -2 ,联立直线AM 、BN 的方程得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2ty 1+3 y 1ty 2-1=ty 1y 2+3y 2ty 1y 2-y 1,由y 1+y 2=-6t 3t 2+4得y 1=-6t3t 2+4-y 2代入上式,得x +2x -2=ty 1y 2+3y 2ty 1y 2-y 1=-9t 3t 2+4+3y 2-9t 3t 2+4+6t 3t 2+4+y 2=-9t 3t 2+4+3y2-3t 3t 2+4+y2=3,于是得x =4,所以直线AM ,BN 交点Q 在定直线x =4上.(3)由(2)知,k 1k 2=y 1x 2-2 y 2x 1+2 =y 1ty 2-1 y 2ty 1+3 =ty 1y 2-y 1ty 1y 2+3y 2,由y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4得:ty 1y 2=32y 1+y 2 ,所以k 1k 2=ty 1y 2-y 1ty 1y 2+3y 2=12y 1+32y232y 1+92y 2=13为定值.13.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,如图,已知x 29+y 25=1的左、右顶点为A 、B ,右焦点为F ,设过点T t ,m 的直线TA 、TB 与椭圆分别交于点M x 1,y 1 、N x 2,y 2 ,其中m >0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹;(2)设x 1=2,x 2=13,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】(1)设点P x ,y ,则F 2,0,B 3,0 ,A -3,0 ,由PF 2-PB 2=4,得x -2 2+y 2-x -3 2+y 2 =4,化简得x =92,故所求点P 的轨迹为直线x =92.(2)将x 1=2,x 2=13分别代入椭圆方程,以及y 1>0,y 2<0,得M 2,53 ,N 13,-209,直线MA 方程为y -053-0=x +32+3,即y =13x +1,直线MB 方程为y -0-209-0=x -313-3,即y =56x -52,联立方程组,解得x =7y =103,所以点T 的坐标为7,103.(3)点T 的坐标为9,m ,直线MA 的方程为y -0m -0=x +39+3,即y =m12x +3 ,直线MB 的方程为y -0m -0=x -39-3,即y =m6x -3 ,分别与椭圆x 29+y 25=1联立方程组,同时考虑到x 1≠-3,x 2≠-3,解得M 380-m 2 80+m 2,40m 80+m 2 、N 3m 2-20 20+m 2,-20m20+m 2,若x 1=x 2,240-3m 280+m 2=3m 2-6020+m 2且m >0,得m =210,此时直线MN 的方程为x =1,过点D 1,0 ;若x 1≠x 2,则m ≠210,直线MD 的斜率k MD =40m 80+m 2÷240-3m 280+m 2-1 =10m40-m 2,直线ND 的斜率k ND =-20m 20+m 2÷3m 2-6020+m 2-1 =10m40-m 2,所以k MD =k ND ,所以直线MN 过点D 1,0 ,因此直线MN 必过x 轴上一定点D 1,0 .14.(2022·全国·高三专题练习)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A /,B /,C /,D /四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A /B /C /D /的面积相等,证明:t 21+t 22为定值.【答案】(1)x 2a 2-y 2b2=1(2)证明见解析【解析】(1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a ,0),A 2(a ,0),则直线A 1A 的方程为y =y 1x 1+a (x +a ) ①直线A 2B 的方程为y =-y 1x 1-a(x -a ) ②由①②得y 2=-y 12x 12-a2(x 2-a 2) ③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1,从而y 21=b 21-x 12a2代入③得x 2a 2-y 2b2=1(2)证明:设A (x 2,y 2),由矩形ABCD 与矩形A B C D 的面积相等,得4x 1 y 1=4 x 2 y 2 故x 21y 21=x 22y 22因为点A ,A均在椭圆上,所以,b 2x 211-x 21a 2 =b 2x 221-x 22a2由t 1≠t 2,知x 1≠x 2,所以x 12+x 22=a 2.从而y 12+y 22=b 2因此t 12+t 22=a 2+b 2为定值考点定位:本大题主要考查椭圆、圆、直线的标准方程的求法以及直线与椭圆、圆的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等15.(2022·全国·高三专题练习)已知椭圆C :x 22+y 2=1左顶点为A ,O 为原点,M ,N 是直线x =t 上的两个动点,且MO ⊥ON ,直线AM 和AN 分别与椭圆C 交于E ,D 两点(1)若t =-1,求ΔMON 的面积的最小值;(2)若E ,O ,D 三点共线,求实数t 的值.【解析】(1)由勾股定理、三角形面积可得:MN2=OM 2+ON 2≥2OM •ON ,MN =OM •ON ,当且仅当OM =ON 等号成立∴MN ≥2.S ΔMON =12MN •1≥12×2=1,即ΔMON 的面积的最小值为1.(2)设E 2cos θ,sin θ ,则AE 方程为:y =sin θ2cos θ+2x +2 ,则M 为t ,t +2 sin θ2cos θ+1,同理N 为t ,-t +2 sin θ21-cos θt ,-t +2 sin θ21-cos θ,∵MO ⊥ON ,∴OM •ON =t 2-t +2 22=0,得t =2±2.16.(2022·全国·高三专题练习)已知椭圆W :x 24m +y 2m=1的长轴长为4,左、右顶点分别为A ,B ,经过点P (1,0)的动直线与椭圆W 相交于不同的两点C ,D (不与点A ,B 重合).(1)求椭圆W 的方程及离心率;(2)求四边形ACBD 面积的最大值;(3)若直线CB 与直线AD 相交于点M ,判断点M 是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)【解析】(Ⅰ)由题意,得a 2=4m =4 , 解得m =1.所以椭圆W 方程为x 24+y 2=1.故a =2,b =1,c =a 2-b 2=3.所以椭圆W 的离心率e =c a =32.(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为x =1,代入椭圆W 的方程,得C 1,32 ,D 1,-32 ,又因为AB =2a =4,AB ⊥CD ,所以四边形ACBD 的面积S =12AB ×CD =23.当直线CD 的斜率k 存在时,设CD 的方程为y =k x -1 k ≠0 ,C x 1,y 1 ,D x 2,y 2 ,联立方程y =k x -1 ,x 24+y 2=1,消去y ,得4k 2+1 x 2-8k 2x +4k 2-4=0. 由题意,可知Δ>0恒成立,则x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1四边形ACBD 的面积S =S ΔABC +S ΔABD =12AB ×y 1+12AB × y 2 =12AB ×y 1-y 2 =2k x 1-x 2=2k 2x 1+x 2 2-4x 1x 2 =8k 23k 2+1 4k 2+12, 设4k 2+1=t ,则四边形ACBD 的面积S =2-1t2-2t +3,1t ∈0,1 ,所以S =2-1t+1 2+4<23.综上,四边形ACBD 面积的最大值为23.(Ⅲ)结论:点M 在一条定直线上,且该直线的方程为x =4.17.(2022·全国·高三专题练习)已知F 1(-3,0),F 2(3,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 是椭圆C 上的一点,当PF 1⊥F 1F 2时,|PF 2|=2|PF 1|.(1)求椭圆C 的标准方程:(2)过点Q (-4,0)的直线l 与椭圆C 交于M ,N 两点,点M 关于x 轴的对称点为点M ′,证明:直线NM ′过。
中档大题规范练5 圆锥曲线1.已知椭圆x 2a 2+y 2b 2=1 (a >b ≥1)的离心率e =22,右焦点到直线2ax +by -2=0的距离为23. (1)求椭圆C 的方程;(2)已知椭圆C 的方程与直线x -y +m =0交于不同的两点M ,N ,且线段MN 的中点不在圆x 2+y 2=1内,求m 的取值范围.解 (1)由题意,知e =ca =22, 所以e 2=c 2a 2=a 2-b 2a 2=12, 所以a 2=2b 2.所以a =2c =2b .因为右焦点(c,0),则|2ac -2|4a 2+b2=23, 所以b =1,所以a 2=2,b 2=1.故椭圆C 的方程为x 22+y 2=1. (2)联立方程⎩⎪⎨⎪⎧ x -y +m =0,x 22+y 2=1, 消去y ,可得3x 2+4mx +2m 2-2=0,则Δ=16m 2-12(2m 2-2)>0,解得-3<m < 3.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4m 3, y 1+y 2=x 1+x 2+2m =-4m 3+2m =2m 3, 所以MN 的中点坐标为⎝ ⎛⎭⎪⎫-2m 3,13m ,又MN 的中点不在圆x 2+y 2=1内,所以⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32≥1, 解得m ≥355或m ≤-355. 综上可知-3<m ≤-355或355≤m < 3. 2.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左焦点为F 1(-1,0),且点P ⎝ ⎛⎭⎪⎫62,12在椭圆C 上. (1)求椭圆C 的方程;(2)若过顶点A (-2,0)的直线l 1交y 轴于点Q ,交曲线C 于点R ,过坐标原点O 作直线l 2,使得l 2∥l 1,且l 2交曲线C 于点S ,证明:|AQ |,2|OS |,|AR |成等比数列.解 (1)因为椭圆C 的左焦点为F 1(-1,0),所以c =1,将点P ⎝ ⎛⎭⎪⎫62,12代入椭圆x 2a 2+y 2b 2=1, 得4b 4-3b 2-1=0,即b =1,所以a 2=b 2+c 2=2,所以椭圆C 的方程为x 22+y 2=1. (2)由题意可知直线l 1和l 2的斜率都存在且相同,设直线l 1:y =k (x +2),则Q (0,2k ), 又直线OS :y =kx ,代入x 22+y 2=1, 化简得(1+2k 2)x 2=2,所以|OS |=1+k 2|x s -0|,从而2|OS |2=2(1+k 2|x s -0|)2=4+4k 21+2k 2. 将y =k (x +2)代入x 22+y 2=1, 化简得(1+2k 2)x 2+42k 2x +4k 2-2=0,所以|AR |=1+k 2|x A -x R |=22+2k 21+2k 2, 又有|AQ |=2+2k 2,所以|AQ |·|AR |=4+4k 21+2k 2=2|OS |2, 所以|AQ |,2|OS |,|AR |成等比数列. 3.如图所示,椭圆x 2a 2+y 2b2=1(a >b >0)的上、下顶点分别为A ,B ,已知点B 在直线l :y =-1上,且椭圆的离心率e =32.(1)求椭圆的标准方程;(2)设P 是椭圆上异于A ,B 的任意一点,PQ ⊥y 轴,Q 为垂足,M 为线段PQ 的中点,直线AM 交直线l 于点C ,N 为线段BC 的中点,求证:OM ⊥MN .(1)解 依题意,得b =1.因为e =c a =32,又a 2-c 2=b 2,所以a 2=4. 所以椭圆的标准方程为x 24+y 2=1. (2)证明 设点P 的坐标为(x 0,y 0),x 0≠0,因为P 是椭圆上异于A ,B 的任意一点,所以x 204+y 20=1. 因为PQ ⊥y 轴,Q 为垂足,所以点Q 坐标为(0,y 0). 因为M 为线段PQ 的中点,所以M ⎝ ⎛⎭⎪⎫x 02,y 0. 又点A 的坐标为(0,1),可得直线AM 的方程为y =2(y 0-1)x 0x +1. 因为x 0≠0,所以y 0≠1,令y =-1,得C ⎝ ⎛⎭⎪⎫x 01-y 0,-1. 因为点B 的坐标为(0,-1),点N 为线段BC 的中点,所以N ⎝ ⎛⎭⎪⎫x 02(1-y 0),-1. 所以向量NM →=⎝ ⎛⎭⎪⎫x 02-x 02(1-y 0),y 0+1. 又OM →=⎝ ⎛⎭⎪⎫x 02,y 0, 所以OM →·NM →=x 02⎣⎢⎡⎦⎥⎤x 02-x 02(1-y 0)+y 0(y 0+1) =x 204-x 204(1-y 0)+y 20+y 0 =⎝ ⎛⎭⎪⎫x 204+y 20-x 204(1-y 0)+y 0 =1-(1+y 0)+y 0=0.所以OM ⊥MN .4.已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,0),点M (1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C 的方程;(2)过点M (1,0)的直线l 与椭圆C 相交于A ,B 两点,设点N (3,2),记直线AN ,BN 的斜率分别为k 1,k 2,求证:k 1+k 2为定值.(1)解 依题意,得c =2,所以a 2-b 2=2,由点M (1,0)与椭圆短轴的两个端点的连线相互垂直,得b =|OM |=1,所以a =3,故椭圆C 的方程为x 23+y 2=1. (2)证明 当直线l 的斜率不存在时,由⎩⎪⎨⎪⎧ x =1,x 23+y 2=1, 解得x =1,y =±63. 设A ⎝ ⎛⎭⎪⎫1,63,B ⎝ ⎛⎭⎪⎫1,-63, 则k 1+k 2=2-632+2+632=2为定值. 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1).将y =k (x -1)代入x 23+y 2=1化简整理, 得(3k 2+1)x 2-6k 2x +3k 2-3=0,依题意,直线l 与椭圆C 必相交于两点,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2-33k 2+1. 又y 1=k (x 1-1),y 2=k (x 2-1),所以k 1+k 2=2-y 13-x 1+2-y 23-x 2=(2-y 1)(3-x 2)+(2-y 2)(3-x 1)(3-x 1)(3-x 2)=[2-k (x 1-1)](3-x 2)+[2-k (x 2-1)](3-x 1)9-3(x 1+x 2)+x 1x 2=12-2(x 1+x 2)+k [2x 1x 2-4(x 1+x 2)+6]9-3(x 1+x 2)+x 1x 2=12-2×6k 23k 2+1+k (2×3k 2-33k 2+1-4×6k 23k 2+1+6)9-3×6k 23k 2+1+3k 2-33k 2+1=12(2k 2+1)6(2k 2+1)=2. 综上,得k 1+k 2=2为定值. 5.已知双曲线M :y 2a 2-x 2b 2=1(a >0,b >0)的上焦点为F ,上顶点为A ,B 为虚轴的端点,离心率e =233,且S △ABF =1-32.抛物线N 的顶点在坐标原点,焦点为F . (1)求双曲线M 和抛物线N 的方程;(2)设动直线l 与抛物线N 相切于点P ,与抛物线的准线相交于点Q ,则以PQ 为直径的圆是否恒过y 轴上的一个定点?如果是,试求出该点的坐标,如果不是,请说明理由. 解 (1)在双曲线中,c =a 2+b 2,由e =233,得a 2+b 2a =233, 解得a =3b ,故c =2b . 所以S △ABF =12(c -a )×b =12(2b -3b )×b =1-32,解得b =1. 所以a =3,c =2,其上焦点为F (0,2).所以双曲线M 的方程为y 23-x 2=1, 抛物线N 的方程为x 2=8y .(2)由(1)知抛物线N 的方程为y =18x 2, 故y ′=14x ,抛物线的准线为y =-2. 设P (x 0,y 0),则x 0≠0,y 0=18x 20, 且直线l 的方程为y -18x 20=14x 0(x -x 0), 即y =14x 0x -18x 20.由⎩⎪⎨⎪⎧ y =14x 0x -18x 20,y =-2,得⎩⎪⎨⎪⎧ x =x 20-162x 0,y =-2.所以Q (x 20-162x 0,-2). 假设存在点R (0,y 1),使得以PQ 为直径的圆恒过该点,也就是RP →·RQ →=0对于满足y 0=18x 20(x 0≠0)的x 0,y 0恒成立. 由于RP →=(x 0,y 0-y 1),RQ →=(x 20-162x 0,-2-y 1), 由RP →·RQ →=0, 得x 0·x 20-162x 0+(y 0-y 1)(-2-y 1)=0, 整理得x 20-162-2y 0-y 0y 1+2y 1+y 21=0, 即(y 21+2y 1-8)+(2-y 1)y 0=0,(*)由于(*)式对满足y 0=18x 20(x 0≠0)的x 0,y 0恒成立, 所以⎩⎪⎨⎪⎧ 2-y 1=0,y 21+2y 1-8=0,解得y 1=2.故以PQ 为直径的圆恒过y 轴上的定点,定点坐标为(0,2).6.在平面直角坐标系xOy 中,点P 是圆x 2+y 2=4上一动点,PD ⊥x 轴于点D .记满足OM →=12(OP →+OD →)的动点M 的轨迹为Г.(1)求轨迹Г的方程;(2)已知直线l :y =kx +m 与轨迹Г交于不同两点A ,B ,点G 是线段AB 中点,射线OG 交轨迹Г于点Q ,且OQ →=λOG →,λ∈R .①证明:λ2m 2=4k 2+1.②求△AOB 的面积S (λ)的解析式,并计算S (λ)的最大值.(1)解 设M (x ,y ),P (x 0,y 0),则点D (x 0,0),且x 20+y 20=4.(a )∵OM →=12(OP →+OD →),∴⎩⎪⎨⎪⎧ x 0=x ,y 0=2y .(b ) 将(b )代入(a ),得x 2+4y 2=4,∴轨迹Г的方程为x 24+y 2=1. (2)①证明 令A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =kx +m ,x 2+4y 2=4消去y , 得(1+4k 2)x 2+8kmx +4m 2-4=0.∴⎩⎪⎨⎪⎧ Δ=(8km )2-4(1+4k 2)(4m 2-4)>0,x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2,即⎩⎪⎨⎪⎧ m 2<1+4k 2,x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.(c )∴y 1+y 2=k (x 1+x 2)+2m=k (-8km )1+4k 2+2m =2m1+4k 2. 又由中点坐标公式,得G ⎝ ⎛⎭⎪⎫-4km1+4k 2,m1+4k 2. 根据OQ →=λOG →,得Q ⎝ ⎛⎭⎪⎫-4λkm 1+4k 2,λm 1+4k 2, 将其代入椭圆方程,得4λ2k 2m 2(1+4k 2)2+λ2m 2(1+4k 2)2=1. 化简得λ2m 2=1+4k 2.(d )②解 由(c ),(d )得m ≠0,λ>1.|x 1-x 2|=⎝ ⎛⎭⎪⎫-8km 1+4k 22-4×4m 2-41+4k 2 =41+4k 2-m 21+4k2.(e ) 在△AOB 中,S △AOB =12|m ||x 1-x 2|,(f ) 由(d ),(e ),(f )可得S (λ)=2|m |λ2m 2-m 2λ2m 2=2λ2-1λ2(λ>1).令λ2-1=t ∈(0,+∞),则S =2t t 2+1=2t +1t ≤221=1 (当且仅当t =1,即λ=2时取“=”).∴当λ=2时,S (λ)=2λ2-1λ2取得最大值,其最大值为1.。
高二圆锥曲线解答题训练中档题篇(一)1分别是椭圆的左右两个顶点,P 为椭圆C 上的动点.(1(2)若P 与,A B 均不重合,设直线PA PB 与的斜率分别为12,k k ,求21k k 的值。
【解析】试题分析:(1)由题意可得圆的方程为 ,222b y x =+直线02=+-y x 与圆相切,(2)如图,M ,N 分别是椭圆S 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k . ①若直线PA 平分线段MN ,求k 的值; ②对任意0k >,求证:PA PB ⊥.3.已知定点A (0,1),B (0,-1),C (1,0).动点P 满足:.(1)求动点P 的轨迹方程,并说明方程表示的曲线类型; (2)当2k =时,求|2|AP BP +的最大、最小值. 【答案】(1)设动点坐标为(,)P x y ,则(,1)A P x y =- ,(,1)BP x y =+ ,(1,)PC x y =-.因为2||k =⋅,所以22221[(1)]x y k x y +-=-+.22(1)(1)210k x k y kx k -+-+--=.若1k =,则方程为1x =,表示过点(1,0)且平行于y 轴的直线. 若1k ≠,则方程化为2221()()11k x y k k ++=--.表示以(,0)1k k -为圆心,以1|1|k - 为半径的圆. (2)当2k =时,方程化为22(2)1x y -+=,因为2(3,31)AP BP x y +=- ,所以|2|AP BP +=又2243x y x +=-,所以|2|AP BP +因为22(2)1x y -+=,所以令2cos ,sin x y θθ=+=,则36626)46[46x y θϕ--=++∈-+.所以|2|AP BP +3=3=.4.已知椭圆C 的中心在原点,12,F F 分别为它的左、右焦点,直线4x =为它的一条准线,又知椭圆C 上存在点M ,使得1212122||||,||||MF MF MF MF MF MF ⋅=⋅= . (1)求椭圆C 的方程;(2)若,P Q 是椭圆C 上不与椭圆顶点重合的任意两点,点Q 关于x 轴的对称点是N ,直线,QP NP 分别交x 轴于点1(,0)E x ,点2(,0)F x ,探究12x x ⋅是否为定值,若为定值,求出该定值,若不为定值,请说明理由.5(1(2(O5分 ,(,)P x y ,,且 282k。
高中数学学习材料(灿若寒星 精心整理制作)中档大题规范练——圆锥曲线1.已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0), 由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1. (2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎨⎪⎧ 1-3k 2≠0,Δ=36(1-k 2)>0,x A +x B =62k 1-3k2<0,x A x B =-91-3k 2>0,解得33<k <1. 所以当33<k <1时,直线l 与双曲线C 的左支有两个交点. (3)由(2),得x A +x B =62k 1-3k 2, 所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2, 所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎫32k 1-3k 2,21-3k 2. 设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2, ∵33<k <1,∴-2<1-3k 2<0,∴b <-2 2. ∴b 的取值范围是(-∞,-22).2.已知离心率为12的椭圆C 1的左,右焦点分别为F 1,F 2,抛物线C 2:y 2=4mx (m >0)的焦点为F 2,设椭圆C 1与抛物线C 2的一个交点为P (x 0,y 0),|PF 1|=73. (1)求椭圆C 1的标准方程及抛物线C 2的标准方程;(2)直线x =m 与椭圆C 1在第一象限的交点为Q ,若存在过点A (4,0)的直线l 与椭圆C 1相交于不同的两点M ,N ,使得36|AQ |2=35|AM |·|AN |,求出直线l 的方程.解 (1)∵在椭圆C 1中c =m ,e =12, ∴a =2m ,b 2=3m 2,设椭圆C 1的方程为x 24m 2+y 23m2=1, 联立x 24m 2+y 23m2=1与y 2=4mx , 得3x 2+16mx -12m 2=0, 即(x +6m )·(3x -2m )=0,得x =2m 3或-6m (舍去), 代入y 2=4mx 得y =±26m 3, ∴设点P 的坐标为(2m 3,26m 3), |PF 2|=2m 3+m =5m 3, |PF 1|=2a -5m 3=7m 3=73, ∴m =1,此时,椭圆C 1的标准方程为x 24+y 23=1, 抛物线C 2的标准方程为y 2=4x .(2)由题设知直线l 的斜率存在,设直线l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧ y =k (x -4),x 24+y 23=1, 消去y 整理,得(3+4k 2)x 2-32k 2x +64k 2-12=0.由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0,解得-12<k <12. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2. 由(1)知m =1,∴⎩⎪⎨⎪⎧ x =1,x 24+y 23=1,解得⎩⎪⎨⎪⎧x =1,y =±32, ∴点Q 的坐标是(1,32). ∴|AQ |2=454, 由已知条件可知|AM |·|AN |=3635×454=817. 又|AM |·|AN |=(4-x 1)2+y 21·(4-x 2)2+y 22 =(4-x 1)2+k 2(4-x 1)2·(4-x 2)2+k 2(4-x 2)2=(k 2+1)·(4-x 1)·(4-x 2)=(k 2+1)[x 1x 2-4(x 1+x 2)+16]=(k 2+1)(64k 2-123+4k 2-4×32k 23+4k 2+16) =(k 2+1)·363+4k 2. ∴(k 2+1)·363+4k 2=817, 解得k =±24,经检验成立. ∴直线l 的方程为x -22y -4=0或x +22y -4=0.3.(2013·课标全国Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,① x 22a 2+y 22b 2=1,② ①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0. 因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0), 因为P 为AB 的中点,且OP 的斜率为12, 所以y 0=12x 0,即y 1+y 2=12(x 1+x 2). 所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2,又因为右焦点(c,0)在直线x +y -3=0上,解得c =3,所以a 2=6,所以M 的方程为x 26+y 23=1. (2)因为CD ⊥AB ,直线AB 方程为x +y -3=0,所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得: 3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463; 将y =x +m 代入x 26+y 23=1得: 3x 2+4mx +2m 2-6=0,设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2, 又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863. 4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),⊙O :x 2+y 2=b 2,点A ,F 分别是椭圆C 的左顶点和左焦点,点P 是⊙O 上的动点.(1)若P (-1,3),P A 是⊙O 的切线,求椭圆C 的方程.(2)是否存在这样的椭圆C ,使得|P A ||PF |恒为常数?如果存在,求出这个常数及C 的离心率e ;如果不存在,说明理由.解 (1)由P (-1,3)在⊙O :x 2+y 2=b 2上,得b 2=1+3=4.直线P A 的斜率k P A =3-0-1-(-a )=3a -1,而直线P A 的斜率k P A =-1k OP =13,所以3a -1=13,解得a =4. 所以a 2=16,所以椭圆C 的方程为x 216+y 24=1. (2)假设存在椭圆C ,使得|P A ||PF |恒为常数.设椭圆C 的半焦距为c ,当P (-b,0)时,则有|P A ||PF |=a -b|c -b |;当P (b,0)时,|P A ||PF |=a+bb +c .依假设有a -b |c -b |=a+bb +c .①当c -b >0时,有a -b c -b =a +bb +c ,所以(a -b )(b +c )=(a +b )(c -b ),化简整理得a =c ,这是不可能的.②当c -b <0时,有a -b b -c =a +bb +c .所以(a -b )(b +c )=(a +b )(b -c ),化简整理得ac -b 2=0.所以c 2-a 2+ac =0,两边同除以a 2,得e 2+e -1=0.解得e =-1+52,或e =-1-52∉(0,1)(舍去).可见,若存在椭圆C 满足题意,只可能离心率e =-1+52.设P (x ,y )为⊙O :x 2+y 2=b 2上任意一点,则|P A ||PF |=(x +a )2+y 2(x +c )2+y 2|P A |2|PF |2=(x +a )2+b 2-x 2(x +c )2+b 2-x 2=2ax +a 2+b 22cx +c 2+b 2=2ax +2a 2-c 22cx +a 2.(*) 由上c 2-a 2+ac =0,得a 2-c 2=ac ,所以2a 2-c 2a 2·c a =a 2+ac a 2·c a=a +c a 2·c =ac +c 2a 2=a 2a 2=1, 从而2a 2-c 2a 2=a c. 代入(*)式得|P A |2|PF |2=a c =5+12, 所以存在满足题意的椭圆C ,这个常数为5+12, 椭圆C 的离心率为e =-1+52. 5.已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解 (1)设动点P 的坐标为(x ,y ),由题意有(x -1)2+y 2-|x |=1.化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0 (x <0).(2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k2,x 1x 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k.设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.故AD →·EB →=(AF →+FD →)·(EF →+FB →)=AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB →=|AF →|·|FB →|+|FD →|·|EF →|=(x 1+1)(x 2+1)+(x 3+1)(x 4+1)=x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1=1+⎝⎛⎭⎫2+4k 2+1+1+(2+4k 2)+1 =8+4⎝⎛⎭⎫k 2+1k 2≥8+4×2k 2·1k2=16. 当且仅当k 2=1k2,即k =±1时,AD →·EB →取最小值16. 6.在平面直角坐标系xOy 中,动点P 在椭圆C 1:x 22+y 2=1上,且到椭圆C 1的右焦点的距离与到直线x =2的距离之比等于椭圆的离心率.动点Q 是动圆C 2:x 2+y 2=r 2(1<r <2)上一点.(1)设椭圆C 1上的三点A (x 1,y 1),B (1,22),C (x 2,y 2)与点F (1,0)的距离依次成等差数列,线段AC 的垂直平分线是否经过一个定点?说明理由.(2)若直线PQ 与椭圆C 1和动圆C 2均只有一个公共点,求P ,Q 两点的距离|PQ |的最大值.解 (1)椭圆C 1:x 22+y 2=1的离心率e =22,右焦点为(1,0), 由题意可得|AF |=22(2-x 1),|BF |=22(2-1), |CF |=22(2-x 2). 因为2|BF |=|AF |+|CF |,所以22(2-x 1)+22(2-x 2)=2×22(2-1), 即得x 1+x 2=2.因为A ,C 在椭圆上,故有x 212+y 21=1,x 222+y 22=1, 两式相减,得k AC =y 2-y 1x 2-x 1=-x 2+x 12(y 2+y 1)=-1y 2+y 1. 设线段AC 的中点为(m ,n ),而m =x 1+x 22=1,n =y 1+y 22, 所以与直线AC 垂直的直线斜率为k ′=y 2+y 1=2n .则线段AC 的垂直平分线的方程为y -n =2n (x -1),即y =n (2x -1)经过定点(12,0). 即线段AC 的垂直平分线过一个定点(12,0). (2)依题意得,直线PQ 的斜率显然存在,设直线PQ 的方程y =kx +t ,设P (x ′1,y ′1),Q (x ′2,y ′2),由于直线PQ 与椭圆C 1相切,点P 为切点,从而有⎩⎪⎨⎪⎧y ′1=kx ′1+t ,x ′212+y ′21=1, 得(2k 2+1)x ′21+4ktx ′1+2(t 2-1)=0. 故Δ=(4kt )2-4×2(t 2-1)(2k 2+1)=0,从而可得t 2=1+2k 2,x ′1=-2k t,① 直线PQ 与圆C 2相切,则|t |1+k 2=r , 得t 2=r 2(1+k 2),②由①②得k 2=r 2-12-r 2,并且 |PQ |2=|OP |2-|OQ |2=1+2k 21+2k 2-r 2 =3-r 2-2r2≤3-22=(2-1)2. 即0<|PQ |≤2-1,当且仅当r 2=2∈(1,4)时取等号, 故P ,Q 两点的距离|PQ |的最大值为2-1.。