14.1.2平面直角坐标系
- 格式:ppt
- 大小:1.61 MB
- 文档页数:46
平面直角坐标系的基本知识平面直角坐标系是数学中常用的一种坐标系,用于描述平面上点的位置。
它由两条相互垂直的直线(通常称为x轴和y轴)组成,它们的交点被定义为原点O。
平面直角坐标系的基本知识包括坐标表示、坐标轴、象限以及点的位置和距离等。
1. 坐标表示在平面直角坐标系中,每个点都有一个唯一的坐标表示,用有序数对(x, y)来表示。
其中,x表示该点在x轴上的水平距离,y表示该点在y轴上的垂直距离。
例如,点A的坐标表示为A(x1, y1)。
2. 坐标轴平面直角坐标系由x轴和y轴构成,它们相互垂直并交于原点O。
x轴是水平的,并且向右延伸为正方向,向左延伸为负方向。
y轴是垂直的,并且向上延伸为正方向,向下延伸为负方向。
3. 象限根据坐标轴的分布,平面直角坐标系将平面划分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。
第一象限位于x轴和y 轴的正半平面,坐标表示为(x>0, y>0);第二象限位于x轴的负半平面和y轴的正半平面,坐标表示为(x<0, y>0);第三象限位于x轴和y轴的负半平面,坐标表示为(x<0, y<0);第四象限位于x轴的正半平面和y轴的负半平面,坐标表示为(x>0, y<0)。
4. 点的位置和距离在平面直角坐标系中,两点之间的距离可以通过勾股定理进行计算。
例如,设点A(x1, y1)和点B(x2, y2),则AB的距离为√((x2-x1)^2 + (y2-y1)^2)。
在平面直角坐标系中,点的位置可以通过其坐标的关系进行判断。
例如,如果点的坐标表示为A(x, y),则可以通过观察x和y的正负关系来判断该点所在的象限。
如果x>0且y>0,该点位于第一象限;如果x<0且y>0,该点位于第二象限;如果x<0且y<0,该点位于第三象限;如果x>0且y<0,该点位于第四象限。
除此之外,平面直角坐标系还可以用于描述直线、曲线和图形等。
平面直角坐标系平面直角坐标系是解析几何中常用的坐标系,用于描述平面上的点和其它几何图形。
本文将详细介绍平面直角坐标系的定义、性质及应用。
一、定义平面直角坐标系由两个互相垂直的数轴(x轴和y轴)构成。
x轴水平放置,从左到右逐渐增大;y轴垂直于x轴,从下往上逐渐增大。
两条轴的交点称为原点,记作O。
平面直角坐标系将平面上的点与有序的实数对(x,y)一一对应。
二、性质1. 坐标轴性质:x轴上的点坐标为(x, 0),y轴上的点坐标为(0, y)。
2. 坐标线性质:对于坐标系内的一点P(x, y),以x轴和y轴为边,可以得到4个区域,分别对应第一象限、第二象限、第三象限和第四象限。
3. 距离计算公式:两点P1(x1, y1)和P2(x2, y2)之间的距离d可以通过勾股定理求得:d = √[(x2 - x1)² + (y2 - y1)²]。
三、应用平面直角坐标系在解析几何中有广泛的应用,常与方程、图形和向量等相关联。
1. 方程:通过坐标系可以解决一元和两元方程的问题。
对于一元方程,可以将其在坐标系中表示为一条直线,并求解其根;对于两元方程,可以表示为一条曲线,通过坐标系求解方程组的解。
2. 图形:通过坐标系,可以准确地表示和描述各种几何图形,如直线、抛物线、双曲线等。
在坐标系中,每个点都有唯一的坐标,因此可以使用坐标来确定图形上的点的位置。
3. 向量:向量是平面直角坐标系中的重要概念之一。
向量的起点可以任意选取,表示为一个有向线段,并通过坐标系表示其方向和大小。
向量可以进行加法、减法、数量积等运算,在物理学、工程学等领域有广泛的应用。
总结:平面直角坐标系是解析几何中最基本的坐标系之一,通过两个垂直的坐标轴构成。
它具有一些重要的性质,如坐标轴和坐标线的性质,以及距离计算公式。
平面直角坐标系在方程、图形和向量等方面有广泛的应用,能够准确地描述和解决各种几何问题。
青岛版初中数学目录篇一:青岛版初中数学教材(新目录)青岛版初中数学教材总目录七年级上册(最新)第1章基本的几何图形 1.1 我们身边的图形世界1.2 几何图形1.3 线段、射线和直线1.4 线段的比较与作法第2章有理数 2.1 有理数2.2 数轴2.3 相反数与绝对值第3章有理数的运算3.1 有理数的加法与减法 3.2 有理数的乘法与除法3.3 有理数的乘方3.4 有理数的混合运算3.5 利用计算器进行有理数的运算第4章数据的收集、整理与描述4.1 普查和抽样调查4.2 简单随机抽样4.3 数据的整理4.4 扇形统计图第5章代数式与函数的初步认识 5.1 用字母表示数 5.2 代数式5.3 代数式的值5.4 生活中的常量与变量 5.5 函数的初步认识第6章整式的加减 6.1 单项式与多项式 6.2 同类项6.3 去括号6.4 整式的加减第7章一元一次方程 7.1 等式的基本性质7.2 一元一次方程7.3 一元一次方程的解法7.4 一元一次方程的应用七年级下册第8章角 8.1 角的表示8.2 角的比较 8.3 角的度量 8.4 对顶角8.5 垂直第9章平行线9.1 同位角、内错角、同旁内角 9.2 平行线和它的画法 9.3 平行线的性质 9.4 平行线的判定第10章一次方程组 10.1 认识二元一次方程组 10.2 二元一次方程组的解法 10.3 三元一次方程组 10.4 列方程组解应用题第11章整式的乘法11.1 同底数幂的乘法 11.2 积的乘方与幂的乘方 11.3 单项式的乘法 11.4 多项式乘多项式 11.5 同底数幂的除法 11.6 零指数幂与负整数指数幂第12章乘法公式与因式分解 12.1 平方差公式 12.2 完全平方公式12.3 用提公因式法进行因式分解12.4 用公式法进行因式分解第13章平面图形的认识 13.1 三角形 13.2 多边形 13.3 圆第14章位置与坐标 14.1 用有序数对表示位置 14.2 平面直角坐标系14.3 用方向和距离描述两个物体的相对位置八年级上册第1章全等三角形 1.1 全等三角形 1.2 怎样判定三角形全等 1.3 尺规作图第2章图形的轴对称 2.1 图形的的轴对称2.2 轴对称的基本性质 2.3 轴对称图形 2.4 线段的垂直平分线 2.5 角平分线的性质 2.6 等腰三角形第3章分式 3.1 分式的基本性质 3.2 分式的约分 3.3 分式的乘法与除法 3.4 分式的通分 3.5 分式的加法与减法 3.6 比和比例3.7 可化为一元一次方程的分式方程第4章数据分析4.1 加权平均数4.2 中位数4.3 众数4.4 数据的离散程度 4.5 方差4.6 用计算器计算平均数和方差第5章几何证明初步5.1 定义与命题 5.2 为什么要证明 5.3 什么是几何证明5.4 平行线的性质定理和判定定理 5.5 三角形的内角和定理5.6 几何证明举例八年级下册(待变动)第12章二元一次方程组 12.1 认识二元一次方程组 12.2 向一元一次方程转化 12.3 图象的妙用12.4 列方程组解应用题第13章走进概率13.1 天有不测风云 13.2 确定事件与不确定事件 13.3 可能性的大小 13.4 概率的简单计算第5章实数 5.1 算术平方根 5.2 勾股定理5.3是有理数吗5.4 由边长判定直角三角形 5.5 平方根 5.6 立方根 5.7 方根的估算5.8 用计算器求平方根和立方根 5.9 实数第6章一元一次不等式6.1 不等关系和不等式 6.2 一元一次不等式 6.3 一元一次不等式组第7章二次根式7.1 二次根式及其性质7.2 二次根式的加减法 7.3 二次根式的乘除法第8章平面图形的全等与相似8.1 全等形与相似形 8.4 相似三角形 8.5 怎样判定三角形相似 8.6 相似多边形第9章解直角三角形 9.1 锐角三角比9.2 30?,45?,60?角的三角比 9.3 用计算器求锐角三角比 9.4 解直角三角形 9.5 解直角三角形的应用九年级上册第1章特殊四边形 1.1 平行四边形及其性质 1.2 平行四边形的判定1.3 特殊的平行四边形 1.4 图形的中心对称 1.5 梯形 1.6 中位线定理第2章图形变换2.1 图形的平移 2.2 图形的旋转 2.3 图形的位似第3章一元二次方程3.1 一元二次方程3.2 用配方法解一元二次方程 3.3 用公式法解一元二次方程3.4 用因式分解法解一元二次方程 3.5 一元二次方程的应用第4章对圆的进一步认识4.1 圆的对称性 4.2 确定圆的条件 4.3 圆周角4.4 直线与圆的位置关系 4.5 三角形的内切圆 4.6 圆与圆的位置关系 4.7 弧长及扇形面积的计算九年级下册第5章对函数的再探索 5.1 函数与它的表示法 5.2 一次函数与一元一次不等式 5.3 反比例函数 5.4 二次函数5.5 二次函数y?ax2的图象和性质 5.6 二次函数y?ax2?bx?c 的图象和性质5.7 确定二次函数的解析式 5.8 二次函数的应用 5.9 用图象法解一元二次方程第6章频率与概率6.1 频数与频率 6.2 频数分布直方图 6.3 用频率估计概率 6.4 用树状图计算概率课题学习质数的分布第7章空间图形的初步认识7.1 几种常见的几何体 7.2 棱柱的侧面展开图7.3 圆柱、圆锥的侧面展开图第8章投影与识图 8.1 从不同的方向看物体 8.2 盲区 8.3 影子和投影 8.4 正投影 8.5 物体的三视图篇二:青岛版初中数学目录(2015年3月12日整理)青岛版初中数学总目录篇三:新旧版青岛版初中数学教材(总目录)对照旧版青岛版初中数学教材七年级上册第1章基本的几何图形 1.1 我们身边的图形世界1.2 几何图形1.3 线段、射线和直线1.4 线段的比较与作法第2章有理数2.1 有理数2.2 数轴2.3 相反数与绝对值第3章有理数的运算3.1 有理数的加法与减法 3.2 有理数的乘法与除法3.3 有理数的乘方3.4 有理数的混合运算3.5 利用计算器进行有理数的运算第4章数据的收集、整理与描述4.1 普查和抽样调查4.2 简单随机抽样4.3 数据的整理4.4 扇形统计图第5章代数式与函数的初步认识 5.1 用字母表示数 5.2 代数式5.3 代数式的值5.4 生活中的常量与变量 5.5 函数的初步认识第6章整式的加减6.1 单项式与多项式 6.2 同类项6.3 去括号6.4 整式的加减第7章数值的估算 7.1 生活中的数值估算 7.2 近似数和有效数字 7.3 估算的应用与调整第8章一元一次方程 7.1 等式的基本性质7.2 一元一次方程7.3 一元一次方程的解法7.4 一元一次方程的应用2012新版青岛版初中数学教材七(上)(60课时)第1章基本的几何图形(8课时) 1.1 我们身边的图形世界1课时 1.2 几何图形2课时1.3 线段、射线和直线2课时 1.4 线段的比较和作法2课时回顾与总结1课时第2章有理数(5课时)2.1 有理数1课时 2.2 数轴2课时 2.3 相反数与绝对值1课时回顾与总结1课时第3章有理数的运算(13课时) 3.1 有理数的加法与减法4课时 3.2 有理数的乘法与除法3课时 3.3 有理数的(来自: 小龙文档网:青岛版初中数学目录)乘方2课时3.4 有理数的混合运算1课时3.5 用计算器进行有理数运算1课时回顾与总结2课时第4章数据的收集、整理与描述(6课时)4.1 普查与抽样调查1课时 4.2 简单随机抽样1课时 4.3 数据的整理1课时4.4 扇形统计图2课时回顾与总结1课时第5章代数式与函数的初步认识(8课时)5.1 用字母表示数1课时 5.2 代数式2课时 5.3 代数式的值1课时5.4 生活中的常量与变量2课时 5.5 函数的初步认识1课时回顾与总结1课时综合与实践你知道的数学公式2课时第6章整式的加减(6课时) 6.1 单项式与多项式1课时 6.2 同类项2课时 6.3 去括号1课时 6.4 整式的加减1课时回顾与总结1课时第7章一元一次方程(12课时) 7.1 等式的基本性质1课时7.2 一元一次方程1课时7.3 一元一次方程的解法2课时 7.4 一元一次方程的应用6课时回顾与总结2课时第9章角 9.1 角的表示 9.2 角的比较 9.3 角的度量 9.4 对顶角 9.5 垂直第10章平行线 10.1 同位角10.2 平行线和它的画法 10.3 平行线的性质 10.4 平行线的判定第11章图形与坐标11.1 怎样确定平面内点的位置11.2 平面直角坐标系11.3 直角坐标系中的图形 11.4 函数与图象11.5 一次函数和它的图象第12章二元一次方程组 12.1 认识二元一次方程组 12.2 向一元一次方程转化 12.3 图象的妙用12.4 列方程组解应用题第13章走进概率13.1 天有不测风云13.2 确定事件与不确定事件 13.3 可能性的大小 13.4 概率的简单计算课题学习掷币中的思考第14章整式的乘法14.1 同底数幂的乘法与除法 14.2 指数可以是零和负整数吗14.3 科学记数法14.4 积的乘方与幂的乘方 14.5 单项式的乘法 14.6 多项式乘多项式第15章平面图形的认识 15.1 三角形 15.2 多边形15.3 多边形的密铺 15.4 圆的初步认识15.5 用直尺和圆规作图第8章角(7课时) 8.1 角的表示1课时 8.2 角的比较1课时 8.3 角的度量2课时 8.4 对顶角1课时 8.5 垂直1课时回顾与总结1课时第9章平行线(6课时)9.1 同位角、内错角、同旁内角1课时 9.2 平行线和它的画法1课时 9.3 平行线的性质1课时 9.4 平行线的判定2课时回顾与总结1课时第10章一次方程组(9课时) 10.1 认识二元一次方程组1课时 10.2 二元一次方程组的解法2课时 *10.3 三元一次方程组2课时 10.4 列方程组解应用题3课时回顾与总结1课时第11章整式的乘除(14课时) 11.1 同底数幂的乘法1课时11.2 积的乘方与幂的乘方2课时 11.3 单项式的乘法2课时11.4 多项式的乘法2课时 11.5 同底数幂的除法1课时11.6 零指数幂和负整数指数幂4课时回顾与总结2课时第12章乘法公式和因式分解(7课时) 12.1 平方差公式1课时 12.2 完全平方公式2课时12.3 用提公因式法进行因式分解1课时 12.4 用公式法进行因式分解2课时回顾与总结1课时第13章平面图形的认识(10课时) 13.1 三角形4课时13.2 多边形2课时 13.3 圆2课时回顾与总结2课时综合与实践多边形的密铺2课时第14章位置与坐标(6课时) 14.1 用有序数对表示位置1课时 14.2 平面直角坐标系1课时14.3 直角坐标系中的简单图形2课时14.4 用方向和距离描述两个物体的相对位置1课时回顾与总结1课时第1章轴对称与轴对称图形 1.1 我们身边的轴对称图形 1.2 线段的垂直平分线 1.3 角的平分线 1.4 等腰三角形1.5 成轴对称的图形的性质 1.6 镜面对称1.7 简单的图案设计第2章乘法公式与因式分解 2.1 平方差公式 2.2 完全平方公式2.3 用提公因式法进行因式分解 2.4 用公式法进行因式分解第3章分式3.1 分式的基本性质 3.2 分式的约分3.3 分式的乘法与除法 3.4 分式的通分3.5 分式的加法与减法 3.6 比和比例 3.7 分式方程第4章样本与估计 4.1 普查与抽样调查4.2 样本的选取4.3 加权平均数4.4 中位数4.5 众数4.6 用计算器求平均数课题学习学生课外生活情况的调查第5章实数 5.1 算术平方根 5.2 勾股定理5.4 由边长判定直角三角形 5.5 平方根 5.6 立方根 5.7 方根的估算5.8 用计算器求平方根和立方根 5.9 实数第6章一元一次不等式 6.1 不等关系和不等式 6.2 一元一次不等式 6.3 一元一次不等式组第1章全等三角形(9课时) 1.1 全等三角形1课时1.2 怎样判定三角形全等4课时 1.3 尺规作图3课时回顾与总结1课时第2章图形的轴对称(12课时) 2.1 图形的轴对称1课时2.2 轴对称的基本性质2课时 2.3 轴对称图形1课时2.4 线段的垂直平分线2课时 2.5 角的平分线1课时 2.6 等腰三角形3课时回顾与总结2课时第3章分式(15课时)3.1 分式和它的基本性质2课时 3.2 分式的约分1课时3.3 分式的乘法和除法1课时 3.4 分式的通分1课时3.5 分式的加法与减法2课时 3.6 比和比例3课时 3.7 分式方程3课时回顾与总结2课时第4章数据分析(9课时) 4.1 加权平均数2课时 4.2 中位数1课时 4.3 众数1课时4.4 数据的离散程度1课时 4.5 方差2课时4.6 用计算器求平均数及方差1课时回顾与总结1课时综合与实践统计开放日模拟现场会(暂定)2课时第5章几何证明初步(12课时) 5.1 定义与命题1课时 5.2 为什么要证明1课时 5.3 什么是几何证明1课时5.4 平行线的性质定理和判定定理1课时 5.5 三角形内角和定理2课时 5.6 几何证明举例4课时回顾与总结2课时第7章二次根式7.1 二次根式及其性质7.2 二次根式的加减法 7.3 二次根式的乘除法第8章平面图形的全等与相似 8.1 全等形与相似形 8.2 全等三角形8.3 怎样判定三角形全等 8.4 相似三角形8.5 怎样判定三角形相似 8.6 相似多边形课题学习有趣的分形图第9章解直角三角形 9.1 锐角三角比9.2 30,45,60角的三角比 9.3 用计算器求锐角三角比 9.4 解直角三角形9.5 解直角三角形的应用第10章数据离散程度的度量 10.1 数据的离散程度 10.2 极差10.3 方差与标准差10.4 用科学计算器计算方差和标准差第11章几何证明初步11.1 定义与命题 11.2 为什么要证明 11.3 什么是几何证明11.4 三角形内角和定理 11.5 几何证明举例 11.6 反证法第6章平行四边形(11课时) 10.1 平行四边形及其性质2课时 10.2 平行四边形的判定2课时 10.3 特殊的平行四边形4课时 10.4 三角形中位线定理1课时回顾与总结2课时第7章实数(15课时) 6.1 算术平方根1课时 6.2 勾股定理1课时 6.32是有理数吗2课时6.4 由边长判定直角三角形2课时 6.5 平方根1课时 6.6 立方根1课时6.7 用计算器求平方根与立方根2课时 6.8 实数3课时回顾与总结2课时第8章一元一次不等式(8课时) 7.1 不等式的基本性质2课时 7.2 一元一次不等式2课时7.3 列一元一次不等式解应用题1课时 7.4 一元一次不等式组2课时回顾与总结1课时第9章二次根式(7课时) 8.1 二次根式和它的性质3课时8.2 二次根式的加减法1课时8.3 二次根式的乘法和除法2课时回顾与总结1课时第10章一次函数(9课时) 9.1 函数的图象2课时9.2 一次函数和它的图象2课时 9.3 一次函数的性质1课时9.4 一次函数与二元一次方程1课时 9.5 一次函数与一元一次不等式2课时回顾与总结1课时综合与实践从函数图象中获取信息2课时第11章图形的平移和旋转(9课时) 11.1 图形的平移3课时 11.2 图形的旋转3课时 11.3 图形的中心对称2课时回顾与总结1课时综合与实践哪条路径最短第1章特殊四边形1.1 平行四边形及其性质 1.2 平行四边形的判定 1.3 特殊的平行四边形 1.4 图形的中心对称 1.5 梯形1.6 中位线定理第2章图形变换2.1 图形的平移 2.2 图形的旋转 2.3 图形的位似第3章一元二次方程 3.1 一元二次方程3.2 用配方法解一元二次方程 3.3 用公式法解一元二次方程3.4 用因式分解法解一元二次方程3.5 一元二次方程的应用第4章对圆的进一步认识4.1 圆的对称性 4.2 确定圆的条件 4.3 圆周角4.4 直线与圆的位置关系 4.5 三角形的内切圆 4.6 圆与圆的位置关系4.7 弧长及扇形面积的计算第1章相似多边形(12课时)1.1 相似多边形1课时1.2 相似三角形的判定5课时 1.3 相似三角形的性质1课时1.4 图形的位似2课时回顾与总结2课时第2章解直角三角形(11课时) 2.1 锐角三角比1课时2.2 30°,45°,60°角的三角比1课时 2.3 用计算器求锐角三角比2课时 2.4 解直角三角形2课时2.5 解直角三角形的应用3课时回顾与总结2课时第3章对圆的进一步认识(18课时) 3.1 圆的对称性3课时3.2 确定圆的条件2课时 3.3 圆周角3课时3.4 直线与圆的位置关系4课时 3.5 三角形的内切圆1课时3.6 弧长与扇形面积计算1课时 3.7 正多边形与圆2课时回顾与总结2课时综合与实践图形变化与图案设计2课时第4章一元二次方程(13课时) 4.1 一元二次方程2课时4.2 用因式分解法解一元二次方程1课时 4.3 用配方法解一元二次方程2课时 4.4 用公式法解一元二次方程3课时*4.5 一元二次方程根与系数的关系1课时4.6一元二次方程的应用2课时回顾与总结2课时。
教师姓名代廷辉电话学生姓名填写时间学科数学年级七升八教材版本新人教版上课时间课题名称14.1.3 函数图象学案一、学习目标1.理解函数图像的定义,学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.体会数形结合思想,并利用它解决问题,提高解决问题能力.3、会判断一个点是不是在函数图像上。
二、基础知识1、函数图像的定义一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的,那么坐标平面内由这些点组成的图形,就是这个函数2、画函数图像的步骤(1)(2)(3)3、判断一个点是不是在图像上的方法:三、课堂练习1、正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?计算并(1)填写下表:x 0.5 1 1.5 2 2.5 3 3.5S(2)、把x和s的值分别看成点的横、纵坐标,在平面直角坐标系里分别描出以上各点,(3)、顺次连接以上各点。
2、下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?(写出三条)3、下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:(1).菜地离小明家多远?小明走到菜地用了多少时间?(2).小明给菜地浇水用了多少时间?(3).菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(4).小明给玉米地锄草用了多长时间?(5).玉米地离小明家多远?小明从玉米地走回家平均速度是多少?4、(1)画出函数y=2x-4的图像(2)判断下列各点 A(2,-1)、 B(-2,-8)、 C(0,-4) 是否在它的图像上。
四、能力提升训练1、下图是一种古代计时器──“漏壶”的示意图,在壶内盛一定量的水,•水从壶下的小孔漏出,壶壁内画出刻度.人们根据壶中水面的位置计算时间.用x•表示时间,y表示壶底到水面的高度.下面的哪个图象适合表示y与x的函数关系?A BC D(2、a是自变量x取值范围内的任意一个值,过点(a,0)画y轴的平行线,•与图中曲线相交.下列哪个图中的曲线表示y是x的函数?为什么?3、下图是北京与上海在某一天的气温随时间变化的图象。
1.2平面直角坐标系1、平面直角坐标系(1)如右图,在平面内两条有公共点并且互相垂直的数轴就构成 了平面直角坐标系,通常把水平的一条数轴叫横轴或x 轴,取向 右的方向为正方向;铅直的数轴叫做纵轴或y 轴,取向上的 方向为正方向;两数轴的交点O 叫做坐标原点。
(2)建立了直角坐标系的平面叫坐标平面。
x 轴和y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
特别注意:两坐标轴不属于任何一个象限。
2、点的坐标如右图,在直角坐标平面内,从点P 分别向x 轴和y 轴作垂线,垂足分别 为M 和N ,这时,点M 在x 轴上对应的数为3,称为点P 的横坐标;点N在y 轴上对应的数为4,称为点P 的纵坐标,依次写出点P 的横坐标和纵坐标得到一对有序数对()34,,称为点P 的坐标,这时点P 可记作()34P ,。
特别注意:在表示点的坐标时,横坐标应写在纵坐标的前面,横、纵坐标的顺序不能颠倒,如()3,2与()2,3是不同的两个点。
3、不同位置的点的坐标特征(1)各象限内点的坐标的符号特征如下表:(2)坐标轴上点的坐标特征:①点在x 轴上,则点的纵坐标为0,横坐标为任意实数; ②点在y 轴上,则点的横坐标为0,纵坐标为任意实数。
(横轴)(3)象限角的平分线上的点的特征:设(),P x y 为象限角平分线上一点,则 ①当点P 在第一、三象限夹角平分线上时,x y = ②当点P 在第二、四象限夹角平分线上时,x y =- (4)与坐标轴平行的直线上的点的坐标特征平行于x 轴的直线上的各点的纵坐标相同;平行于y 轴的直线上的各点的横坐标相同。
(5)关于x 轴、y 轴、原点对称的点的特征一般地,点P 与点1P 关于x 轴对称,则横坐标不变,纵坐标互为相反数;点P 与点2P 关于y 轴对称,则纵坐标不变,横坐标互为相反数;点P 与点3P 关于原点对称,则横、纵坐标都互为相反数。
人教五四新版七年级(上)中考题同步试卷:14.1 平面直角坐标系(02)一、选择题(共3小题)1.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)3.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013二、填空题(共12小题)4.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为.5.如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5.到达A2n后,要向方向跳个单位落到A2n+1.6.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.7.如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是.8.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.9.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点∁n的坐标为.10.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O 逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为.11.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为.12.如图,在平面直角坐标系中,点A、B、C的坐标分别是(﹣1,﹣1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,﹣2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是.13.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交y轴于点A2;…按此作法继续下去,则点A2013的坐标为.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).15.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.人教五四新版七年级(上)中考题同步试卷:14.1 平面直角坐标系(02)参考答案一、选择题(共3小题)1.D;2.D;3.D;二、填空题(共12小题)4.(2013,2012);5.(9,6);右(东);(2n+1);6.(8052,0);7.(,);8.(8,3);(5,0);9.;10.21007;11.(﹣22014,0);12.(2,﹣4);13.(0,42013)或(0,24026);14.(2n,1);15.(0,﹣1);(31,﹣31);。
平面直角坐标系什么是平面直角坐标系平面直角坐标系是一个二维的坐标系,由两条相互垂直的坐标轴所组成。
通常用来描述平面内的几何现象,常见于数学、物理、工程等领域。
坐标轴平面直角坐标系由两条互相垂直的坐标轴构成,称为X轴和Y轴。
X轴是水平方向的,与纵向的Y轴垂直。
它们通过坐标原点O相交,坐标原点是坐标系中最靠近两条轴交叉点的点。
轴上的点表示轴向的数值,点的位置与它所表示的数值有直接的对应关系,因此点与数值可以互相转换。
坐标系中的点在平面直角坐标系中,每个点的位置可以用它在X轴和Y轴上的坐标表示。
设点P的坐标为(x,y),表示点P在X轴上的坐标为x,在Y轴上的坐标为y。
P点在坐标系上的位置就是以O点为起点,延水平方向向右移动x个单位,再延竖直方向向上移动y个单位到达的点。
坐标系上的距离坐标系中的两个点之间的距离可以用勾股定理计算。
设两个点的坐标分别为A(x1,y1)和B(x2,y2),则它们之间的距离为$d = \\sqrt{(x_2 - x_1)^2 + (y_2- y_1)^2}$。
因此,坐标系中任意两个点都可以通过它们的坐标计算出它们之间的距离。
坐标系中的几何形状平面直角坐标系中可以用一些基本的几何形状来描述平面内的几何现象,例如:点一个点可以表示为一个坐标值(x, y)。
直线一条直线可以用斜率和截距表示。
斜率表示直线在坐标系中的倾斜程度,截距表示直线与Y轴的交点位置。
圆一个圆可以表示为圆心坐标和半径大小。
圆心坐标表示圆心在坐标系中的位置,半径表示圆的大小。
矩形一个矩形可以表示为两个对角点的坐标值。
一个对角点表示矩形的左上角或右下角,另一个对角点表示矩形的右上角或左下角。
坐标系中的变换在平面直角坐标系中,可以进行一些坐标变换来描述几何形状的变化。
例如:平移平移是指将一个几何形状沿着水平和竖直方向上移动一定的距离。
对于一个点(x,y),进行平移变换时可以表示为(x + a, y + b),其中a和b表示在水平和竖直方向上移动的距离。