【新教材】-新人教A版必修一 任意角 教案
- 格式:doc
- 大小:117.00 KB
- 文档页数:7
1.1 任意角和弧度制1.1.1 任意角●三维目标1.知识与技术(1)理解任意角(正角、负角、零角)的概念、象限角与区间角的概念.(2)掌握终边相同角的表示方式,会用角的集合表示一些实际问题中的角.2.进程与方式借助于角、直角坐标系和单位圆等工具来引导学生了解任意角的概念,引导学生用数形结合的思想方式来熟悉问题.3.情感、态度与价值观(1)通过对角的概念的探讨提高学生的推理能力.(2)通过本节学习和运用实践,培育学生应用意识,体会数学的应用价值.●重点、难点重点:任意角概念的理解;区间角的集合的书写.难点:终边相同角的集合的表示;区间角的集合的书写.●教学建议首先通过实际问题(拨腕表、体操中的转体、齿轮旋转等)引出角的概念的推行问题,引发学生的认知冲突,然后用具体例子,将初中学过的角和概念推行到任意角,在此基础上引出终边相同的角的集合的概念.这样可使学生在自己已有经验(生活经验、数学学习经验)的基础上,更好地熟悉任意角、象限角、终边相同的角等概念.【问题导思】将射线OA绕着点O旋转到OB位置,有几种旋转方向?【提示】有顺时针和逆时针两种旋转方向.1.概念角可以看成是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.分类正角、负角与零角正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:一条射线没有作任何旋转形成的角.知识2象限角【问题导思】把角的极点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?【提示】终边可能落在座标轴上或四个象限内.在直角坐标系内,使角的极点与原点重合,角的始边与x轴的非负半轴重合.象限角:终边在第几象限就是第几象限角;轴线角:终边落在座标轴上的角.知识3终边相同的角【问题导思】30°,390°,750°,…,30°+k·360°(k∈Z)的角的终边有什么关系?【提示】相同.所有与角α终边相同的角,连同角α在内,可组成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.类型1角的基本概念例1①第一象限角必然不是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中不正确的序号为________.【思路探讨】解答本题可按照角的大小特征,位置特征进行判断.【自主解答】①-330°角是第一象限角,但它是负角,所以①不正确.②120°角是第二象限角,390°角是第一象限角,显然390°>120°,所以②不正确.③480°角是第二象限角,但它不是钝角,所以③不正确.④0°角是小于180°角,但它既不是钝角,也不是直角或锐角,故④不正确.【答案】①②③④1.解决此类问题关键在于正确理解象限角及锐角、直角、钝角、平角、周角等概念,严格辨析它们之间的联系与区别.2.判断结论正确与否时,若要说明结论正确,需要严格的推理论证,若要说明结论错误,只需举出反例即可.下列说法正确的是()A.锐角是第一象限角B.钝角比第三象限角小C.三角形的内角必为第一、二象限角D.小于90°的角都是锐角【解析】-100°是第三象限角,但-100°<90°,故B错;90°角是直角三角形的内角,但它既不在第一象限,也不在第二象限,故C错;-30°小于90°,不是锐角,故D错.【答案】 A类型2终边相同的角例2(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.【思路探讨】先求出β,判断角α所在的象限,用终边相同的角表示θ知足的不等关系,求出k和θ.【自主解答】(1)由2 010°除以360°,得商为5,余数为210°.∴取k=5,β=210°,α=5×360°+210°.又β=210°是第三象限角,∴α为第三象限角. (2)与2 010°终边相同的角: k ·360°+2 010°(k ∈Z ).令-360°≤k ·360°+2 010°<720°(k ∈Z ), 解得-6712≤k <-3712(k ∈Z ).所以k =-6,-5,-4.将k 的值代入k ·360°+2 010°中, 得角θ的值为-150°,210°,570°.1.把任意角化为α+k ·360°(k ∈Z 且0°≤α<360°)的形式,关键是肯定k .可以用观察法(α的绝对值较小)也可用除法.2.要求适合某种条件且与已知角终边相同的角,其方式是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.若将例题中“角α=2 010°”,改成“α=-315°”,其他条件不变,结果如何? 【解】 (1)用-315°除以360°商为-1,余数为45°, ∴k =-1,β=45°, 因此α=-360°+45°, ∴α是第一象限角.(2)与-315°终边相同的角:k ·360°-315°(k ∈Z ), 令-360°≤k ·360°-315°<720°(k ∈Z ), 解得-18≤k <238(k ∈Z ),所以k =0,1,2.将k 值代入k ·360°-315°中, 得所求角为-315°,45°和405°.类型3象限角与区域角的表示例3如图1-1-1,终边落在阴影部份(不包括边界)的角的集合是( )图1-1-1 A.{α|k·360°+30°<α<k·360°+45°,k∈Z}B.{α|k·180°+150°<α<k·180°+225°,k∈Z}C.{α|k·360°+150°<α<k·360°+225°,k∈Z}D.{α|k·360°+30°<α<k·180°+45°,k∈Z}【思路探讨】找出0°~360°内阴+k·360°适合题意的角的集合影部份的角的集合――→(k∈Z)【自主解答】在0°~360°内落在阴影部份角的范围为大于150°而小于225°,所以在终边落在阴影部份(不包括边界)的角的集合为{α|k·360°+150°<α<k·360°+225°,k∈Z}.【答案】 C1.先在-360°~360°范围内肯定区域角起止边界处角,再把端点处加上360°的整数倍即得.2.区域角的表示问题,遵循先从特殊再到一般的规律写出,即先选择一个适合的角度为360°区间,写出落在阴影部份的角的集合,然后再在端点处加上周角的整数倍表示终边落在阴影区域内的角的集合.注意结果尽可能表示为一个持续区间.写出下图1-1-2中阴影部份(不含边界)表示的角的集合.图1-1-2【解】 在-180°~180°内落在阴影部份角集合为大于-45°小于45°,所以终边落在阴影部份(不含边界)的角集合为{α|-45°+k ·360°<α<45°+k ·360°,k ∈Z }.轻忽象限角范围致误若α是第二象限角,试肯定2α、α2是第几象限角.【错解】 由题意得90°<α<180°, 所以有180°<2α<360°, 45°<α2<90°.故有2α为第三象限角、第四象限角或终边在y 轴非正半轴上角,α2为第一象限角.【错因分析】 致错原因是把α是第二象限角范围误以为是大于90°而小于180°,而应是{α|90°+k ·360°<α<180°+k ·360°,k ∈Z }才完整.【防范办法】 正确理解象限角的含义及范围是避免此类错误的关键. 【正解】 (1)由题意得90°+k ·360°<α<180°+k ·360°(k ∈Z ), ① ∴180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).故2α是第三或第四象限角或终边落在y 轴非正半轴上的角. (2)由①得45°+k ·180°<α2<90°+k ·180°(k ∈Z ),当k 为偶数时,令k =2n (n ∈Z ),得45°+n ·360°<α2<90°+n ·360°(n ∈Z ),故α2是第一象限角. 当k 为奇数时,令k =2n +1(n ∈Z )得45°+180°+n ·360°<α2<90°+180°+n ·360°(n ∈Z ),即225°+n ·360°<α2<270°+n ·360°(n ∈Z ),故α2为第三象限角. 综上可知α2为第一或第三象限角.课堂小结1.理解任意角的概念要抓住四个要素:极点、始边、终边和射线的旋转方向. 2.象限角的肯定依赖于角的终边位置的肯定,要注意对表达式中的k 进行分类讨论,以确定角的终边的位置.3.熟练掌握终边相同的角的公式及应用,明确象限角的概念与内涵是解题的依据.1.将射线OM绕端点O按逆时针方向旋转120°所得的角为()A.120°B.-120°C.60°D.240°【解析】由于射线OM绕O逆时针旋转,故所得角为正角120°.【答案】 A2.(2021·开封高一检测)下列各角中,与角330°的终边相同的角是()A.510°B.150°C.-150°D.-390°【解析】与330°终边相同的角的集合为S={β|β=330°+k·360°,k∈Z},当k=-2时,β=330°-720°=-390°,故选D.【答案】 D3.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是________.【解析】-885°=-1080°+195°=(-3)×360°+195°.【答案】195°+(-3)×360°4.若是θ为小于360°的正角,θ的4倍角的终边与θ的终边重合,求θ的值.【解】依题意4θ=k·360°+θ,且0°<θ<360°,∴θ=k·120°.取k=1或k=2,∴θ=120°或θ=240°.一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=CC.A C D.A=B=C【解析】锐角大于0°小于90°,故C B,选项B正确.【答案】 B2.把-1 485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°【解析】B、C选项中α不在0°~360°范围内,A选项的结果不是-1 485°,只有D 正确.【答案】 D3.若α是第二象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角 D. 第四象限角【解析】可借助于取特殊值法,取α=120°,则180°-120°=60°.【答案】 A4.若α与β的终边互为反向延长线,则有()A.α=β+180°B.α=β-180°C.α=-βD.α=β+(2k+1)·180°,k∈Z【解析】α与β的终边互为反向延长线,则两角的终边相差180°的奇数倍,可得α=β+(2k+1)·180°,k∈Z.【答案】 D5.以下命题正确的是()A.第二象限角比第一象限角大B.A={α|α=k·180°,k∈Z},B={β|β=k·90°,k∈Z},则A BC.若k·360°<α<k·360°+180°(k∈Z),则α为第一或第二象限角D.终边在x轴上的角可表示为k·360°(k∈Z)【解析】A不正确,如-210°<30°.在B中,当k=2n,k∈Z时,β=n·180°,n∈Z.∴A B,∴B正确.又C中,α为第一或第二象限角,或在y轴的非负半轴上,∴C不正确,显然D不正确.【答案】 B二、填空题6.(2021·哈尔滨高一检测)与-2 002°终边相同的最小正角是________.【解析】与-2 002°终边相同的角的集合为{β|β=-2 002°+k·360°,k∈Z},与-2 002°终边相同的最小正角是当k=6时,β=-2 002°+6×360°=158°.【答案】 158°7.若将时钟拨慢5分钟,则分针转了________度,时针转了________度.【解析】 拨慢时针为逆时针形成正角,分针每分钟转过的度数为360°60=6°,5分钟转过30°,时针每分钟转过的度数为30°60=0.5°,5分钟转过2.5°.【答案】 30 2.58.(2021·哈尔滨高一检测)在四个角-20°,-400°,-2 000°,600°中,第四象限的角的个数是________.【解析】 -20°是第四象限的角;-400°=-360°-40°,也是第四象限的角;-2000°=(-6)×360°+160°,是第二象限的角;600°=360°+240°,是第三象限的角.所以第四象限的角的个数是2个.【答案】 2个 三、解答题9.若角α的终边和函数y =-x 的图象重合,试写出角α的集合. 【解】 在0°~360°范围内所对应的两个角别离为135°和315°,∴终边为y =-x 的角的集合是{α|α=k ·360°+135°,k ∈Z }∪{α|α=k ·360°+315°,k ∈Z } ={α|α=2k ·180°+135°,k ∈Z }∪{α|α=(2k +1)·180°+135°,k ∈Z } ={α|α=k ·180°+135°,k ∈Z }.10.在与530°终边相同的角中,求知足下列条件的角. (1)最大的负角; (2)最小的正角; (3)-720°到-360°的角.【解】 与530°终边相同的角为k ·360°+530°,k ∈Z .(1)由-360°<k ·360°+530°<0°,且k ∈Z 可得k =-2,故所求的最大负角为-190°. (2)由0°<k ·360°+530°<360°且k ∈Z 可得k =-1, 故所求的最小正角为170°.(3)由-720°≤k ·360°+530°≤-360°且k ∈Z 得k =-3,故所求的角为-550°. 11.如图1-1-3所示.图1-1-3(1)别离写出终边落在OA ,OB 位置上的角的集合; (2)写出终边落在阴影部份(包括边界)的角的集合.【解】 (1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z }.终边落在OB 位置上的角的集合为 {β|β=-30°+k ·360°,k ∈Z }.(2)由题图可知,终边落在阴影部份(包括边界)角的集合是由大于或等于-30°而小于或等于135°范围内的所有与之终边相同的角组成的集合,故终边落在阴影部份(包括边界)的角的集合为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z }.【教师备课资源】 象限角的判断已知α是第一象限角,求2α,α2,α3所在的象限.【解】 ∵α是第一象限角, ∴k ·360°<α<k ·360°+90°,k ∈Z . ①2k ·360°<2α<2k ·360°+180°,k ∈Z ,则2α是第一或第二象限角,或是终边在y 轴的正半轴上的角. ②k ·180°<α2<k ·180°+45°,k ∈Z .当k 为偶数时,α2为第一象限角,当k 为奇数时,α2为第三象限角,∴α2为第一或第三象限角. ③k ·120°<α3<k ·120°+30°,k ∈Z .当k =3n (n ∈Z )时,n ·360°<α3<n ·360°+30°,n ∈Z ,∴α3是第一象限角; 当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°,n ∈Z ,∴α3是第二象限角; 当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°,n ∈Z ,∴α3是第三象限角; ∴α3为第一或第二或第三象限角.1.解决此类问题,要先肯定α的范围,进一步确定出nα或αn的范围,再按照k 与n 的关系进行讨论.2.一般地,要肯定αn所在的象限,可以作出n 等分各个象限的从原点起身的射线,它们与坐标轴把圆周等分成4n 个区域,从x 轴的正半轴起,按逆时针方向把4n 个区域依次标上号码一、二、3、4,则标号是n 的区域就是α为第几象限时,αn的终边也可能落在区域.若α是第三象限角,则180°-α是第几象限角?【解】 ∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°,k ∈Z ,-270°-k ·360°<-α<-180°-k ·360°,k ∈Z ,-90°-k ·360°<180°-α<-k ·360°(k ∈Z ).∴180°-α是第四象限角.。
5.1.1任意角(人教A 版普通高中教科书数学必修第一册第五章)一、教学目标1.了解任意角以及象限角的概念,会判断一个任意角是第几象限角,发展数学抽象素养.2.理解角的加减运算以及相反角的概念.3.掌握与角α终边相同的角的表示方法.二、教学重难点1.将0︒到360︒范围的角扩充到任意角.2.任意角概念的构建,用集合表示终边相同的角.三、教学过程1.呈现背景 提出问题现实世界中的许多运动、变化都有着循环往复、周而复始的规律,这种规律称为周期性.例如:地球自转、地球于太阳公转,月亮圆缺、潮汐变化等,数学中的圆周运动也是一种常见的周期性变化现象.问题1:如图,O 上的点P 以A 为起点做逆时针方向的旋转.如何刻画点P 的位置变化呢?【预设的答案】我们知道,角可以看成一条射线绕着它的端点旋转所成的图形.在图中,射线的端点是圆心O ,它从起始位置OA 按逆时针方向旋转到终止位置OP ,形成一个角,射线AA POOA,OP分别是角α的始边和终边,点P是终边OP与O的交点.可以借助角α的大小变化刻画点P的位置变化.【设计意图】创设情境,以圆为载体研究周期性变化对理解角的扩充更有帮助.由初中知识可知,射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到0~360︒︒范围内的角.如果继续旋转,那么所得到的的角就超出这个范围了.所以,为了借助角的大小变化刻画圆周运动,需要先扩大角的范围.2.任意角的概念、运算及分类现实生活中随处可见超出0~360︒︒范围的角.例如,体操中有“前空翻转体540度”,“后空翻转体720度”,齿轮的旋转等.问题2:这些角有哪些不同,体现在哪几个方面?【预设的答案】不同体现在旋转量和旋转方向.【设计意图】引导学生从生活实际出发用数学的眼光分析问题,归纳刻画角的两个方面——旋转量和旋转方向.很显然,0~360︒︒角难以满足我们的需要,所以我们需要对角的概念进行推广.2.1角的概念类比实数的学习,我们对角的范围进行扩充:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,就称它形成了一个零角.2.2角的表示与作图【数学情境】你能分别作出750°、210°、-150°、-660°吗?【设计意图】再次强调决定一个角的要素是旋转方向和旋转量.2.3角的运算问题3:类比实数,思考下列问题:(1)你认为相等的两个角应该怎样规定?(2)两角相加又是怎样规定的?(3)你知道什么是互为相反角吗?两角怎样相减?【预设的答案】(1)旋转方向相同且旋转量相等.(2)角α的终边旋转角β,这时终边所对应的角是αβ+.(3)类似于实数中的相反数我们引入相反角的概念.我们把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角.类似于实数a 的相反数是a -,角α的相反角记为α-.类似实数减法中“减去一个数等于加上这个数的相反数”,减去一个角等于加上这个角的相反角.即()αβαβ-=+-.【设计意图】让学生尝试定义角的相等和加减法,体会定义的合理性.2.4象限角角的范围扩充后,为了讨论的方便,我们通常在直角坐标系中研究角. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合.问题4:根据终边位置的不同,可以把角分为哪几类?【预设的答案】根据角的终边所在象限,将角分为第一象限角,第二象限角,第三象限角,第四象限角.【设计意图】让学生体会在直角坐标系中研究角是自然和合理的.这样我们得到了象限角的概念:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么角的终边在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限,也称为轴线角.问题5:锐角是第几象限角?第一象限角一定是锐角吗?【预设的答案】因为锐角是指大于0︒且小于90︒的角,所以锐角是第一象限角,第一象限角不一定是锐角.【设计意图】让学生明确“锐角”“第一象限角”之间的关系,避免混淆.2.5终边相同的角问题6:在直角坐标系中,将角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么与32-︒角终边重合的角还有哪些?有多少个?【预设的答案】328°,688°,-392°,-752°;无数个追问:它们与32-︒角有什么关系?能不能用集合的形式将它们表达出来?【预设的答案】相差360°的整数倍,可以用{}32360,S k k ββ==-︒+⋅︒∈Z 表示. 追问:将32-︒推广到一般角α,结论应该是什么? 【预设的答案】{}360,S k k ββα==+⋅︒∈Z .【设计意图】通过对特殊角之间关系的研究得到一般性的结论,符合学生由特殊到一般的认知规律,并且培养了学生的数学抽象素养.一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{}360,S k k ββα==+⋅︒∈Z ,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.3.典例分析例1 在0~360︒︒范围内,找出与下列各角终边相同的角,并判定它是第几象限角.(1)-120º;(2)640º;(3)-950º12′.【预设的答案】(1)与-120º终边相同的角为240º,它是第三象限角.(2)与640º终边相同的角为280º,它是第四象限角.(3)与-950º12′终边相同的角为129º48',它是第二象限角.【设计意图】利用终边相同的角判定其象限,为以后证明恒等式、化简及利用诱导公式求三角函数的值等奠定基础.例2 写出终边在y 轴上的角的集合.【预设的答案】终边落在y 轴非负半轴上的角构成集合:{}190360,S k k ββ==︒+⋅︒∈Z ,终边落在y 轴非正半轴上的角构成集合{}2270360,S k k ββ==︒+⋅︒∈Z ,观察发现,12S S 中的角均相差180︒的整数倍,用集合表示是{}90180,S k k ββ==︒+⋅︒∈Z .另外,我们还可以用这种方式求出12S S :12=|=90360|=270360=|=902180|=901802180|=902180|=9021180|=90180S S S k k k k k k k k k k k k n n ββββββββββββββ=︒+⋅︒∈︒+⋅︒∈︒+⋅︒∈︒+︒+⋅︒∈=︒+⋅︒∈︒++⋅︒∈=︒+⋅︒∈Z Z Z Z Z Z Z {,}{,}{,}{,}{,}{(),}{,}.【设计意图】引导学生体会用集合表示终边相同的角时,表示方式不唯一,要注意采用简约的形式.例3 写出终边在直线y x =上的角的集合S .S 中满足不等式360720β-︒≤<︒的元素β有哪些?【预设的答案】在0~360︒︒范围内,终边在直线=y x 上的角有两个:45︒,225︒. 因此,终边在直线=y x 上的角的集合=|=45360|=225360=|=452180|=4521180=|=45180S k k k k k k k k n n ββββββββββ︒+⋅︒∈︒+⋅︒∈︒+⋅︒∈︒++⋅︒∈︒+⋅︒∈Z Z Z Z Z {,}{,}{,}{(),}{,}.S 中适合不等式360720β- ︒︒≤<的元素β有452180=315︒-⨯︒-︒,451180=135︒-⨯︒-︒,450180=45︒+⨯︒︒,451180=225︒+⨯︒︒,452180=405︒+⨯︒︒,453180=585︒+⨯︒︒.【设计意图】巩固终边相同的角的表示.4.归纳小结四、课外作业1.已知角的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,作出下列各角,并指出它们是第几象限角:(1)420°; (2)-75°; (3)855°; (4)-510°.2.写出终边与-225°终边相同的角的集合,并找出集合中适合不等式720360β- ︒︒≤<的元素β.。
《5.1.1 任意角》教学设计教学目标1.通过阅读章引言,了解三角函数的背景,体会三角函数与现实世界的密切联系,了解学习三角函数的必要性;2.了解任意角以及象限角的概念,会判断一个任意角是第几象限角,发展数学抽象素养;3.掌握所有与角α终边相同的角(包括角α)的表示方法.教学重难点教学重点:将0°到360°范围的角扩充到任意角;终边相同的角.教学难点:任意角概念的建构;“0°~90°的角”、“第一象限角”、“锐角”、“小于90°的角”这些概念之间的关系.课前准备PPT课件教学过程(一)整体感知问题1:请同学们先观察章头图并阅读第五章章引言,再回答如下问题:(1)本章将要学习的函数是什么?(2)这种函数主要可以解决我们实际生活中的哪类问题?你能举出具体例子吗?(3)你能简单说说以前研究函数的过程与方法吗?预设的师生活动:学生独立阅读教科书,再回答上述问题.预设答案:(1)本章将要学习的函数是三角函数;(2)三角函数可以用来刻画现实生活中的一些周期现象,例如单摆运动、弹簧振子、圆周运动、交变电流、潮汐等;(3)研究函数的一般思路是:先给出函数的定义,通过定义作出图象,再由图象研究性质,最后是函数的应用.设计意图:明确本章研究内容、目的、简单的过程和方法,为本章的研究指明方向.(二)新知探究1.任意角的概念、运算引导语:我们知道,现实世界中存在着各种各样的“周而复始”变化现象,圆周运动是这类现象的代表.问题2:如图1,O上的点P以A为起点做逆时针方向的旋转,如何刻画点P的位置变化呢?预设的师生活动:学生独立思考,并回答问题(链接Geogebra动画).预设答案:通过角的变化进行刻画.图1说明:“刻画”这个词用在问题2中虽然比较准确,但学生可能不能理解它的含义,因此,我们可以用信息技术(如Geogebra)将这种旋转的过程体现出来,尤其是将线段OP用鲜艳的颜色突显出来,学生自然就会想到点P的运动可以看成是由线段的运动带动点的运动(其实就是射线的运动带动了点的运动),由此让学生可以理解,这种“刻画”就是“描述”“反映”等,另外,主要让学生可以发现圆周上点的运动与角的关系.设计意图:通过具体问题引出本节课的研究主题——角(版书).问题3:我们以前所学角都在0°~360°的范围内,生活中有超出0°~360°角的例子吗?请你举例说明.预设的师生活动:学生独立思考,并举手回答问题.预设答案:例如,体操中“前空翻转体540度”“后空翻转体720度”(如图2);如果要将钟表调快一个半小时,那么分针就会顺时针旋转超过360°(如图).追问1:这些角的不同,体现在哪几个方面?预设答案:两个方面,一是大小;二是方向. 设计意图:一方面加强数学与我们现实生活的联系,说明学习数学是有用的;另一方面,学生在用语言描述这些超出0°~360°角的时候,会发现用静态角的定义不再适合,让他们体会到:要想说清楚这些角,有必要将角的范围进行拓展,而且需要从动态的角度重新定义角.追问2:假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?从几个方向描述角?预设的师生活动:学生独立思考,并举手回答问题.预设答案:逆时针旋转;分针会旋转450°(链接Geogebra 动画).假如校准前如图(1),校准后应该为图(2).图2(1) 图2(2)图3(1)图3(2)设计意图:通过这个具体的例子让学生理解:要想说清楚一个角,包括两个方面,一是旋转方向;二是旋转量.追问3:以上问题中对角的描述的共性是什么?预设的答案:都要说清楚角的大小及旋转方向.问题4:请同学们先阅读课本第168页最后一段至第169页最后一段前,再回答下列问题:根据旋转方向的不同,角可以分为哪几类?分别是什么?这种定义方法和分类办法是与之前的哪个知识进行类比的?预设的师生活动:学生独立阅读课文,再举手回答上述问题.预设答案:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,就称它形成了一个零角,因此,角可以分为正角、负角、零角.这种定义方法和分类办法都是与实数进行类比的.设计意图:明确了通过推广以后角的定义,知道了角是“转”出来的,关键是对旋转方向的量化可以通过类比实数,用符号表示方向.练习1:你能分别作出210°、-150°、750°、-660°吗?预设的师生活动:学生作图,教师用Geogebra展示动画作图过程.预设答案:如图3(1)(2)(3)(4).设计意图:熟悉正角、负角的定义,理解“符号”与“方向”之间的关系,从数到形的认识.追问1:你知道什么是两角相等?两角相加又是怎样规定的?预设的师生活动:学生回答.预设答案:如果两角的旋转方向相同且旋转量相等,就称两角相等;规定:把角α的终边旋转角β,这时终边所对应的角是α+β.设计意图:定义了一个具有数量特征的数学概念之后,紧接着需要研究的就是两个这种数学对象之间的关系以及运算问题.追问2:你知道什么是互为相反角?两角怎样相减?预设的师生活动:学生回答.预设答案:如果两角的旋转方向不同且旋转量相等,就称两角互为相反角;类比实数减法,我们有α-β=α+(-β).设计意图:类比实数,得到相反角的定义及两个任意角之间的减法运算.练习2:你能用作图的方式反映出30°与-30°;30°+120°与150°;30°-120°与-90°的关系吗?预设的师生活动:学生分别作图并说明.图4(1) 图4(2)图4(4)图4(3)预设答案:如图5(1)(2)(3).追问:对于一般的α-β呢,你能类比实数给出相应说明吗?预设答案:对于一般的α-β,如果α>β,则α-β>0°;如果α=β,则α-β=0°;如果α<β,则α-β<0°.从图形上看,就是把角α的终边旋转角-β(若β>0°,则顺时针旋转│β│;若β<0°,则逆时针旋转│β│;若β=0°,则不作旋转),这时终边所对应的角是α-β.设计意图:通过具体例子加强学生对相等角、相反角、角的加法、减法的理解,并能推广到一般情形,这里体现了具体与抽象、特殊与一般的数学思想方法.2.象限角问题5:在直角坐标系中研究角,其顶点和始边的位置是如何规定的?根据其终边位置的不同,又可以把角分为哪几类?在直角坐标系内讨论角有什么好处呢?预设的师生活动:学生互相交流后,再回答.预设答案:为了方便,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合;根据角终边所在象限,将角又可以分为第一、二、三、四象限角以及轴线角;在直角坐标系中讨论角可以很好地表现角的“周而复始”的变化规律.设计意图:让学生明确在直角坐标系中讨论角需要有一个统一的标准.在这个统一前提下,才能对象限角进行定义.另外,终边落在坐标轴上是一种“边界”状态,因此规定它不属于任何一个象限更方便.这样讨论角的好处就是:在同一“参照系”下,可以使角的讨论图5(3)图5(2) 图5(1)得到简化,由此还能使角的终边位置“周而复始”现象得到有效表示.练习3:教材第171页第1、2、3题.预设的师生活动:由学生逐题给出答案.预设答案:1.锐角是第一象限角,第一象限角不一定是锐角;直角是终边落在y轴非负半轴上的角,终边落在y轴非负半轴上的角不一定是直角;钝角是第二象限角,第二象限角不一定是钝角.2.三,三,五.3.(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.设计意图:检验学生对象限角的理解情况.3.终边相同的角问题6:在直角坐标系中,将角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么与-32°角终边重合的角还有哪些?有多少个?它们与-32°角有什么关系?能不能用集合的形式将它们表达出来?将-32°推广到一般角 ,结论应该是什么?预设的师生活动:教师演示(链接Geogebra动画),学生观察并思考后,再举手回答.预设答案:还有-392°、328°、688°等等;有无数个;相差360°的整数倍;{β|β=-32°+k·360°,k∈Z};{β|β=α+k·360°,k∈Z};设计意图:通过动画演示与回答问题,使学生明确:(1)终边相同的角不一定相等;(2)终边相同的角有无数个,这些角有“始边、终边都相同”的共同特征;(3)这无数多个终边相同的角在数量上都是相差360°的整数倍.例1在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.预设的师生活动:先由学生独立计算,再回答.追问:与-950°12′角终边相同的角都有什么共同点?预设答案:相差360°的整数倍;与-950°12′角终边相同的角可以写成{β|β=-950°12′+k·360°,k∈Z},当k=3时,β=129°48′,它是第二象限角.设计意图:熟悉终边相同的角的表示,并会在0°~360°范围内找出与已知角终边相同的角,判定其为第几象限角,为以后证明恒等式、化简及利用诱导公式求三角函数的值等奠定基础.例2写出终边在y轴上的角的集合.预设的师生活动:学生先独立完成,再相互交流.追问:这些角终边在几条射线上?终边落在每条射线上的角如何表示?这两条射线上的角都相差多少度?能不能用一个集合表示这所有的角?预设答案:两条;y轴正、负半轴上的角的集合分别为{β|β=90°+k·360°,k∈Z}、{β|β=270°+k·360°,k∈Z};相差180°的整数倍;{β|β=90°+k·180°,k∈Z}.设计意图:此题是终边在坐标轴上的角的表示.应引导学生体会用集合表示终边相同的角时,表示方式不唯一,要注意采用简约的形式.另外,分析终边与y轴的正半轴、负半轴分别重合的两个角的集合的联系,可以简化集合的表示,实质是“终边组成一条直线”的代数解释:“两个集合中的元素相差180°的整数倍.”设计意图:让学生熟悉简化角的集合的表示方法.上的角的集合S.S中适合不等式-360°≤β<720°的元素例3写出终边在直线y xβ有哪些?预设的师生活动:由学生独立完成后,让学生代表进行展示.追问:在求出角之前,你能判断满足条件角的个数吗?判断的根据是什么?预设答案:六个;所求角的范围包含了三周;S={β|β=45°+k·180°,k∈Z};-315°、-135°、45°、225°、405°、585°.设计意图:此题主要是巩固终边相同的角的表示.为了使学生顺利完成相应的集合运算,可以先让学生用日常语言描述一下集合的特征.(三)归纳小结问题5:通过本节课的学习,你能说出本章将要学习什么内容?其作用是什么?其基本的研究方法是什么?本节课关于角的概念出现了几个定义?分别是怎样规定的?你能从数与形两个角度进行描述吗?能不能画一个结构图来反映本节课的研究思路及内容?预设的师生活动:学生自主总结,展示交流.预设答案:三角函数;刻画周期现象;与其它基本初等函数一样,先抽象出定义,再由定义作出图象,观察图象研究性质,最后是其初步应用;角的概念主要是任意角、象限角、终边相同的角,规定:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,就称它形成了一个零角.在直角坐标系中,将角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限就称角为第几象限角.在直角坐标系中,将角的顶点与原点重合,角的始边与x轴的非负半轴重合,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.从形上看,终边相同的角就是“终边旋转整数周回到原来的位置”.设计意图:帮助学生梳理基本知识,提升数学抽象素养.(四)布置作业(1)分别写出终边在第一、二、三、四象限的角的集合;(2)预习5.1.2弧度制的内容;(3)第175页习题5.1复习巩固1、2.(五)目标检测设计1.写出终边在x轴与坐标轴上的角的集合.2.写出与下列各角度终边相同的角的集合,并找出集合中适合不等式-720°≤β<360°的元素β(教科书第171页练习第5题):(1)1303°18′;(2)-225°.设计意图:检验学生对任意角、终边相同角和象限角的理解情况.参考答案:1.{β|β=k·180°,k∈Z};{β|β=k·90°,k∈Z};终边在x轴上的角相差180°的整数倍,而终边在坐标轴上的角相差90°的整数倍.2.(1){β|β=1303°18′+k·360°,k∈Z},-496°42′,-136°42′,223°18′;(2){β|β=-225°+k·360°,k∈Z},-585°,-225°,135°.。
数学:1.1.1《任意角(1)》教案(新人教A版)1.1.1 任意角(1)一、课题:任意角(1)二、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重、难点:1.判断已知角所在象限;2.终边相同的角的书写。
四、教学过程:(一)复习引入:1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成一个角,点是角的顶点,射线分别是角的终边、始边。
说明:在不引起混淆的前提下,"角"或""可以简记为.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:都是第一象限角;是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。
例如:等等。
说明:角的始边"与轴的非负半轴重合"不能说成是"与轴的正半轴重合"。
因为轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
4.终边相同的角的集合:由特殊角看出:所有与角终边相同的角,连同角自身在内,都可以写成的形式;反之,所有形如的角都与角的终边相同。
从而得出一般规律:所有与角终边相同的角,连同角在内,可构成一个集合,即:任一与角终边相同的角,都可以表示成角与整数个周角的和。
说明:终边相同的角不一定相等,相等的角终边一定相同。
5.例题分析:例1 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)(2)(3)解:(1),所以,与角终边相同的角是,它是第三象限角;(2),所以,与角终边相同的角是角,它是第四象限角;(3),所以,角终边相同的角是角,它是第二象限角。
《5.1.1 任意角》教学设计教学目标1.通过阅读章引言,了解三角函数的背景,体会三角函数与现实世界的密切联系,了解学习三角函数的必要性;2.了解任意角以及象限角的概念,会判断一个任意角是第几象限角,发展数学抽象素养;3.掌握所有与角α终边相同的角(包括角α)的表示方法.教学重难点教学重点:将0°到360°范围的角扩充到任意角;终边相同的角.教学难点:任意角概念的建构;“0°~90°的角”、“第一象限角”、“锐角”、“小于90°的角”这些概念之间的关系.课前准备PPT课件教学过程(一)整体感知问题1:请同学们先观察章头图并阅读第五章章引言,再回答如下问题:(1)本章将要学习的函数是什么?(2)这种函数主要可以解决我们实际生活中的哪类问题?你能举出具体例子吗?(3)你能简单说说以前研究函数的过程与方法吗?预设的师生活动:学生独立阅读教科书,再回答上述问题.预设答案:(1)本章将要学习的函数是三角函数;(2)三角函数可以用来刻画现实生活中的一些周期现象,例如单摆运动、弹簧振子、圆周运动、交变电流、潮汐等;(3)研究函数的一般思路是:先给出函数的定义,通过定义作出图象,再由图象研究性质,最后是函数的应用.设计意图:明确本章研究内容、目的、简单的过程和方法,为本章的研究指明方向.(二)新知探究1.任意角的概念、运算引导语:我们知道,现实世界中存在着各种各样的“周而复始”变化现象,圆周运动是这类现象的代表.问题2:如图1,O上的点P以A为起点做逆时针方向的旋转,如何刻画点P的位置变化呢?预设的师生活动:学生独立思考,并回答问题(链接Geogebra动画).预设答案:通过角的变化进行刻画.图1说明:“刻画”这个词用在问题2中虽然比较准确,但学生可能不能理解它的含义,因此,我们可以用信息技术(如Geogebra)将这种旋转的过程体现出来,尤其是将线段OP用鲜艳的颜色突显出来,学生自然就会想到点P的运动可以看成是由线段的运动带动点的运动(其实就是射线的运动带动了点的运动),由此让学生可以理解,这种“刻画”就是“描述”“反映”等,另外,主要让学生可以发现圆周上点的运动与角的关系.设计意图:通过具体问题引出本节课的研究主题——角(版书).问题3:我们以前所学角都在0°~360°的范围内,生活中有超出0°~360°角的例子吗?请你举例说明.预设的师生活动:学生独立思考,并举手回答问题.预设答案:例如,体操中“前空翻转体540度”“后空翻转体720度”(如图2);如果要将钟表调快一个半小时,那么分针就会顺时针旋转超过360°(如图).追问1:这些角的不同,体现在哪几个方面?预设答案:两个方面,一是大小;二是方向. 设计意图:一方面加强数学与我们现实生活的联系,说明学习数学是有用的;另一方面,学生在用语言描述这些超出0°~360°角的时候,会发现用静态角的定义不再适合,让他们体会到:要想说清楚这些角,有必要将角的范围进行拓展,而且需要从动态的角度重新定义角.追问2:假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?从几个方向描述角?预设的师生活动:学生独立思考,并举手回答问题.预设答案:逆时针旋转;分针会旋转450°(链接Geogebra 动画).假如校准前如图(1),校准后应该为图(2).图2(1) 图2(2)图3(1)图3(2)设计意图:通过这个具体的例子让学生理解:要想说清楚一个角,包括两个方面,一是旋转方向;二是旋转量.追问3:以上问题中对角的描述的共性是什么?预设的答案:都要说清楚角的大小及旋转方向.问题4:请同学们先阅读课本第168页最后一段至第169页最后一段前,再回答下列问题:根据旋转方向的不同,角可以分为哪几类?分别是什么?这种定义方法和分类办法是与之前的哪个知识进行类比的?预设的师生活动:学生独立阅读课文,再举手回答上述问题.预设答案:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,就称它形成了一个零角,因此,角可以分为正角、负角、零角.这种定义方法和分类办法都是与实数进行类比的.设计意图:明确了通过推广以后角的定义,知道了角是“转”出来的,关键是对旋转方向的量化可以通过类比实数,用符号表示方向.练习1:你能分别作出210°、-150°、750°、-660°吗?预设的师生活动:学生作图,教师用Geogebra展示动画作图过程.预设答案:如图3(1)(2)(3)(4).设计意图:熟悉正角、负角的定义,理解“符号”与“方向”之间的关系,从数到形的认识.追问1:你知道什么是两角相等?两角相加又是怎样规定的?预设的师生活动:学生回答.预设答案:如果两角的旋转方向相同且旋转量相等,就称两角相等;规定:把角α的终边旋转角β,这时终边所对应的角是α+β.设计意图:定义了一个具有数量特征的数学概念之后,紧接着需要研究的就是两个这种数学对象之间的关系以及运算问题.追问2:你知道什么是互为相反角?两角怎样相减?预设的师生活动:学生回答.预设答案:如果两角的旋转方向不同且旋转量相等,就称两角互为相反角;类比实数减法,我们有α-β=α+(-β).设计意图:类比实数,得到相反角的定义及两个任意角之间的减法运算.练习2:你能用作图的方式反映出30°与-30°;30°+120°与150°;30°-120°与-90°的关系吗?预设的师生活动:学生分别作图并说明.图4(1) 图4(2)图4(4)图4(3)预设答案:如图5(1)(2)(3).追问:对于一般的α-β呢,你能类比实数给出相应说明吗?预设答案:对于一般的α-β,如果α>β,则α-β>0°;如果α=β,则α-β=0°;如果α<β,则α-β<0°.从图形上看,就是把角α的终边旋转角-β(若β>0°,则顺时针旋转│β│;若β<0°,则逆时针旋转│β│;若β=0°,则不作旋转),这时终边所对应的角是α-β.设计意图:通过具体例子加强学生对相等角、相反角、角的加法、减法的理解,并能推广到一般情形,这里体现了具体与抽象、特殊与一般的数学思想方法.2.象限角问题5:在直角坐标系中研究角,其顶点和始边的位置是如何规定的?根据其终边位置的不同,又可以把角分为哪几类?在直角坐标系内讨论角有什么好处呢?预设的师生活动:学生互相交流后,再回答.预设答案:为了方便,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合;根据角终边所在象限,将角又可以分为第一、二、三、四象限角以及轴线角;在直角坐标系中讨论角可以很好地表现角的“周而复始”的变化规律.设计意图:让学生明确在直角坐标系中讨论角需要有一个统一的标准.在这个统一前提下,才能对象限角进行定义.另外,终边落在坐标轴上是一种“边界”状态,因此规定它不属于任何一个象限更方便.这样讨论角的好处就是:在同一“参照系”下,可以使角的讨论图5(3)图5(2) 图5(1)得到简化,由此还能使角的终边位置“周而复始”现象得到有效表示.练习3:教材第171页第1、2、3题.预设的师生活动:由学生逐题给出答案.预设答案:1.锐角是第一象限角,第一象限角不一定是锐角;直角是终边落在y轴非负半轴上的角,终边落在y轴非负半轴上的角不一定是直角;钝角是第二象限角,第二象限角不一定是钝角.2.三,三,五.3.(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.设计意图:检验学生对象限角的理解情况.3.终边相同的角问题6:在直角坐标系中,将角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么与-32°角终边重合的角还有哪些?有多少个?它们与-32°角有什么关系?能不能用集合的形式将它们表达出来?将-32°推广到一般角 ,结论应该是什么?预设的师生活动:教师演示(链接Geogebra动画),学生观察并思考后,再举手回答.预设答案:还有-392°、328°、688°等等;有无数个;相差360°的整数倍;{β|β=-32°+k·360°,k∈Z};{β|β=α+k·360°,k∈Z};设计意图:通过动画演示与回答问题,使学生明确:(1)终边相同的角不一定相等;(2)终边相同的角有无数个,这些角有“始边、终边都相同”的共同特征;(3)这无数多个终边相同的角在数量上都是相差360°的整数倍.例1在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.预设的师生活动:先由学生独立计算,再回答.追问:与-950°12′角终边相同的角都有什么共同点?预设答案:相差360°的整数倍;与-950°12′角终边相同的角可以写成{β|β=-950°12′+k·360°,k∈Z},当k=3时,β=129°48′,它是第二象限角.设计意图:熟悉终边相同的角的表示,并会在0°~360°范围内找出与已知角终边相同的角,判定其为第几象限角,为以后证明恒等式、化简及利用诱导公式求三角函数的值等奠定基础.例2写出终边在y轴上的角的集合.预设的师生活动:学生先独立完成,再相互交流.追问:这些角终边在几条射线上?终边落在每条射线上的角如何表示?这两条射线上的角都相差多少度?能不能用一个集合表示这所有的角?预设答案:两条;y轴正、负半轴上的角的集合分别为{β|β=90°+k·360°,k∈Z}、{β|β=270°+k·360°,k∈Z};相差180°的整数倍;{β|β=90°+k·180°,k∈Z}.设计意图:此题是终边在坐标轴上的角的表示.应引导学生体会用集合表示终边相同的角时,表示方式不唯一,要注意采用简约的形式.另外,分析终边与y轴的正半轴、负半轴分别重合的两个角的集合的联系,可以简化集合的表示,实质是“终边组成一条直线”的代数解释:“两个集合中的元素相差180°的整数倍.”设计意图:让学生熟悉简化角的集合的表示方法.上的角的集合S.S中适合不等式-360°≤β<720°的元素例3写出终边在直线y xβ有哪些?预设的师生活动:由学生独立完成后,让学生代表进行展示.追问:在求出角之前,你能判断满足条件角的个数吗?判断的根据是什么?预设答案:六个;所求角的范围包含了三周;S={β|β=45°+k·180°,k∈Z};-315°、-135°、45°、225°、405°、585°.设计意图:此题主要是巩固终边相同的角的表示.为了使学生顺利完成相应的集合运算,可以先让学生用日常语言描述一下集合的特征.(三)归纳小结问题5:通过本节课的学习,你能说出本章将要学习什么内容?其作用是什么?其基本的研究方法是什么?本节课关于角的概念出现了几个定义?分别是怎样规定的?你能从数与形两个角度进行描述吗?能不能画一个结构图来反映本节课的研究思路及内容?预设的师生活动:学生自主总结,展示交流.预设答案:三角函数;刻画周期现象;与其它基本初等函数一样,先抽象出定义,再由定义作出图象,观察图象研究性质,最后是其初步应用;角的概念主要是任意角、象限角、终边相同的角,规定:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,就称它形成了一个零角.在直角坐标系中,将角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限就称角为第几象限角.在直角坐标系中,将角的顶点与原点重合,角的始边与x轴的非负半轴重合,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.从形上看,终边相同的角就是“终边旋转整数周回到原来的位置”.设计意图:帮助学生梳理基本知识,提升数学抽象素养.(四)布置作业(1)分别写出终边在第一、二、三、四象限的角的集合;(2)预习5.1.2弧度制的内容;(3)第175页习题5.1复习巩固1、2.(五)目标检测设计1.写出终边在x轴与坐标轴上的角的集合.2.写出与下列各角度终边相同的角的集合,并找出集合中适合不等式-720°≤β<360°的元素β(教科书第171页练习第5题):(1)1303°18′;(2)-225°.设计意图:检验学生对任意角、终边相同角和象限角的理解情况.参考答案:1.{β|β=k·180°,k∈Z};{β|β=k·90°,k∈Z};终边在x轴上的角相差180°的整数倍,而终边在坐标轴上的角相差90°的整数倍.2.(1){β|β=1303°18′+k·360°,k∈Z},-496°42′,-136°42′,223°18′;(2){β|β=-225°+k·360°,k∈Z},-585°,-225°,135°.。
5.1 任意角和弧度制最新课程标准:了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性.5.1.1 任意角知识点一角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.状元随笔(1)在画图时,常用带箭头的弧来表示旋转的方向.(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”知识点二角的表示顶点:用O表示;始边:用OA表示,用语言可表示为起始位置;终边:用OB表示,用语言可表示为终止位置.知识点三角的分类在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.知识点五终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.状元随笔(1)α为任意角,“k∈Z”这一条件不能漏.(2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α).(3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同.[教材解难]象限角的集合表示.[基础自测]1.下列说法中正确的是( )A.终边相同的角都相等B.钝角是第二象限的角C.第一象限的角是锐角 D.第四象限的角是负角解析:终边相同的角不一定相等,第一象限角不一定是锐角,第四象限角可能为正角,也可能为负角,故选B.答案:B2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是( )A.1个 B.2个C.3个 D.4个解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B.答案:B3.与30°角终边相同的角的集合是( )A.{α|α=30°+k·360°,k∈ Z}B.{α|α=-30°+k·360°,k∈Z}C.{α|α=30°+k·180°,k∈Z}D.{α|α=-30°+k·180°,k∈Z}解析:由终边相同的角的定义可知与30°角终边相同的角的集合是{α|α=30°+k·360°,k∈Z}.答案:A4.2 019°是第________象限角.解析:2 019°=360°×5+219°,180°<219°<270°.∴2 019°是第三象限角.答案:三题型一 任意角的概念及应用[经典例题]例1 (1)若角的顶点在原点,角的始边与x 轴的非负半轴重合,给出下列四个命题:①0°角是第一象限角;②相等的角的终边一定相同;③终边相同的角有无限多个;④与-30°角终边相同的角都是第四象限角.其中正确的有( )A .1个B .2个C .3个D .4个(2)时针走过2小时40分,则分针转过的角度是________.【解析】 (1)①错误,0°角是象限界角;②③④正确.(2)分针按顺时针方向转动,则转过的角度是负角为-360°×223=-960°. 【答案】 (1)C (2)-960°按照象限分类,角可以分为象限角和象限界角;角的正负是由终边的旋转方向决定的. 分针1个小时转过的角度的绝对值是360 °.方法归纳与角的概念有关问题的解决方法正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.跟踪训练1 在下列说法中:①0°~90°的角是第一象限角;②第二象限角大于第一象限角;③钝角都是第二象限角;④小于90°的角都是锐角.其中错误说法的序号为________.解析:①0°~90°的角是指[0°,90°),0°角不属于任何象限,所以①不正确. ②120°是第二象限角,390°是第一象限角,显然390°>120°,所以②不正确. ③钝角的范围是(90°,180°),显然是第二象限角,所以③正确.④锐角的范围是(0°,90°),小于90°的角也可以是零角或负角,所以④不正确.答案:①②④题型二 终边相同的角[经典例题]例2 写出与75°角终边相同的角的集合,并求在360°~1 080°范围内与75°角终边相同的角.【解析】 与75°角终边相同的角的集合为S ={β|β=k ·360°+75°,k ∈Z }.当360°≤β<1 080°,即360°≤k ·360°+75°<1 080°时,解得1924≤k <21924.又k ∈Z ,所以k =1或k =2.当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°~1 080°范围内的角为435°角和795°角. 状元随笔 根据与角α终边相同的角的集合为S ={β|β=k·360 °+α,k∈Z },写出与75 °角终边相同的角的集合,再取适当的k 值,求出360 °~1 080 °范围内的角.方法归纳(1)写出终边落在直线上的角的集合的步骤①写出在[0°,360°)内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并一定合并,使结果简洁.(2)终边相同角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.跟踪训练2 写出与下列各角终边相同的角的集合S ,并把S 中满足-360°≤α<720°的元素写出来.(1)60°;(2)-210°;(3)364°13′.解析:(1)S ={α|α=60°+k ·360°,k ∈Z }.当k =-1时,α=-300°;当k =0时,α=60°;当k =1时,α=420°.∴S 中满足-360°≤α<720°的元素是-300°,60°,420°.(2)S ={α|α=-210°+k ·360°,k ∈Z }.当k =0时,α=-210°;当k =1时,α=150°;当k =2时,α=510°.∴S 中满足-360°≤α<720°的元素是-210°,150°,510°.(3)S ={α|α=364°13′+k ·360°,k ∈Z }.当k =-2时,α=-355°47′;当k =-1时,α=4°13′;当k =0时,α=364°13′.∴S中满足-360°≤α<720°的元素是-355°47′,4°13′,364°13′.求与已知角α终边相同的角时,首先将这样的角表示成k·360 °+α(k∈Z)的形式,然后采用赋值法求解相应不等式,确定k的值,求出满足条件的角.题型三象限角与区间角的表示[教材P170例1]例3 在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.【解析】-950°12′=129°48′-3×360°,所以在0°~360°范围内,与-950°12′角终边相同的角是129°48′,它是第二象限角.先求出与-950 °12 ′终边相同的角,再判断是第几象限角.教材反思象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.跟踪训练3 (1)若α是第四象限角,则-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限(2)写出终边落在图中阴影部分(包括边界)的角的集合.解析:(1)因为α是第四象限角,所以k·360°-90°<α<k·360°,k∈Z.所以-k·360°<-α<-k·360°+90°,k∈Z,由此可知-α是第一象限角.依题意写出α的范围,再求-α的范围.(2)若角α的终边落在OA上,则α=30°+360°·k,k∈Z.若角α的终边落在OB上,则α=135°+360°·k,k∈Z.所以,角α的终边落在图中阴影区域内时,30°+360°·k≤α≤135°+360°·k,k∈Z.故角α的取值集合为{α|30°+360°·k≤α≤135°+360°·k,k∈Z}.由图写出终边OA表示的角,终边OB表示的角,再求阴影的范围.答案:(1)A (2)见解析一、选择题1.下列角中,终边在y轴非负半轴上的是( )A.45° B.90°C.180° D.270°解析:根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.答案:B2.把一条射线绕着端点按顺时针方向旋转240°所形成的角是( )A.120° B.-120°C.240° D.-240°解析:一条射线绕着端点按顺时针方向旋转240°所形成的角是-240°,故选D.答案:D3.与-457°角终边相同的角的集合是( )A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}解析:263°=-457°+360°×2,所以263°角与-457°角的终边相同,所以与-457°角终边相同的角可写作α=k·360°+263°,k∈Z.答案:C4.若α为锐角,则下列各角中一定为第四象限角的是( )A.90°-α B.90°+αC.360°-α D.180°+α解析:∵0°<α<90°,∴270°<360°-α<360°,故选C.答案:C二、填空题5.图中从OA旋转到OB,OB1,OB2时所成的角度分别是________、________、________.解析:图(1)中的角是一个正角,α=390°.图(2)中的角是一个负角、一个正角,β=-150°,γ=60°.答案:390° -150° 60°6.已知角α与2α的终边相同,且α∈[0°,360°),则角α=________.解析:由条件知,2α=α+k ·360°,所以α=k ·360°(k ∈Z ),因为α∈[0°,360°),所以α=0°.答案:0°7.如图,终边在阴影部分内的角的集合为________.解析:先写出边界角,再按逆时针顺序写出区域角,则得{α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }.答案:{α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }三、解答题8.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°.因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.9.已知α与240°角的终边相同,判断α2是第几象限角. 解析:由α=240°+k ·360°,k ∈Z ,得α2=120°+k ·180°,k ∈Z . 若k 为偶数,设k =2n ,n ∈Z ,则α2=120°+n ·360°,n ∈Z ,α2与120°角的终边相同,是第二象限角; 若k 为奇数,设k =2n +1,n ∈Z ,则α2=300°+n ·360°,n ∈Z ,α2与300°角的终边相同,是第四象限角. 所以,α2是第二象限角或第四象限角.[尖子生题库]10.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).解析:(1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)由(1)得终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z},终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.(3)终边落在直线ON上的角的集合为C={β|β=60°+n·180°,n∈Z},则终边落在阴影区域内(含边界)的角的集合为S={α|45°+n·180°≤α≤60°+n·180°,n∈Z}.。
5.1.1 任意角教学目标:1.从体育运动入手,将角推广到任意角.2.在平面直角坐标系下研究任意角,并引导学生更好的认识象限角、终边相同的角等概念.教学重点:从实际问题入手,将角推广到任意角,并建立在直角坐标系中研究任意角的数学思维.教学难点:终边相同的角的表示及象限角的概念.教学过程:1.教学问题(1)如何从以有的角的概念,引起思维冲突,从而引出任意角的推广是第一个教学问题.产生这个问题的原因是学生对于角的概念还处于初中时期的三角形内部,锐角、直角、钝角是学生们熟知的角.所以我们采取体育运动中的专业术语或者旋转表针来入手解决这个问题.(2)如何将角放入直角坐标系中是我们的第二个数学问题.由于初中学过的角是静态角,所以由静态的角过度到动态的角是学生难以想象的.所以我们将角按着某种提前选定的方式放入直角坐标系,固定其顶点和始边,旋转终边,这样就就能刻画出任意角.(3)终边相同的角该如何去表示他们之间的关系是我们的第三个问题.旋转角的终边的过程中,我们观察可以得知,尽管角的终边所在位置相同,但是所表示的角显然是不同的,但是该如何刻画他们的不同,如何找到他们之间的关系呢?我们利用旋转过程中的周期性完美的解决了终边相同的角之间的关系问题.2.支持条件在直角坐标系中研究任意角的概念,研究终边相同的角的表示,由旋转的终边所处位置及其旋转过程可以直观观察得到,为了解决这一难题,我们可以借助于几何画板来演示,让学生深刻体会到数学结合思想的重要性.【问题1】你遇到过超过的角吗?【设计意图】让学生体会到已有的角的概念已经不足以解释上述的问题,引起思维认知冲突,为下面角的概念的推广做出铺垫和准备,说明角的概念推广的必要性.这个问题主要针对于向无穷推广.【师生活动】体操中有“旋转”(即使“旋转两周”)、“旋转”(即使“旋转三周”)样的动作名称.【问题2】你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?【设计意图】在上一个问题的基础上,这个问题主要针对于向负数推广.【师生活动】学生表达想法,教师画图或拿出时钟做教具,在拨动得的过程中,分别按照顺时针或逆时针调整,学生观察发现角已经超出了原有的,引出本节课的教学重点之一:任意角概念.【问题3】我们应该如何刻画这些不在的角?【设计意图】学生尝试探索,体会由正负表示方向这一重要的数学策略.通过设计辨析问题,比较推广之后的角的范围与原来的范围差异.【师生活动】1.教师引导学生认识到要刻画这些角,不仅要用旋转量,还要用到旋转方向.2.引导学生按照旋转方向的不同,给出正角、负角、零角的概念.为了区别起见,我们把按逆时针方向旋转所形成的角叫正角;按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角.这样我们就把角的概念推广到了任意角.3.概念辨析.例1.回答下列问题.(1)锐角是第几象限的角?(2)第一象限的角是否都是锐角?(3)小于90°的角都是锐角吗?答:(1)锐角是第一象限的角;(2)第一象限的角并不都是锐角,例如.(3)小于90°的角并不都是锐角,它也有可能是零角或负角.【问题4】我们可以把角放到直角坐标系中研究吗?这样的研究有什么好处?【设计意图】利用概念重新认识问题,在直角坐标系中研究任意角的问题,直观形象,也体现了数形结合的思想.【师生活动】1.教师:我们可以把角放入直角坐标系中研究吗?2.学生分组讨论:可以选择各种不同的方式将角放入直角坐标系中.3.教师引导学生选择最适合的方式:将角的始边与轴非负半轴重合,角的顶点与坐标原点重合.4.如果将定义改为“将角的始边与轴正半轴重合”可以吗?5.教师:角的终边在第几象限,我们就可以称为是第几象限角.【问题5】终边落在某个位置的角是唯一确定的吗?【设计意图】从对应的观点指出终边相同角的不唯一性,进而得到一般的结论,锻炼学生数形结合和发现问题、归纳总结的能力.【师生活动】(1)以为例,各小组学生进行操作,旋转角的终边.(2)归纳总结出终边相同的角有无限多个.(3)教师:终边相同的的角一定相等吗?你能找到他们的规律吗?(4)学生:终边相同的角之间相差的整数倍.(5)教师引导学生归纳总结:对于任意一个角,与它终边相同的角的集合应如何表示?学生:,即任一与角α终边相同的角,都可以表示成角与整数个周角的和.【问题6】下面的例题中分别使用了本节课的哪些知识与方法?例2.在0º到360º范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角.(1)-120º;(2) 640º;(3)-950º12′.【设计意图】巩固终边相同的角和象限角概念.【师生活动】解:⑴∵-120º=240º-360º,∴240º的角与-120º的角终边相同,它是第三象限角.⑵∵640º=280º+360º,∴280º的角与640º的角终边相同,它是第四象限角.⑶∵-950º12'=129º48'-3×360º,∴129º48'的角与-950º12'的角终边相同,它是第三象限角.例3 写出终边落在y轴上的角的集合【设计意图】本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.体现出由形到数及从数到形的数形结合思想方法.【师生活动】解:在0°~360°范围内,终边在y轴上的角有两个:90°,270°与90°角终边相同的角构成的集合S1={β| β=900+K·3600,K∈Z}与270°角终边相同的角构成的集合S2={β| β=2700+K·3600,K∈Z}={β| β=900+1800+2K·1800,K∈Z}所以,终边落在y轴上的角的集合为S=S1∪S2={β| β =900+2K·1800 ·K∈Z}∪{β| β=900+(2K+1)·1800,K∈Z}={β| β=900+n·1800,n∈Z}例4 写出终边在直线y=x上的角的集合s,并把s中适合不等式-360°≤β<720°的元素β写出来.【设计意图】本例是让学生表示终边在已知直线上的角,并找出某一范围内的所有的角,即按一定顺序取的值,应训练学生掌握这一方法.【师生活动】解:终边在直线上的角的集合.S中适合的元素是:,,,,,。
三角函数本章教材分析1。
本章知识结构如下:2。
本章学习的内容主要是:三角函数的定义、图象、性质及应用.三角函数是高中教材中的一种重要函数,与其他的函数相比,具有许多重要的特征:它以角为自变量,是周期函数。
三角函数是解决其他问题的重要工具,是高中阶段学习的最后一个基本初等函数,是深化函数性质的极好素材.本章的认知基础主要是几何中圆的性质、相似形的有关知识,特别强调了单位圆的直观作用,借助单位圆直观地认识任意角、任意角的三角函数.3.本章教学的重点是三角函数的定义,同角三角函数的基本关系式,正弦函数的图象及基本性质.难点是弧度制和图象变换的准确理解和掌握。
关键是学好三角函数定义。
从实际教学情况来看,教学中应重视学生的画图.“五点画图”虽然简单,但却易学难掌握.在本章教学中,教师应根据学生的生活经验和已有的数学知识,通过列举熟知的实例,创设丰富的情境,使学生体会三角函数模型的意义.教学时,可结合本章引言的章头图,让学生围绕这些问题展开讨论,通过思考,让学生知道三角函数可以刻画这些周期变化规律,从而激发学生的求知欲。
4。
三角函数的内容一直是高考的重要内容,特别是三角函数的图象和性质,及结合三角形的基础知识为背景的三角函数知识,频频在各省高考试题中出现,难度虽有降低,却是经久不衰的高考考查内容.标题课时1.1任意角和弧度制约2课时1.2任意角的三角函数约3课时1.3三角函数的诱导公式约2课时1.4三角函数的图象与性质约4课时1.5函数y=Asin(ωx+φ)的图象约2课时1.6三角函数模型的简单应用约2课时本章复习约1课时1。
1。
1 任意角整体设计教学分析教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念。
这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念。
让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题。
本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体。
教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角。
能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务.学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究"示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式。
也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义。
三维目标1。
通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念.2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义。
3。
通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础.重点难点教学重点:将0°-360°范围的角推广到任意角,终边相同的角的集合。
教学难点:用集合来表示终边相同的角。
课时安排1课时教学过程导入新课图1思路1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.思路2。
(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.推进新课新知探究提出问题①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具—-钟表,实地演示拨表的过程。
让学生站立原地做转体动作。
教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路。
角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O是角的顶点,射线OA、OB分别是角α的始边和终边.我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角。
钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α"可以简记作“α”.如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.②顺时针方向旋转了720°或逆时针方向旋转了720°。
③—180°或+180°或-540°或+540°或900°或1 080°……提出问题①能否以同一条射线为始边作出下列角:210°,—45°,-150°。
②如何在坐标系中作出这些角,象限角是什么意思?0°角又是什么意思?活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始"的现象.今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合。
那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.讨论结果:①能。
②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合。
角的终边在第几象限,我们就说这个角是第几象限角。
这样:210°角是第三象限角;-45°角是第四象限角;—150°角是第三象限角.特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?提出问题①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,—32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备。
为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的。
至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破。
同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的。
讨论结果:①210°与—150°角的终边相同;328°,—32°,—392°角的终边相同.终边相同的角相差360°的整数倍。
设S={β|β=—32°+k·360°,k∈Z},则328°,—392°角都是S的元素,—32°角也是S 的元素(此时k=0)。
因此,所有与—32°角的终边相同的角,连同-32°在内,都是集合S 的元素;反过来,集合S的任何一个元素显然与-32°角终边相同。
②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}。
即任一与角α终边相同的角,都可以表示成α与整数个周角的和。
适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍。
应用示例例1 在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角. 解:-950°12′=129°48′—3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角。
点评:教师可引导学生先估计—950°12′大致是360°的几倍,然后再具体求解.例2 写出终边在y轴上的角的集合.活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来。