第20章《数据的分析》单元测试题(含答案)
- 格式:docx
- 大小:253.71 KB
- 文档页数:9
专题13 第20章《数据的分析》单元练习卷一.选择题(共10小题,共30分)1.(3分)国际数学奥林匹克竞赛旨在激发全球青年人的数学才能,中国代表队近六届竞赛的金牌数(单位:枚)分别为6,6,4,5,4,4,关于这组数据,下列说法正确的是()A.方差是0.5B.众数是6 C.中位数是4.5D.平均数是4.82.(3分)下列为某班级研究性学习小组学员出勤次数如表所示,则小组学员出勤次数的众数和中位数分别是()出勤次数45678学员人数26543A.5,6B.5,5C.6,5D.8,63.(3分)已知一组数据的方差为,则()A.这组数据有10个B.这组数据的平均数是5C.方差是一个非负数D.每个数据加3,方差的值增加34.(3分)思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为()(单位:分)A.8.2B.8.3C.8.7D.8.95.(3分)温州银泰商场某店一天中卖出某种品牌的休闲鞋16双,它们的尺码与销售量如表所示:鞋的尺码/cm2525.52626.527销售量/双23443则这16双鞋的尺码组成的数据中,中位数()A.25.5B.26C.26.5D.276.(3分)一组数据5,8,8,10,1■中,最后一个两位数的个位数字被墨迹覆盖,则这组数据不受影响的统计量是()A.平均数B.中位数C.众数D.极差7.(3分)一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的()A.众数B.平均数C.中位数D.方差8.(3分)某班一合作学习小组有6人,初三上期数学期末考试成绩数据分别为114、86、95、77、110、93,则这组数据的中位数是()A.86B.95C.77D.949.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.410.(3分)某校举行“喜迎中国共产党建党100周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.众数是5B.中位数是90C.平均数是93D.方差是0二.填空题(共6小题,共30分)11.(5分)已知一组数据﹣1,﹣3,5,7,这组数据的极差是.12.(5分)在对某样本进行方差计算时,计算的公式是:,该样本的样本容量是.13.(5分)如图是甲、乙两人5次投篮成绩统计图(每人每次投球10个),则s甲2s乙2(填“>”,“=”或“<”).14.(5分)小丽计算数据方差时,使用公式S2=,则公式中=.15.(5分)我市某电视台招募主持人,甲侯选人的综合专业索质、普通话、才艺展示成绩如表所示.测试项目综合专业索质普通话才艺展示测试成绩908692根据实际需求,该电视台规定综合专业素质、普通话和才艺展示三项测试得分按5:3:2 的比例确定最终成绩,则甲候选人的最终成绩为分.16.(5分)现有1,2,3,…,9九个数字,甲、乙两位同学轮流从中选出一个数字,从左至右依次填入下面所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最小的数字,乙会选择填入后使表中现有数据中位数最大的数字.如图,若表中第一个数字是6,甲先填,(1)请你在表中空白处填出一种符合要求的填数结果;(2)满足条件的填法有种.6三.解答题(共7小题,共50分)17.(6分)学校组织“中国传统文化”知识竞赛,每班都有20名同学参加,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分(90分及以上属于优秀),学校将七年一班和二班的成绩整理如下:(1)填写以下表格;班级平均数众数中位数优秀率七年一班分90分分七年二班92分分90分80%(2)结合以上统计量,你认为哪个班级的竞赛成绩更加优秀?请简述理由.18.(8分)为了解决杨树花絮污染环境的难题,某公司引进优秀专利品种,建立新树种实验基地,研究组在甲、乙两个实验基地同时播下新树种,同时随机各抽取20株树苗,记录下每株树苗的长度(单位:cm),进行整理、描述和分析(用x表示树苗长度,数据分成5组:A.20≤x<30;B.30≤x<40;C.40≤x <50;D.50≤x<60;E.x≥60,50cm及以上为优等),下面给出了部分信息:【数据收集】甲实验基地抽取的20株树苗的长度:28,29,32,34,38,40,42,45,46,51,51,52,54,55,55,55,55,57,60,61.乙实验基地抽取的20株树苗中,A、B、E三个等级的数据个数相同,C组的所有数据是:42,43,46,49,49.【数据整理】甲实验基地抽取的树苗长度统计表x频数频率A20.1B a0.15C40.2D90.45E20.1【数据分析】基地平均数众数中位数E组所占百分比甲47b5110%乙4756c m%根据以上信息,解答下列问题:(1)填空:a=,b=,c=,m=;(2)根据上述数据分析,你认为甲、乙两基地哪个基地的树苗好?请说明理由(写出一条理由即可);(3)请估计2000棵乙基地的树苗为优等的树苗有多少棵?19.(8分)争创全国文明城市,从我做起.某中学开设了文明礼仪校本课程,为了解学生的学习情况,学校组织七八年级学生进行文明礼仪知识测试,两个年级均有300名学生,从七八年级各随机抽取了10名学生的测试成绩,满分100分,整理分析如下:七年级:99 98 98 98 95 93 91 90 89 79八年级:99 99 99 91 96 90 93 87 91 85整理分析上面的数据,得到如下表格:平均数中位数众数方差统计量年级七年级9394a33.7八年级93b9923.4根据以上信息,解答下列问题.(1)填空:a=,b=;(2)根据统计结果,年级的成绩更整齐;(3)七年级甲同学和八年级乙同学成绩均为93分,根据上面统计情况估计同学的成绩在本年级的排名更靠前;(4)如果在收集七年级数据的过程中将抽取的“89”误写成了“79”,七年级数据的平均数、中位数、众数中发生变化的是;(5)若成绩不低于95分的可以获奖,估计两个年级获奖的共有人.20.(8分)中国共产主义青年团是中国共产党用来团结教育青年一代的群众组织,也是党联系青年的桥梁和纽带,2022年是共青团成立100周年,某校为了解学生对共青团的认识,组织七、八年资全体团员学生进行了“团史知识竞赛”,为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:【收集数据】从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级学生的分数如下:75,90,55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,95,70,75,【整理、过述数据】按如下表分数段整理、描述这两组样本数据:分数(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100七年级(人)23654八年级(人)1m475【分析数据】两组样本数据的平均数、中位数、众数如表所示:年级平均数中位数众数七年级77.57585八年级79.25b c根据以上提供的信息,回答下列问题:(1)填空:m=,b=,c=;(2)该校八年级学生有560人,假设全部参加此次竞赛,请估计八年级成绩超过平均数79.25分的人数;(3)在这次竞赛中,七八年级参加人数相同,七年级学生小明与八年级学生小亮的成绩都是75分,于是小明说:“我在年级的名次有可能高于小亮在年级里的名次”,你同意小明的说法吗?并说明理由.21.(10分)某学校从九年级学生中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表成绩/分78910人数/人1955(1)m=,甲组成绩的众数乙组成绩的众数(填“>”“<”或“=”);(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是;(4)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是组(填“甲”或“乙”).22.(10分)为了解某校八年级男生在体能测试中引体向上项目的情况,随机抽查了部分男生引体向上项目的测试成绩,绘制如图统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为,图①中m的值为;本次调查获取的样本数据的平均数为,中位数为.(2)若规定引体向上6次及以上为该项目良好,根据样本数据,估计该校320名男生中该项目良好的人数.(3)根据良好人数,为了中招体育测试能有更多人得到高分,请你给该校男生提出一些相关建议(最少两条).23.(10分)为了解学生每天的睡眠情况,某初中学校从全校2400名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:7,9,9,8,10.5,8,10,9.5,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,8,9,7,9.5,8.5,9,7,9,9,8.5,7.5,8.5,9,8,7.5,9.5,10,9,8,9,9.5,8.5.记者:胡浩教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确了中小学生必要睡眠时间,小学生每天睡眠时间应达到10h,初中生应达到9h,高中生应达到8h.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)一7≤t<87二8≤t<9a三9≤t<1018四10≤t<11b请根据以上信息,解答下列问题:(1)a=,b=,m=,n=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组;(填组别)(3)如果按照要求,学生平均每天的睡眼时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数;(4)请对该校学生“睡眠时间”的情况作出合理的评价.。
第二十章《数据的分析》单元测试题一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体B.每个运动员是总体C.20名运动员是所抽取的一个样本D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,95那么,8月份这100A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是() A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5C.2,2,2,2,2 D.2,2,2,3,38某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95乙98 90 95丙80 88 90A.甲B.乙丙C.甲乙D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(8分)下表是某校八年级((1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过..中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于..平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班10 10 6 10 7九年级(4)班10 8 8 9 8九年级(8)班9 10 9 6 9 (1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A 11.2005 12.-2•℃13.9.4分14.103 15.1500 16.3 17.100km/h 18.27.3% 19.21 20.65.•75分21.解:9070%8020%8410%70%20%10%⨯+⨯+⨯++=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.x1=1.78,x4=•1.74,x8=1.8 ∴x8>x1>x4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.。
八年级数学下册第20章数据的初步分析单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是()A.82B.77C.79.5D.802、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的()A.最高分B.中位数C.极差D.平均分3、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是()A.甲班的成绩比乙班的成绩稳定B .甲班成绩优异的人数比乙班多C .甲,乙两班竞褰成绩的众数相同D .小明得94分将排在甲班的前20名4、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为185、已知一组数据:1,2,2,4,6,则这组数据的中位数是( )A .2B .3C .4D .56、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A .频率是0.5B .频率是0.6C .频率是0.3D .频率是0.47、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.对于小强做引体向上的个数,下列说法错误的是( )A .平均数是12B .众数是13C .中位数是12.5D .方差是878、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )A .甲B .乙C .丙D .丁 9、甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是92分,方差分别是20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,则这5次测试成绩最稳定的是( )A .甲B .乙C .丙D .丁10、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是( )A .7,7B .6,7C .6.5,7D .5,6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从2022年起长沙市学校体育中考增加素质类选测项目:立定跳远和1分钟跳绳.小熙选择了1分钟跳绳项目,她10次跳绳训练的成绩为140,155,142,155,166,167,166,170,180,176,这组数据的中位数是________.2、在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n ),那么这n 个数的平均数为______,也叫做x 1,x 2,x 3,…,x k 这k 个数的______,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的_____.3、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为 13x =甲, 13x =乙,2 4s =甲,2 3.8s =乙则小麦长势比较整齐的试验田是__________. 4、为推荐一项作品参加“科技创新比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是_________.5、若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则_______叫做这n 个数的加权平均数.三、解答题(5小题,每小题10分,共计50分)1、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x ,将所得数据分为5组(“很满意”:90100x ≤≤;“满意”:8090x ≤<;“比较满意”:7080x ≤<;“不太满意”:6070x ≤<;“不满意”:060x ≤<;)区教委将数据进行分析后,得到如下部分信息:a .甲中学延时服务得分情况扇形统计图b .乙中学延时服务得分情况频数分布直方图c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:83,83,83,83,83,82,81,81,80,80.e.甲、乙两中学“满意组”的人数一样多.请你根据以上信息,回答下列问题:(1)直接写出a和m的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.2、虎林市教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数.(2)求出活动时间为5天的学生人数,并补全频数分布直方图.(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?3、为积极响应“弘扬传统文化”的号召,某校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如下图所示:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:请根据调查的信息分析:(1)补全频数分布直方图.(2)活动启动之初学生“一周诗词诵背数量”的中位数为______首.(3)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数.(4)选择适当的统计量,从某一个角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.4、某数学课外小组开展数学闯关游戏(游戏一共10关),根据活动结果制成如下两幅尚不完整的统计图.(1)求a;(2)计算闯9关的人数并补充完整条形统计图;(3)求数学课外活动小组的平均闯关次数;(4)再加入n名同学闯关,已知这n名同学的闯关次数均大于7,若加入后闯关次数的中位数与原闯关次数的中位数相等,则n最多是________名.5、民以食为天,农产品是关系国计民生的重要商品,是事关经济发展、社会稳定和国家自立的头等大事,某数学兴趣小组为了解我国近几年人均主要农产品产量情况,该组成员通过对我国粮食、猪羊牛肉的人均产量进行收集、整理、描述和分析,下面给出部分信息.信息一、2005﹣2019年我国人均粮食产量统计图:信息二、将2005﹣2019年划分为三个时间段,每个时间段内我国人均粮食产量如下:信息三、2019年我国各省、市、自治区粮食、猪羊牛肉的人均产量的统计量如下:(以上数据来源于《2020中国统计年鉴》)根据以上信息,解决下列问题:(1)2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,甘肃省这两项主要农产品产量排名更靠前的是_________(填“人均粮食产量”或“人均猪羊牛肉产量”),理由是:_________.(2)根据以上数据信息分析,判断下列结论正确的是_________;(只填序号)①2005﹣2015年内我国人均粮食产量呈现持续增长趋势;②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;③2005﹣2019年我国人均粮食产量连续12年高于人均400千克的国际粮食安全标准线.(3)记我国2005﹣2009年人均粮食产量的方差为21S ,2015﹣2019年人均粮食产量的方差为22S ,则21S _________22S .(填<、=或>)-参考答案-一、单选题1、D【分析】将数据排序,进而根据中位数的定义,可得答案.【详解】解:数据79、81、77、82、75、82从小到大排列后可得:75、77、79、81、82、82, 排在中间的两个数是79,81, 所以,其中位数为79+81=802, 故选:D .【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、B【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.3、D【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A .乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B .乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C .根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D .因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D .【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.4、D【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()222212312310,101010102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()22221231231110,2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎢⎥⎣⎦ ()()()()222212312310,101010102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴()123132323232n x x x x n ++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()222212313232323232323232n x x x x n ⎡⎤+-++-++-+++-⎣⎦ ()()()()22221231910910910910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n=⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.5、A【分析】把一组数据按照从小到大(或从大到小)排序,若数据的个数为奇数个,则排在最中间的数据是这组数据的中位数,若数据的个数为偶数个,则排在最中间的两个数据的平均数是这组数据的中位数,根据定义直接作答即可.【详解】解:一组数据:1,2,2,4,6,排在最中间的数据是2,所以其中位数是2,故选A【点睛】本题考查的是中位数的含义,掌握“利用中位数的定义求解一组数据的中位数”是解本题的关键.6、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,故选:B .【点睛】此题主要考查了频率,关键是掌握计算方法.7、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:11121013131312127x ++++++==,故选项A 不符合题意; ∵13出现的次数最多,∴众数是13,故B 选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C 选项符合题意; 方差:()()()()222221810121112212123131277s ⎡⎤=-+-+⨯-+⨯-=⎣⎦,故D 选项不符合题意; 故选C .【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.8、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】 解:∵x x x x =<=乙丙甲丁,∴从丙和丁中选择一人参加比赛,∵S 丙2>S 丁2,∴选择丁参赛,故选:D .【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.9、D【分析】根据方差越大,则数据的离散程度越大,稳定性也越小;反之,则数据的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,∴S 丁2<S 丙2<S 乙2<S 甲2,∴成绩最稳定的是丁.故选:D .【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.10、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C .【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题1、166【分析】把10个数据按从小到大的顺序排列后,取中间两数的平均数即可.【详解】把10个数据按从小到大的顺序排列为:140,142,155, 155,166,166,167,170,176,180, 故这组数据的中位数是1661661662+=, 故答案为:166【点睛】此题考查了中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、1122k k x f x f x f n ++⋅⋅⋅+ 加权平均数 权 【分析】利用加权平均数的相关定义,即可作答.【详解】解:利用加权平均数的定义可得:n 个数的平均数为1122k k x f x f x f n++⋅⋅⋅+ 对应地叫做这些数据的加权平均数,对应的f 1,f 2,…,f k 叫做权, 故答案为:1122k k x f x f x f n++⋅⋅⋅+,加权平均数,权. 【点睛】本题主要是考查了加权平均数的相关概念,熟练掌握加权平均数的概念,是求解该题的关键.3、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】 解:∵13x =甲,13x =乙, ∴x x =甲乙,∵3.8<4,∴S 乙2<S 甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.4、乙【分析】利用加权平均数计算总成绩,比较总成绩高低判断即可.【详解】解:根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;∵乙总成绩>丙总成绩>甲总成绩>丁总成绩.故答案为乙.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.5、112212n n nx w x w x w w w w ++⋅⋅⋅+++⋅⋅⋅+ 【分析】根据加权平均数的计算方法求解即可得.【详解】解:根据题意可得: 加权平均数为:112212n n nx w x w x w w w w +++++, 故答案为:112212n n nx w x w x w w w w +++++. 【点睛】 题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.三、解答题1、(1)10a =;82.5m =;(2)见解析;(3)1500名【分析】(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为40人,从而得出甲组满意所占总人数百分比,进而得出a 的值;根据中位数的计算方法得出乙组的中位数位于第50和51的平均数;(2)根据平均数以及中位数进行分析即可;(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.【详解】解:(1)∵甲、乙两中学“满意组”的人数一样多,∴甲满意的人数为40人, ∴甲满意的人数占甲组的百分比为:4010040100⨯=%%, ∴=1-7-18-25-40=10a %%%%%%,∴10a =;乙学校中位数为第50名和51名的平均数,∴乙(中位数)=838282.52+=, ∴82.5m =;(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;从中位数来看,乙学校的高分段人数较多;综上:乙学校的延时服务开展得更好;(3)甲中学70分及以上的百分比=25401075++=%%%%,2000751500⨯=%(名),答:甲中学2000名家长中认为该校延时服务合格的人数为1500名.【点睛】本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.2、(1)200;(2)50,图见解析;(3)90【分析】(1)根据综合实践活动的天数为4天的人数60人,所占比例为30%,即可求得总人数;(2)将总人数乘以实践活动的天数为5天的学生人数所占的比例即可求得, 活动时间为5天的学生人数,进而求得活动时间为7天的人数,即可补全统计图(3)分别求得活动时间为5,6,7天的人数,求其和即可【详解】解:(1)活动的天数为4天的人数60人,所占比例为30%,则总人数为:60÷30%=200(人)(2)活动的天数为5天的有:200×(1-10%-15%-30%-5%-15%)=50(人)活动的天数为7天的有:200×5%=10(人)补全5天和7天的两个直方条(如图)(3)50+30+200×5%=90(人)该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是90人【点睛】本题考查了频数直方图和扇形统计图信息关联,从统计图中获取信息是解题的关键.3、(1)见解析(2)4.5(3)850(4)见解析【分析】(1)根据5首的人数和圆心角的度数求出抽取的学生数量,再求出4首的人数即可;(2)把数据从小到大排列,求中间两个数的平均数即可;(3)求出大赛后一个月一周诗词诵背6首(含6首)以上的比例,乘以全校学生数即可;(4)求出两次调查的平均数,比较大小即可.(1)解:由题意得抽查的这部分学生的数量为20÷60360=120(名),大赛启动之初,一周诗词诵背数量为4首的人数为120×135360=45(名),补全统计图如图所示:(2)解:活动启动之初学生“一周诗词诵背数量”共抽样调查了120人,处在第60位和第61位的数据分别为4首和5首,中位数为(4+5)÷2=4.5(首),故答案为:4.5.(3)解:大赛后一个月,一周诗词诵背6首(含6首)以上的的人数为4025201200850120++⨯=(人),答:估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数为850人.(4)解:活动启动之初的平均数为1534542051661371185120⨯+⨯+⨯+⨯+⨯+⨯=(首);大赛后一个月的平均数为1031041554062572086120⨯+⨯+⨯+⨯+⨯+⨯=(首);大赛后一个月学生“一周诗词诵背数量”的平均数高于活动启动之初学生“一周诗词诵背数量”的平均数,该校经典诗词诵背系列活动的效果非常好,提高了学生背诵诗词的能力.【点睛】本题考查条形统计图、扇形统计图以及平均数和中位数的计算公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、(1)15a=;(2)见解析;(3)7.1;(4)5【分析】(1)根据扇形统计图种5种闯关次数的占比和为1即可求解a的值;(2)用闯关次数为5的人数除以其占比得到总人数,由此即可求出闯9关的人数,由此补全统计图即可;(3)根据平均数的求解公式求解即可;(4)把闯关成绩从小到大排序,共20,中位数为10位与11位上数的平均数,利用中位数是7,则要使加入的人数最多,原来成绩中最左侧的7要排在第13位,由此求解即可.【详解】解:(1)由题意得:%110%25%30%20%15%a=----=∴15a=;(2)由题意得:总人数为210%20÷=人,∴闯9关的人数为2025634----=,补全统计图如下所示:(3)由题意得数学课外活动小组的平均闯关次数为25566738497.120x⨯+⨯+⨯+⨯+⨯==;(4)原闯关成绩分别为:5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,∴原闯关成绩的中位数为7772+=,∵再新加入n名同学闯关后,若中位数仍然为7,要保证加入的人数最多,∴需原成绩中最右侧的7排第13位,∴最多加入5人,故答案为:5.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,求平均数,中位数等等,解题的关键在于准确读懂统计图.5、(1)“人均粮食产量”,2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后(2)①②③(3)>【分析】(1)根据题目中的数据和信息三,可以解答本题;(2)根据信息一中统计图中的数据,可以判断各个小题中的结论是否成立;(3)根据信息一中统计图中的数据波动大小,可以解答本题.【详解】解:(1) 我国人均粮食产量的中位数为419千克,我国人均猪羊牛肉产量的中位数是42.5千克, ∵2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,∵440>419,36.2<42.5,2019年甘肃省人均粮食产量为440千克排在中位数之前,而人均猪羊牛肉产量为36.2千克,排在中位数之后,故答案为: “人均粮食产量”; 2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后;(2)①从统计图中观察2005﹣2015年内我国人均粮食产量呈现持续增长趋势正确;故①正确, ②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高; ∵(2010﹣2014)平均数/千克-(2005﹣2009)平均数/千克=448.4-388.4=60,(2015﹣20194)平均数/千克-(2010﹣2014)平均数/千克=77-448.4=28.6,∵60>28.6,∴2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高正确;③2005﹣2019年我国人均粮食产量连续15年平均年产量中从高于人均400千克的国际粮食安全标准线从2008年——2019年共12年2005﹣2019年我国人均粮食产量连续12年平均年产量高于人均400千克的国际粮食安全标准线但时间正确故③正确,故答案为:①②③;(3)∵我国2005﹣2009年人均粮食产量波动较大,2015﹣2019年人均粮食产量波动较小, 我国2005﹣2009年人均粮食产量的方差为21S 大于2015﹣2019年人均粮食产量的方差为22S , ∴21S >22S .故答案为:>.【点睛】本题考查频数分布直方图、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.。
仲恺区2017-2018学年度八年级下册单元测试卷第二十章《数据的分析》(时间:45分钟)班级:_________姓名:_________________分数:________________一、选择题(每小题5分,共25分)1. 一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是( ) A. 10,10 B. 10, 12.5 C. 11,12.5 D. 11,10 2.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5 3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数4. 某月前两周从周一到周五每天的最低气温依次是(C 0): 和 ,5,454++x x 若第一周五天的平均最低气温是7c 0,则第二周这五天的平均最低气温是( )A. 7c oB. 8c oC. 9c oD. 10c o5.若a 个数的平均数为m ,b 个数的平均数为n ,则这(a+b)个数的平均数是( ) A.2n m + B. b a bn am ++ C. b a n m ++ D. nm bnam ++ 二、填空题(每小题5分,共25分)6.已知数据0,1,2,3,4的方差是2,则数据1000,1001,1002,1003,1004•的方差为7.甲、乙、丙三台包装机 同时分装质量为400克的茶叶,从它们各自分装的茶叶中分别随机抽取了 10盒,得到它们的实际质量的方差如下表所示,根据表中数据,可以认为三台包装机中,三台包装机的方差为2甲s =31.96 ,2乙s =7.96 ,2丙s = 16.32,则______包装机包装的质量最稳定.54321,,,,x x x x x ,3,2,1321+++x x x8.一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是 .9.一组数据25,29,20,x, 14,它的中位数是23,则这组数据的平均数为 .10.甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):10.3 10.8经计算,x甲=10,x乙=10,试根据这组数据估计__________种水稻品种的产量比较稳定.三、解答题(每小题10分,共50分)11.某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,如左下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表(请完成表格)(1)第二组数据的组中值是________.(2)求该班学生平均每天做数学作业所用时间.12.某班40名学生身高情况如下图,求该班学生平均身高是多少?13.某报要招聘记者一名,小明、小凯和小萍报名参加了三项素质测试,成绩如下:(1)分别计算三人的素质测试的平均分,根据计算,那么谁将被录取?(2)如果报社把采访写作、计算机、创意和设计成绩按5:2:3的比例,请计算三人测试的平均成绩,那么谁将被录取?14.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:请你根据上述数据回答问题:(1)该组数据的中位数、众数是什么?(2)若当气温在21℃~24℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?四、附加题(10分)16.电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):你认为该用户选择哪种付费方式比较合适?(一个月按30天计算)。
《第20章数据的分析》单元测试卷一、选择题(共7小题,每小题4分,满分28分)1、(2008•金华)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()包装机甲乙丙方差(克2) 1.70 2.29 7.22A、甲B、乙C、丙D、不能确定2、(2005•上海)六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为()A、3B、4C、5D、63、(2006•内江)一组数据按从小到大的顺序排列为:1,2,3,x,6,9,这组数据的中位数是4.5,那么这组数据的众数为()A、4B、5C、5.5D、64、(2005•北京)李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号 1 2 3 4 5 6 7 8 9 10质量(千克)14 21 27 17 18 20 19 23 19 22据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别为()A、200千克,3000元B、1900千克,28500元C、2000千克,30000元D、1850千克,27750元5、(2006•成都)如图,某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况,据统计图,这组车速数据的众数和中位数分别是()A、60千米/小时,60千米/小时B、58千米/小时,60千米/小时C、60千米/小时,58千米/小时D、58千米/小时,58千米/小时6、(2007•白银)某服装销售商在进行市场占有率的调查时,他最应该关注已售出服装型号的()A、平均数B、众数C、中位数D、最小数7、(2007•南平)在某次体育活动中,统计甲、乙两班每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数(人)平均次数(次)中位数方差甲班55 135 149 190乙班55 135 151 110下面有3个结论:(1)甲班学生的平均成绩高于乙班学生的平均成绩;(2)甲班学生成绩的波动比乙班学生成绩的波动大;(3)甲班学生成绩优秀的人数不会多于乙班学生成绩优秀的人数(跳绳次数≥150次为优秀).则正确的结论是()A、(1)B、(2)C、(3)D、(2)和(3)二、填空题(共6小题,每小题4分,满分24分)8、(2005•沈阳)一组数据﹣1,0,1,2,3的方差是_________.9、(2005•中山)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是_________.10、(2009•凉山州)有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_________.11、(2005•河南)某单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是_________分.12、图中是一组数据的折线统计图,这组数据的极差是_________,平均数是_________.13、(2005•湘潭)某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下:如果两人中只录取一人,若你是人事主管,你会录用_________.王丽张瑛专业知识14 18工作经验16 16仪表形象18 12三、解答题(共3小题,满分68分)14、(2006•南京)饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?15、(2007•无锡)如图是甲,乙两人在一次射击比赛中靶的情况(击中靶中心的圆面为10环,靶中数字表示该数所在圆环被击中所得的环数),每人射击了6次.(1)请用列表法将他俩的射击成绩统计出来;(2)请你用学过的统计知识,对他俩的这次射击情况进行比较.16、(2006•河北)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1 每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有_________名;(2)所有员工月工资的平均数x为2500元,中位数为_________元,众数为_________元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.答案与评分标准一、选择题(共7小题,每小题4分,满分28分)1、(2008•金华)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()包装机甲乙丙方差(克2) 1.70 2.29 7.22A、甲B、乙C、丙D、不能确定考点:方差。
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
数据的初步分析单元测试题一、单选题1.(本题3分)益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是262.(本题3分)在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是93.(本题3分)已知A组数据为2、3、6、6、7、8、8、8,B组数据为4、5、8、8、9、10、10、10,则描述A、B两组数据的统计量中相等的是()A.众数 B.中位数 C.平均数 D.方差4.(本题3分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩根据统计图中的信息可得,下列结论正确的是A.甲队员成绩的平均数比乙队员的大 B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大 D.乙队员成绩的方差比甲队员的大5.(本题3分)在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是组员及项目甲乙丙丁戊方差平均成绩试卷第1页,总6页试卷第2页,总6页A . 88,B . 88,2C . 90,D . 90,26.(本题3分)朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是A . 平均数B . 中位数C . 众数D . 方差7.(本题3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=609千克,亩产量的方差分别是2S 甲=29.6, 2S 乙=2.则关于两种小麦推广种植的合理决策是( )A . 甲的平均亩产量较高,应推广甲B . 甲、乙的平均亩产量相差不多,均可推广C . 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D . 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙8.(本题3分)如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述不正确的是( )A . 众数为30B . 中位数为25C . 平均数为24D . 方差为839.(本题3分)X,X,…X的平均数为4,X,X…X的平均数为6,则X,X,…X,X…X的平均数为( )A . 5B . 4C . 3D . 8得分918992909010.(本题3分)某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、填空题11.(本题4分)一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为______.12.(本题4分)某中学规定学生的学期总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小明的数学三项成绩(百分制)依次为85分,80分,90分,则小明这学期的数学总评成绩是______分.13.(本题4分)某市近8日每日最高气温折线统计图如图所示,这组每日最高气温数据的位数是_____度.14.(本题4分)某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有____人,投进4个球的有___人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 215.(本题4分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班100 98 110 89 103 500乙班86 100 98 119 97 500(1)根据上表提供的数据填写下表:优秀率中位数方差试卷第3页,总6页三、解答题16.(本题10分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.17.(本题10分)某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如下表:(1)如果根据三项测试成绩的平均成绩,谁将被录用?为什么?(2)根据实际需要学校将三项能力测试得分按8:2:2的比例确定每人的成绩,谁将被录用?为什么?18.(本题10分)18.(本题10分)春节联欢晚会往往对"最喜欢的节目"进行调查,下面表中是戏曲类节目收集的数据试卷第4页,总6页试卷第5页,总6页名 称ABCDE喜爱(人数) 1870万 728万 12405万 68万 520万(1)调查收集的数据有用吗?(2)最受欢迎的戏曲是哪个?说明你的理由?(3)能说戏曲D不好吗?19.(本题10分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?20.(本题10分)某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A 、B 、C 、D 、E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲90 92 94 95 88乙89 86 87 94 91表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲40 7 3乙42 4 4规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.试卷第6页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。
第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。
新人教版八年级下册第20章 数据分析单元测试试卷(A 卷)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是_______;平均数是______;•极差是_______,中位数是______.2.数据3,5,4,2,5,1,3,1的方差是________.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.4.已知一组数据1、2、y 的平均数为4,那么y 的值是 .5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 ,方差为 .6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,•通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______℃.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是 . 9.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是___ __.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例第6题1234567810第10题为 ,该班学生每日零花钱的平均数大约是 元. 11.为了调查某一段路的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天是314辆,那么这30天该路口同一时段通过的汽车平均数是 . 12.小芳测得连续5天日最低气温并整理后得出下表:那么空缺的两个数据是 , .13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有 条鱼.14.现有A 、B 两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如右图所示.(1(2)若两班合计共有60人及格,问参加者最少 获______分才可以及格.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x ,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是 ( )A.8 B.9 C.10 D.1216.某班50名学生的身高测量结果如下表:那么该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1. 60 17.如果一组数据a1,a2,……,a n的方差是2,那么数据2a1,2a2,……,2a n 的方差是()A.2 B.4 C.6 D.818.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:(1)甲、乙两班学生成绩平均水平相等(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班大,上述结论正确的是()A.①②③B.①②C.①③D.②③三、解答题(共60分)19.(5分)某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、•平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、•84分,则她这学期期末数学总评成绩是多少?20.(5(1 (2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由. 21.(5分)某校八年级(1)班50名学生参加2008年通州市数学质量监控考试,(1)该班学生考试成绩的众数是 . (2)该班学生考试成绩的中位数是 . (3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由. 22.(6分)当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题: (1)本次抽样调查共抽测了 名学生;(2)参加抽测学生的视力的众数在 内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为 .203040506023.(6分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题. (1) 指出这个问题中的总体.(2)求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.(6分)小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?(3)假如你是小红,你会对奶奶有哪些好的建议. 25.(6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的6(1)频数分布表中的a =________,b=________,c =_________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?26.(6分)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.为.(2)请在下图中用折线图描述此组数据.28.(8分)国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16—65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.根据上图提供的信息回答下列问题:(1)被调查的居民中,人数最多的年龄段是 岁. (2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31—40岁年龄段的满意人数,并补全图b .(3)比较21—30岁和41—50岁这两个年龄段对此规定的支持率的高低(四舍五入到1%,注:某年龄段的支持率100=⨯该年龄段支持人数该年龄段被调查人数%).参考答案一、填空题1.3,3.5,4,3 2.2.25 3.81.5分4.9 5.11,2 6.小李7.-2 8.8 9.2110.50%,2.8 11.306 12.4,2 13.1000 14.A,4二、选择题15.C 16.C 17.D 18.A三、解答题19.88.8分20.(1)众数是:14岁;中位数是:15岁;(2)16岁年龄组21.(1)88分;(2)86分;(3)略22.(1)150;(2)3.95-4.25;(3)600 23.(1)2000名学生参加环保知识竞赛的成绩;(2)0.25;(2)300人24.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)12.57,91.71,96.86,•金键学生奶销量最稳定;(3)建议学生奶平常尽量少进或不进,周末可进几瓶25.(1)8,12,0.3;(2)略;(3)60个26.(1)50人;(2)略;(3)160人27.(1)9.77,0.21;(2)略28.(1)21-30;(2)72,图略;(3)21-30岁支持率高。
第二十章数据的分析单元测试题一、选择题1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别(D)A.10和7B.5和7C.6和7D.5和62.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购(D )A.甲苗圃的树苗B.乙苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗3.(2017·安顺中考)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是(B)A.16,10.5B.8,9C.16,8.5D.8,8.54.一组数据2,3,2,3,5的方差是(C)A.6B.3C.1.2D.25.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t)(A )A.1.5t B.1.20t C.1.05t D.1t6.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选(B)A.甲B.乙C.丙D.丁7.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是(C)A.学习水平一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低8.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有(A )A.1个B.2个C.3个D.4个9.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是(D)A.2,13B.2,1 C.4,23D.4,310.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是(C)A.7,7B.8,7.5C.7,7.5D.8,6.5二、填空题11.某班中考数学成绩如下:7人得100分,14人得90分,17人得80分,8人得70分,3人得60分,1人得50分,那么中考全班数学成绩的平均分为,中位数为,众数为.答案:82.2808012.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.答案:-2•℃13..一组数据1,4,6,x的中位数和平均数相等,则x的值是__________.答案:-1或3或914.某校五个绿化小组一天的植树棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.答案:1.615.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.答案:27.3%16.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是__________(填序号).答案:①②③三、解答题17.(6分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:(1)共有25名员工,中位数是第13个数,则中位数是3 400元;3 000出现了11次,出现的次数最多,则众数是3 000元.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45 000元的影响,只有3个人的工资达到了6 276元,不恰当.18.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?答案:(1)=14(吨);(2)7000吨.19.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为________;b.可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)【解析】按如下分数段整理数据:=240(人);a.估计乙部门生产技能优秀的员工人数为400×1220b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高20.(8分)甲、乙两台机床同时生产同一种零件,在10天中两台机床每天生产的次品数如下: 甲:0,1,0,2,2,0,3,1,2,4; 乙:2,3,1,1,0,2,1,1,0,1.(1)分别计算两组数据的平均数和方差;(2)从结果看,在10天中哪台机床出现次品的波动较小? (3)由此推测哪台机床的性能较好 解:(1)甲的平均数是x 甲=110×(0+1+0+2+2+0+3+1+2+4)=1.5;乙的平均数是x 乙=110×(2+3+1+1+0+2+1+1+0+1)=1.2.甲的方差是s 甲2=110[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(4-1.5)2]=1.65;乙的方差是s 乙2=110[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(1-1.2)2]=0.76.(2)因为s 甲2=1.65,s 乙2=0.76,所以s 甲2>s 乙2,所以乙机床出现次品的波动较小.(3)乙的平均数比甲的平均数小,且s 甲2>s 乙2,所以乙机床的性能较好.21.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).答案:(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.22.(14分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少人?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解:(1)该班的学生总人数为15÷30%=50(名),穿175型校服的学生人数为50×20%=10(名).答:该班共有50名学生,其中穿175型校服的学生有10名.(2)穿185型校服的学生人数为50-3-15-15-10-5=50-48=2(名),补全条形统计图,如图所示.×360°=14.4°.(3)185型校服所对应的扇形圆心角为250答:185型校服所对应的圆心角的大小为14.4°.(4)165型和170型出现的次数最多,都是15次,所以众数是165和170.共有50个数据,第25,26个数据都是170,所以中位数是170. 答:该班学生所穿校服型号的众数是165和170,中位数是170.。