数据的统计与分析综合测试题(含答案)
- 格式:doc
- 大小:168.50 KB
- 文档页数:9
一、选择题1.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程ˆ35yx =-,变量x 增加1个单位时,y 平均增加5个单位 ③线性回归方程ˆy bx a =+必过(),x y④设具有相关关系的两个变量,x y 的相关系数为r ,那么||r 越接近于0,,x y 之间的线性相关程度越高;⑤在一个22⨯列联表中,由计算得2K 的值,那么2K 的值越大,判断两个变量间有关联的把握就越大。
其中错误..的个数是( ) A .0 B .1C .2D .32.已知变量x ,y 之间具有较强的线性相关性,测得它们的四组数据如表所示: x 1234y85 910 25 110现已求得变量x ,y 之间的回归方程为2y ax =+,请根据给出的条件,预测9x =时,y 的值约为( ) A .45-B .52-C .45D .523.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示:开业天数 10 203040 50 销售额/天(万元)62758189根据上表提供的数据,求得关于x 的线性回归方程为0.6754.9y x =+,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A .68B .68.3C .71D .71.34.下列命题中正确的个数( )①“0x ∀>,2sin x x >”的否定是“00x ∃≤,002sin x x ≤”;②用相关指数2R 可以刻画回归的拟合效果,2R 值越小说明模型的拟合效果越好;③命题“若0a b >>330a b >>”的逆命题为真命题;④若22(1)mx m x -+30m ++≥的解集为R ,则m 1≥.A .0B .1C .2D .35.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.56.为预测某种产品的回收率y ,需要研究它和原料有效成分的含量x 之间的相关关系,现取了8组观察值.计算得8152ii x==∑,81228i i y ==∑,821478ii x ==∑,811849i i i x y ==∑,则y对x 的回归方程是( ) A .y =11.47+2.62x B .y =-11.47+2.62x C .y =2.62+11.47xD .y =11.47-2.62x7.2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:经计算K 的观测值.附表:A .有99.9%以上的把握认为“该小区居民是否观看世界杯与性别有关”B .有99.9%以上的把握认为“该小区居民是否观看世界杯与性别无关”C .在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”D .在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关” 8.某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:每年体检 每年未体检 合计老年人 a7c年轻人 6 b d合计ef50已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是( ) A .18a = B .19b =C .50c d +=D .2f e -=-9.一个车间为了规定工时定额,需要确定加工零件所花费的时间,由此进行了5次实验,收集数据如下: 零件数:个 10 20 30 40 50 加工时间:分钟5971758189由以上数据的线性回归方程估计加工100个零件所花费的时间为( ) 附:回归直线的斜率和截距的最小二乘估计公式分别为1122211()(),()nniii ii i nni i i i x x y y x y nxyb a y bx x x x nx ====---===---∑∑∑∑A .124分钟B .150分钟C .162分钟D .178分钟10.下列说法中正确的是( )A .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1B .设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位 C .把某中学的高三年级560名学生编号:1到560,再从编号为1到10的10名学生中随机抽取1名学生,其编号为a ,然后抽取编号为10a +,20a +,30a +,…的学生,这样的抽样方法是分层抽样D .若一组数据0,a ,3,4的平均数是2,则该组数据的方差是5211.已知,x y 的对应值表为:x0 1 3456y 1y 2y 3y 4y5y 6y且,x y 线性相关,由于表格污损,y 的对应值看不到了,若6119.2ii y==∑,且线性回归直线方程为0.6y x a =+,则8x =时,y 的预报值为( ) A .6.1B .22.1C .12.6D .3.512.下列四个命题:①在回归模型中,预报变量y 的值不能由解释变量x 唯一确定;②若变量x ,y 满足关系0.11y x =-+,且变量y 与z 正相关,则x 与z 也正相关;③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;④以模型kxy ce=去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则4c e =,0.3k =.其中真命题的个数为( ) A .1个B .2个C .3个D .4个13.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱二、解答题14.近年来,“双11”网购的观念逐渐深入人心.某人统计了近5年某网站“双11”当天的交易额,统计结果如下表: 年份 2015 2016 2017 2018 2019 年份代码x 1 2 3 4 5 交易额y /百亿元912172126y x 留三位小数.(统计中用相关系数r 来衡量两个变量之间线性关系的强弱.若相应于变量x 的取值i x ,变量y 的观测值为i y (1i n ≤≤),则两个变量的相关系数的计算公式为:()()niix x y y r --=∑.统计学认为,对于变量,x y ,如果[]1,0.75r ∈--,那么负相关很强;如果[]0.751r ∈,,那么正相关很强;如果(]0.75,0.30r ∈--或[)0.30,0.75r ∈,那么相关性一般;如果[]0.25,0.25r ∈-,那么相关性较弱);(2)求出y 关于x 的线性回归方程,并预测2020年该网站“双11”当天的交易额.参考公式:121()()()ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-43.1≈. 15.2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:(1)请利用所给数据求违章人数与月份之间的回归直线方程ˆˆybx a =+; (2)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下22⨯列联表:能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?参考公式:1221ˆni i i n ii x y nxy bx nx ==-=-∑∑,ˆˆay bx =- 16.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A B 、两个电商平台各十个网络销售店铺的销售数据:(1)作出A B、两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的22⨯列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?附:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.17.某电脑公司有5名产品推销员,其工作年限与年推销金额的数据如表:(1)求年推销金额y关于工作年限x的线性回归方程;(2)判断变量x 与y 之间是正相关还是负相关;(3)若第6名推销员的工作年限是11年,试估计他的年推销金额.参考公式:线性回归方程y bx a =+中,a y bx =-,其中,x y 为样本平均数,1221ni ii nii x ynx y b xnx==-=-∑∑)18.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)网箱产量不低于40kg 为“理想网箱”,填写下面列联表,并根据列联表判断是否有99.9%的把握认为“理想网箱”的数目与养殖方法有关:箱产量40kg <箱产量40kg ≥合计旧养殖法 新养殖法 合计(2)已知旧养殖法100个网箱需要成本50000元,新养殖法100个网箱需要增加成本15750元,该水产品的市场价格为x 元/()15kg x ≥,根据箱产量的频率分布直方图(说明:同一组中的数据用该组区间的中间值作代表),采用哪种养殖法,请给养殖户一个较好的建议,并说明理由. 附参考公式及参考数据:()20P K k ≥0.050 0.010 0.0010k3.841 6.635 10.828()()()()()20n ad bc k a b c d a c b d -=++++19.为了解某班学生喜欢数学是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表,已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为35.(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜欢数学与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜欢数学的女生人数为ξ,求ξ的分布列与期望.下面的临界表供参考:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)20.为了解某地区足球特色学校的发展状况,某调查机构得到如下统计数据:(1)根据上表数据,计算y 与x 的相关系数r ,并说明y 与x 的线性相关性强弱(已知:0.751r ≤≤,则认为y 与x 线性相关性很强;0.30.75x ≤≤,则认为y 与x 线性相关性一般,0.25r ≤,则认为y 与x 线性相关性较弱)(2)求y 与x 的线性回归方程,并预测该地区2019年足球特色学校的个数(精确到个位)参考公式:()()niix x y y r --=∑()()2211,10, 3.6056nni i i i x x y y ==-=-=≈∑∑;()()()121,niii nii x x yy b a y bx x x ==--==--∑∑21.近期,某学校举行了一次体育知识竞赛,并对竞赛成绩进行分组:成绩不低于80分的学生为甲组,成绩低于80分的学生为乙组.为了分析竞赛成绩与性别是否有关,现随机抽取了60名学生的成绩进行分析,数据如下图所示的22⨯列联表.(1)将22⨯列联表补充完整,判断是否有90%的把握认为学生按成绩分组与性别有关? (2)如果用分层抽样的方法从甲组和乙组中抽取6人,再从这6人中随机抽取2人,求至少有1人在甲组的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.参考数据及公式:22.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (1,28=i )数据作了初步处理,得到下面的散点图及一些统计量的值.xyw()821ii x x =-∑()821ii w w =-∑()()81iii x x yy =--∑()()81iii w w yy =--∑46.6563 6.8 289.8 1.6 1.469 108.8表中=i i w x ,8118==∑i i w w(1)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?给出判断即可,不必说明理由(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x 、y 的关系为0.2z y x =-根据(2)的结果回答下列问题:①年宣传费49x =时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆβ==∑--=∑-n i i i ni i u u v v u u ,ˆˆv u αβ=-. 23.一只药用昆虫的产卵数y 与一定范围内的温度x 有关,现收集了该种药用昆虫的6组观测数据如下表: 温度x /℃ 21 23 24 27 29 32 产卵数y /个61120275777经计算得:61()()557iii x x y y =--=∑,621()84ii x x =-=∑,621()3930i i y y =-=∑线性回归模型的残差平方和621()236.64iii y y =-=∑,8.06053167e ≈,其中,i i x y 分别为观测数据中的温度和产卵数,1,2,3,4,5,6i =(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆybx a =+(精确到0.1); (2)若用非线性回归模型求得y 关于x 的回归方程为0.2303ˆ0.06x ye =,且相关指数20.9522R =.①试与1中的回归模型相比,用2R 说明哪种模型的拟合效果更好.②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数) 附:一组数据1122(,),(,)(,)n n x y x y x y 其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计为121()()ˆ()ni i i nii x x y y bx x ==--=-∑∑,ˆˆay bx =-;相关指数22121ˆ()1()niii nii y yR y y ==-=--∑∑.24.某市春节期间7家超市的广告费支出i x (万元)和销售额i y (万元)数据如下:参数数据及公式:8x =,42y =,712794i i i x y ==∑,712708i i x ==∑,1221ˆni i ni i i y n x y b nxx x ==-⋅=-∑∑,ˆˆay bx =-,ln 20.7≈. (1)若用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程;(2)用对数回归模型拟合y 与x 的关系,可得回归方程:ˆ12ln 22yx =+,经计算得出线性回归模型和对数模型的2R 分别约为0.75和0.97,请用2R 说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出为8万元时的销售额.25.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,计算得10180i i x ==∑,10120i i y ==∑,101184i i i x y ==∑,1021720ii x==∑.(1)求家庭的月储蓄y 关于月收入x 的线性回归方程y bx a =+,并判断变量x 与y 之间是正相关还是负相关;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.(注:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-⋅=-∑∑,其中x ,y 为样本平均值.)26.如图是某公司一种产品的日销售量y (单位:百件)关于日最高气温x (单位:C ︒)的散点图.数据:x13 15 19 20 21 y 2628301836(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量y 关于日最高气温x 的线性回归方程y bx a =+;(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?附:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据用样本估计总体、线性回归方程、独立性检验的基本概念和基本性质,逐项判断,即可得到本题答案. 【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程ˆ35yx =-,变量x 增加1个单位时,y 平均减少5个单位,故②不正确;线性回归方程ˆy bx a =+必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r ,||r 越接近于1,相关程度越大,故④不正确;对于观察值2K 来说,2K 越大,“x 与y 有关系”的可信程度越大,故⑤正确. 故选:C 【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.2.B解析:B 【分析】由已知求得x ,y ,代入2y ax =+求得a 值,则线性回归方程可求,取9x =求得y 值即可. 【详解】12342.54x +++==,1892130.7545105104y ⎛⎫=+++== ⎪⎝⎭,0.7520.52.5a -∴==-,则线性回归方程为0.52y x =-+, 取9x =,得50.5922y =-⨯+=-. 故选:B . 【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.3.A解析:A 【分析】根据表中数据计算x ,再代入线性回归方程求得y ,进而根据平均数的定义求出所求的数据. 【详解】根据表中数据,可得1(1020304050)305x =⨯++++=,代入线性回归方程ˆ0.6754.9yx =+中, 求得0.673054.975y =⨯+=,则表中模糊不清的数据是7556275818968⨯----=, 故选:A. 【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.4.C解析:C 【分析】根据含量词命题的否定可知①错误;根据相关指数的特点可知2R 越接近0,模型拟合度越低,可知②错误;根据四种命题的关系首先得到逆命题,利用不等式性质可知③正确;分别在0m =和0m ≠的情况下,根据解集为R 确定不等关系,从而解得m 范围,可知④正确. 【详解】①根据全称量词的否定可知“0x ∀>,2sin x x >”的否定是“00x ∃>,002sin x x ≤”,则①错误;②相关指数2R 越接近1,模型拟合度越高,即拟合效果越好;2R 越接近0,模型拟合度越低,即拟合效果越差,则②错误;③若“0a b >>0>>”的逆命题为:若“0>>,则0a b >>”,根据不等式性质可知其为真命题,则③正确;④当0m =时,()2213230mx m x m x -+++=-+≥,此时解集不为R ,不合题意;当0m ≠时,若()22130mx m x m -+++≥解集为R ,只需:()()241430m m m m >⎧⎪⎨+-+≤⎪⎩ 解得:m 1≥,则④正确.∴正确的命题为:③④本题正确选项:C 【点睛】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R 求解参数范围的知识.5.D解析:D 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由 1.5y x a =+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,回归直线必过样本的中心点()2,4.5,故C 错误; 又4.5 1.52 1.5ˆˆaa =⨯+⇒=,∴回归方程为 1.5 1.5y x =+,当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.6.A解析:A 【解析】分析:根据公式计算ˆb≈2.62,ˆa ≈11.47,即得结果. 详解:由1221,()ˆˆˆni ii nii x y nxyba y bx xn x ==-==--∑∑,直接计算得ˆb ≈2.62,ˆa ≈11.47,所以ˆy=2.62x +11.47.选A.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .7.C解析:C 【分析】分析:根据题目的条件中已经给出这组数据的观测值,把所给的观测值同节选的观测值表进行比较,发现它大于7.879,在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”.详解:由题意算得,28.2497.879k ≈> ,参照附表,可得在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”. 故选C .点睛:本题考查独立性检验的应用,属基础题.8.D解析:D 【解析】分析:先根据列联表列方程组,解得a,b,c,d,e,f,再判断真假.详解:因为725,625,6,7,50,50a c b d a e b f c d e f +==+==+=+=+=+=, 所以18,19,50,24,26,2a b c d e f f e ==+===-= 选D.点睛:本题考查列联表有关概念,考查基本求解能力.9.A解析:A 【解析】分析:先求出,x y ,再求出ˆˆ,ba 得到回归直线方程,再令x=100得到加工100个零件所花费的时间.详解:由题得30,75,x y ==121()()(20)(16)(10)(4)70074001000100400100010()niii ni i x x y y b x x ==---⨯-+-⨯-====++++-∑∑,所以775ˆ3054,10ay bx =-=-⨯= 所以754,10y x =+当x=100时,y=124.故答案为A 点睛:本题主要考查回归分析和回归方程的求法,意在考查学生对这些基础知识的掌握水平和基本的计算能力,考查学生解决实际问题的能力.10.D解析:D 【分析】线性相关性越强,r 的值越接近于1;ˆ35yx =-,斜率的意义;系统抽样和分层抽样的区别;方差的计算. 【详解】对于A ,若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1,故A 错误;对于B ,设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均减少5个单位,故B 错误;对于C ,抽样方法是系统抽样,故C 错误; 对于C ,0,a ,3,4的平均数是2,可得1a =, 方差222215[(02)(12)(32)(42)]42-+-+-+-= ,故D 正确. 故选:D 【点睛】本题考查了线性相关系数,回归方程,系统抽样和分层抽样,方差等基本知识;考查了理解辨析、数据分析能力和数学运算技能,属于容易题.11.A解析:A 【分析】求出,x y ,由线性回归方程必经过点(,x y )即得a ,代入8x =求解即可. 【详解】 由表格知,196x =,6119.2ii y==∑3.2y ∴=,代入0.6y x a =+得:193.20.66a =⨯+, 1.3a ∴=,则回归方程为0.6 1.3y x =+, 当8x =时,0.68 1.3 6.1y =⨯+=, 故选:A . 【点睛】本题主要考查了线性回归方程,线性回归方程的性质、应用, 属于中档题.12.C解析:C 【分析】直接利用回归直线的方程的应用,相关的变量关系的应用,残差图的应用分析结果. 【详解】 下列四个命题:①在回归模型中,预报变量y 的值不能由解释变量x 唯一确定;根据回归模型中的变量关系,正确.②若变量x ,y 满足关系0.11y x =-+,且变量y 与z 正相关,则x 与z 也正相关;应该是负相关.故错误.③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;即越接近于回归直线的距离越小,故正确.④以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则4c e =,0.3k =.故正确. 故选:C . 【点睛】此题考查回归分析和相关概念辨析,涉及非线性回归模型的处理方法以及对残差图的理解认识.13.A解析:A 【分析】由散点图可知,去掉(3,10)D 后,y 与x 的线性相关性加强,由相关系数r ,相关指数2R 及残差平方和与相关性的关系得出选项. 【详解】∵从散点图可分析得出:只有D 点偏离直线远,去掉D 点,变量x 与变量y 的线性相关性变强, ∴相关系数变大,相关指数变大,残差的平方和变小,故选A. 【点睛】该题考查的是有关三点图的问题,涉及到的知识点有利用散点图分析数据,判断相关系数,相关指数,残差的平方和的变化情况,属于简单题目.二、解答题14.(1)0.998;变量y 与x 的线性相关程度很强;(2)ˆ 4.3 4.1yx =+;29.9百亿元. 【分析】(1)根据表中数据可得x 、y ,再计算出1()()niii x x y y =--∑和1()()niii x x y y =--∑,代入12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,得到数据与所给r 比较可得答案;(2)由(1)可得x ,y ,1()()niii x x y y =--∑,计算出21()nii x x =-∑,代入121()()()ˆniii ni i x x y y bx x ==--=-∑∑和ˆˆay bx =-可得答案. 【详解】(1)由题意,根据表格中的数据, 可得:1(12345)35x =++++=,1(912172126)175y =++++=, 则1()()(13)(917)(53)(2617)43niii x x y y =--=--++--=∑,2211()()1018643.1n niii i x x y y ==--=⨯≈∑∑,所以()()430.99843.1niix x y y r --==≈∑, 所以变量y 与x 的线性相关程度很强. (2)由(1)可得3x =,17y =,1()()43niii x x y y =--=∑,又由2221222(13)(23)(3(3)(43)(53)1)0nii x x ==-+-+-+-+-=-∑,所以121()()43 4.30)ˆ1(niii ni i x x y y bx x ==--===-∑∑,则ˆˆ17 4.33 4.1a y bx=-=-⨯=, 可得y 关于x 的线性回归方程为ˆ 4.3 4.1yx =+, 令6x =,可得ˆ 4.36 4.129.9y=⨯+=, 即2020年该网站“双11”当天的交易额29.9百亿元. 【点睛】本题考查了变量的相关性以及回归直线方程的求解,回归分析的目的是试图通过样本数据得到真实结构参数的估计值,并要求估计结果接近真实值,要求认真计算各个数值.15.(1)ˆ8.5125.5yx =-+;(2)66人;(3)能判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关. 【分析】(1)利用所给数据求回归直线方程的相关数据,根据代入公式即可得违章人数y 与月份x之间的回归直线方程ˆˆˆybx a =+; (2)代入7x =即可判断7月份不“礼让斑马线”违章驾驶员的人数;(3)求出2k ,即可判断判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关. 【详解】解:(1)由表中数据知:3,100x y ==∴122114151500ˆ8.55545ni ii nii x ynx ybxnx ==--===---∑∑,ˆ125.ˆ5a y bx =-=, ∴所求回归直线方程为ˆ8.5125.5yx =-+. (2)由(1)知,令7x =,则ˆ8.57125.566y=-⨯+=人. (3)由表中数据得2250(221288)505.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关. 【点睛】本题考查回归直线方程的应用,独立检验的应用,是基本知识的考查.16.(1)茎叶图见解析,B 电商平台的销售更好,理由见解析(2)22⨯列联表答案见解析,没有95%的把握认为销售量与电商平台有关. (3)0.6 【分析】(1)由已知数据作出茎叶图,由茎叶图可知,A 电商、B 电商平台销售量的中位数及平均数,可得B 电商平台的销售更好;(2)由题中数据,可将22⨯列联表补充完整,数据代入公式可得2 3.333 3.841K ≈<,故没有95%的把握认为销售量与电商平台有关;(3)由已知数据,从销售量前五名的店铺选取三个店铺共有10种情况,其中恰好有两个店铺的销售量在95以上的情况有6种,由古典概型求概率可得. 【详解】(1)由已知数据作出茎叶图如下:①由茎叶图可知,A 电商平台销售量的中位数为72,B 电商平台销售量的中位数为85,因此B 电商平台的销售更好.②由茎叶图可求得A 电商平台销售量的平均数为72.4,B 电商平台销售量的平均数为84.6,因此B 电商平台的销售更好. (2)由题中数据,可得22⨯列联表如下:220(848)3203.333 3.841812101096K ⨯-∴==≈<⨯⨯⨯,∴没有95%的把握认为销售量与电商平台有关.(3)由已知数据,销售量前五名的店铺,销售量分别为97,96,96,94,87. 设对应的店铺分别为12312,,,,a a a b b .从其中选取三个店铺共有10种情况,如下:()123,,a a a ,()121,,a a b ,()122,,a a b ,()311,,a a b ,()312,,a a b ,()112,,a b b ,()321,,a a b ,()322,,a a b ,()112,,a b b ()312,,a b b .其中恰好有两个店铺的销售量在95以上的情况有6种:()121,,a a b ,()122,,a a b ,()311,,a a b ,()312,,a a b ,()321,,a a b ,()322,,a a b .∴其中恰好有两个店铺的销售量在95以上的概率60.610P ==. 【点睛】本题为统计与概率综合问题,考查茎叶图、列联表、相关性分析、古典概型求概率等知识的应用,考查数据分析能力,属于中等题.17.(1)0.50.4y x =+;(2)正相关;(3)5.9万元. 【分析】(1)首先求出x ,y 的平均数,利用最小二乘法做出b 的值,再利用样本中心点满足线性回归方程和前面做出的横标和纵标的平均值,求出a 的值,写出线性回归方程. (2)根据0.50b =>,即可得出结论;(3)第6名推销员的工作年限为11年,即当11x =时,把自变量的值代入线性回归方程,得到y 的预报值,即估计出第6名推销员的年推销金额为5.9万元. 【详解】(1)由题意知:6x =, 3.4y =于是:211256 3.40.520056b -⨯⨯==-⨯, 3.40.560.4a =-⨯=,故:所求回归方程为0.50.4y x =+;(2)由于变量y 的值随着x 的值增加而增加(0.50)b =>,故变量x 与y 之间是正相关 (3)将11x =带入回归方程可以估计他的年推销金额为0.5110.4 5.9y =⨯+=万元. 【点睛】本题考查回归分析的初步应用,考查利用最小二乘法求线性回归方程,是一个综合题目. 18.(1)列联表见解析;有99.9%的把握认为“理想网箱”的数目与养殖方法有关;(2)当市场价格大于30元/kg 时,采用新养殖法;等于30元/kg 时,两种方法均可;小于30元/kg 时,采用旧养殖法. 【分析】(1)根据频率分布直方图计算出列联表对应的数据,从而补全列联表;根据公式计算得022.65010.828k =>,从而得到结论;(2)利用频率分布直方图求得新旧两种养殖法的平均数,从而得到两种养殖法获利的函数模型,通过不同市场价格时,两种方法获利的大小来确定养殖法. 【详解】(1)由频率分布直方图可知:箱产量40kg <的数量:旧养殖法:()0.0120.0140.024510025++⨯⨯=;新养殖法:0.00451002⨯⨯=箱产量40kg ≥的数量:旧养殖法:1002575-=;新养殖法:100298-=可填写列联表如下:则:()200982575222.65010.82827173100100k ⨯-⨯==⨯⨯⨯>∴有99.9%的把握认为“理想网箱”的数目与养殖方法有关 (2)由频率分布直方图可得:旧养殖法100个网箱产量的平均数:(127.50.01232.50.01437.50.02442.50.03447.50.0452.50.032x =⨯+⨯+⨯+⨯+⨯+⨯+)57.50.0262.50.01267.50.012547.1⨯+⨯+⨯⨯=新养殖法100个网箱产量的平均数:(237.50.00442.50.0247.50.04452.50.06857.50.04662.50.01x =⨯+⨯+⨯+⨯+⨯+⨯+)67.50.008552.35⨯⨯=设新养殖法100个网箱获利为()f x()()52.351006575052356575015f x x x x ∴=⨯-=-≥设旧养殖法100个网箱获利为()g x()()47.11005000047105000015g x x x x ∴=⨯-=-≥令()()f x g x =,解得:30x =即当30x >时,()()f x g x >;当30x =时,()()f x g x =;当30x <时,()()f x g x <∴当市场价格大于30元/kg 时,采用新养殖法;等于30元/kg 时,两种方法均可;小于30元/kg 时,采用旧养殖法.【点睛】本题考查独立性检验判断二者相关性、利用频率分布直方图解决实际问题,涉及到利用频率分布直方图计算频率和频数、估计总体的平均数的问题,考查统计部分知识的综合应用,属于常考题型.19.(1)列联表见解析;(2)能,理由见解析;(3)分布列见解析,()45E ξ=. 【分析】(1)由题意可知,全部50人中喜欢数学的学生人数为30,据此可完善列联表;。
一、选择题1.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12341A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.52.某篮球队5名场上队员的身高(单位:cm)分别是183、187、190、200、195,现用一名身高为210cm的队员换下场上身高为195cm的队员,与换人前相比,场上队员身高的()A.平均数变大,方差变小B.平均数变小,方差变大C.平均数变大,方差变大D.平均数变小,方差变小3.学校篮球队5名场上队员的身高分别为:170,173,175,177,180(单位:cm).增加一名身高为175cm的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定4.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数B.众数C.平均数D.不能确定5.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.56.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分7.某学校生物兴趣小组11人到校外采集标本,其中3人每人采集4件,4人每人采集3件,4人每人采集5件,则这个兴趣小组平均每人采集标本()A.3件B.4件C.5件D.6件8.下表记录了甲、乙、丙、丁四名立定跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁V cm166165166165平均数()方差22()s cm 3.5 3.515.516.5根据表中数据,要从中选择一名成绩好发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁9.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10,下列关于这组数据描述正确的是()A.中位数是10 B.众数是10 C.平均数是9.5 D.方差是610.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下图所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9, 9 C.9.5, 9 D.9.5,811.已知数据1x、2x、3x、、100x是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a,中位数为b,方差为c,如果再加上中国首富马化腾的年收入101x,则在这101个数据中,a一定增大,那么对b与c的判断正确的是()A.b一定增大,c可能增大B.b可能不变,c一定增大C.b一定不变,c一定增大D.b可能增大,c可能不变12.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵二、填空题13.若3,2,x,5的平均数是4,则x= _______.14.数据-3、-1、0、4、5的方差是_________.15.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234 16.已知一组数据的方差S2=15[(6﹣10)2+(9﹣10)2+(a﹣10)2+(11﹣10)2+(b﹣10)2]=6.8,则a2+b2的值为_____.17.在对一组样本数据进行分析时,小华列出了方差的计算公式:()()()()222222334x x x xSn-+-+-+-=,由公式提供的信息,①样本的容量是4,②样本的中位数是3,③样本的众数是3,④样本的平均数是3.5,则说法错误的是_______(填序号)18.某班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲队789710109101010乙队10879810109109已知甲队成绩的方差是1.4,则成绩较为整齐的是__________队.19.我县教师招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,周倩笔试成绩为86分,面试成绩为85分,那么周倩的总成绩为____________分.20.一组数据2,4,8,5,4的中位数是a,则a的值是____.三、解答题21.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.22.某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了______名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是______棵、中位数是______棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?23.为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:,=,d=;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数和中位数如表:10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.24.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:(2)若煤气每方3元,估计小强家一年的煤气费为多少元.25.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为了让老师们更好地了解国家的宏观政策及具体措施,某学校领导组织全体教师利用“学习强国APP”对相关知识进行学习并组织定时测试(总分为100分).现从该校中随机抽取20名教师的测试成绩进行分析,过程如下:收集数据20名教师的测试成绩如下(单位:分)76,83,71,100,81,100,82,88,95,90,100,86,89,93,86,100,96,100,92,90整理数据 请你按如下表格分组整理、描述样本数据,并把下列表格补充完整. 成绩(个) 060x ≤< 6070x ≤< 7080x ≤< 8090x ≤< 90100x ≤<等级 ABC D E 人数平均数 中位数 满分率91.9 25%(1)用样本中的统计量估计全校教师的测试成绩等级为 ;(2)若该校共有教师210人,请估计该校教师的测试成绩等级为D ,E 的总人数. 26.2020年11月24日,全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行,某县举办了“弘扬工匠精神,争当文明员工”歌唱比赛,某企业要从甲、乙两参赛部门中择优推荐一部门参加县级决赛,他们预赛阶段的各项得分如下表:歌唱内容 歌唱技巧 仪表形象甲 95 90 85 乙 879393被推荐;(2)如果根据歌唱内容、歌唱技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两部门哪个部门会被推荐,并对另外一部门提出合理的建议.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5,数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5.故选:C.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.C解析:C【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为15×(183+187+190+200+195)=191(cm),方差为15×[(183-191)2+(187-191)2+(190-191)2+(200-191)2+(195-191)2]=35.6(cm2),新数据的平均数为15×(183+187+190+200+210)=194(cm),方差为15×[(183-194)2+(187-194)2+(190-194)2+(200-194)2+(210-194)2]=95.6(cm2),∴平均数变大,方差变大,故选:C.【点睛】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.3.C解析:C【分析】根据平均数和方差公式分别求出原篮球队5名队员的平均身高和方差以及增加一名身高后的平均身高和方差,然后进行比较即可得出答案.【详解】原5名场上队员的平均身高是15(170+173+175+177+180)=175(cm ), 则方差是(222221[(170175)(173175)(175175)(177175)180175)11.65⎤-+-+-+-+-=⎦, 增加一名身高为175cm 的成员后的平均身高是16(170+173+175+177+180+175)=175(cm ), 则方差是(222222129[(170175)(173175)(175175)(177175)180175)(175175)63⎤-+-+-+-+-+-=⎦,∵2911.63>, ∴现篮球队成员的身高与原来相比,方差变小; 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,12x x ,,…n x 的平均数为x ,则方差为(222212n 1[()())S x x x x x x n⎤=-+-++-⎦ ],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.A解析:A 【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.C解析:C 【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得. 【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30, 所以该组数据的众数为30、中位数为20252+=22.5, 故选C . 【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.A解析:A 【分析】按照笔试与面试所占比例求出总成绩即可. 【详解】根据题意,按照笔试与面试所占比例求出总成绩:648090841010⨯+⨯=(分) 故选A 【点睛】 本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.7.B解析:B 【分析】根据加权平均数的计算公式,先列出算式,再进行计算即可. 【详解】解:∵3人每人采集4件,4人每人采集3件,4人每人采集5件, ∴则这个兴趣小组平均每人采集标本是(4×3+3×4+5×4)÷11=4(件). 故选:B . 【点睛】本题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是找出权重,根据公式列出算式.8.A解析:A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x 甲乙丁丙>,∴从甲和丙中选择一人参加比赛, ∵22S S 甲丙<,∴选择甲参赛,故选:A.【点睛】本题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.B解析:B【分析】根据中位数,众数,平均数和方差的概念逐一判断即可.【详解】中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.这组数据中按顺序排列之后中间位置的数是9,10,所以中位数是9101922+=,故A选项错误;众数:一组数据中出现次数最多的数据为这组数据的众数.这组数据中,10出现2次,次数最多,所以众数是10,故B选项正确;平均数为10691181096x+++++==,故C选项错误;方差为()()()()()()2222222109699911989109863s-+-+-+-+-+-==,故D选项错误;故选:B.【点睛】本题主要考查中位数,众数,平均数和方差,掌握中位数,众数,平均数和方差的求法是解题的关键.10.A解析:A【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【详解】解:由表格可得,读书时间为8小时最多,故一周读书时间的众数为8,该班学生一周读书时间的第20个数9和第21个数是9,故该班学生一周读书时间的中位数为9+9=92,故选:A.【点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.11.B解析:B【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x201后,数据的变化特征,易得到答案.【详解】解:∵数据x1,x2,x3,…,x200是龙岩市某企业普通职工的2019年的年收入,而x201为中国首富马云的年收入,则x201会远大于x1,x2,x3, (x200)故这201个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x201比较大的影响,而更加离散,则方差变大故选:B.【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x201为中国首富马云的年收入,则x201会远大于x1,x2,x3,…,x200也是解答本题的关键.12.D解析:D【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案.【详解】5109129812⨯----=(棵)故选:D.【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.二、填空题13.6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值【详解】∵32x5的平均数是4∴故答案为:6【点睛】此题考查利用平均数求未知的数据正确掌握平均数的计算方法正确计算是解题的关键解析:6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值.【详解】∵3,2,x,5的平均数是4,x=⨯---=,∴443256故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键.14.2【分析】根据公式求出这组数据的平均数与方差【详解】这组数据的平均数是:方差是故答案为:92【点睛】本题考查了求数据的平均数与方差的问题解题时利用平均数与方差的公式进行计算即可解析:2.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:(3)(1)04515x -+-+++== 方差是2222221[(31)(11)(01)(41)(51)]9.25s =--+--+-+-+-=.故答案为:9.2.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可. 15.9【分析】将数据由小排到大再找到中间的数值即可求得中位数奇数个数中位数是中间一个数偶数个数中位数是中间两个数的平均数【详解】解:将10个数据由小到大排序:78899910101010处于这组数据中间解析:9【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。
2020-2021学年北师大版小学四年级数学下册《第六章数据的表示和分析》单元测试题一.选择题(共8小题)1.如图,()可以表示下面哪种情况的统计.A.4个学生期末数学考试成绩B.四年级喜欢各项运动的男女生人数C.小明1﹣﹣8岁的身高D.蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售情况2.如图是小明每天上学走的路程统计图,那么他从家到学校需要走()千米.A.5B.2.5C.103.下面说法中错误的是()A.在研究平均数问题时可以用移多补少的方法B.我们在研究小数的意义时运用了数形结合的思想方法C.28+374+26 此题进行简便运算,我们头脑里可以想a﹣b﹣c=a﹣(b+c)这一运算律4.游泳池平均水深130厘米,小红身高1.35米,她在游泳池里一定不会有危险.这句话对吗?()A.对B.不对C.不知道5.淘气从家去书城,中途休息了几分钟,到书城买完书后直接回家.下面正确描述淘气这一过程的图象是()A.B.C.D.6.下面三幅图是4名学生一分钟内投篮投进个数情况统计图,图()中虚线所指的位置表示平均每人投进的个数.A.B.C.7.淘气家的热水器中有60L水,晚上,爸爸先洗了10min澡,用了一半的水.5min后,淘气也去洗澡,他洗了15min,把热水器中的水刚好用完了.下面能描述热水器中水的体积随时间变化的情况的是()A.B.C.D.8.下面是育英小学和西门小学四、五、六年级学生回收电池统计图.根据统计情况估计一下,哪个学校的学生回收的电池更多?()A.西门小学B.育英小学C.两个学校一样多二.填空题(共8小题)9.下面是某学校五(1)班学生拥有课外读物情况,五(1)班共有学生人,平均每人拥有课外读物本.性别人数平均每人拥有课外读物/本男生1625女生243010.刘小兵折的纸飞机前4次飞行的距离如表:第1次第2次第3次第4次飞行距离/米18122117(1)这架纸飞机前4次飞行的平均距离是米.(2)如果再飞一次,并使平均飞行距离达到18米,第5次飞行的距离至少要达到米.11.看图回答问题.如图是小军从家去图书馆借书的行程图.①小军家到图书馆距离千米.②小军在图书馆待了分钟.③小军去的途中停了分钟.④小军去的时候平均每小时行千米.12.如图是打国际长途电话所需付的电话费与通话时间之间的关系图.(1)打2分钟需要元电话费,3分钟以上每分钟元.(2)打6分钟需要元,10.4元打了分钟.13.五(1)一班有男生20人,平均身高158cm;有女生16人,平均身高140cm,全班学生的平均身高是cm.14.在一幅条形统计图中,用3.5厘米长的直条表示21人,用厘米的直条表示42人.15.如图是希望小学四年级一周内向“我爱祖国”主题活动投稿情况统计图.请根据条形图回答问题.(1)每格代表篇.(2)这一周内,周投稿篇数最多,周投稿篇数最少.(3)周四比周二多投稿篇.(4)这一周一共投稿篇.16.一个长方体容器(如图1)现在以每分钟25升的速度向这个容器注水,容器的底面有一块隔板(垂直于底面,不考虑厚度),将容器隔为A,B部分,B部分的底有一个洞,水按每分钟10升的速度往下漏.(如图2)表示从注水开始A部分水的高度变化情况,观察并思考回答下面的问题:(1)隔板的高度是分米.(2)注水36分钟共漏出水升.(3)如果不让B部分的洞漏水,只要分就能使水箱A部分的水位到达5分米.三.判断题(共5小题)17.四一班的数学平均分是92分,四一班没有不及格的.(判断对错)18.在一幅条形统计图中,用2厘米长的直条表示600吨,那么表示1800吨的直条应画6厘米..(判断对错)19.折线统计图便于直观了解数据的大小及不同数据的差异.(判断对错)20.游泳池平均水深110厘米,小强身高130厘米,下水游泳一定没有危险。
初中数学七年级下册第六章数据与统计图表综合测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图2、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人3、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A.32000名学生是总体B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查4、在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率5、为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条6、为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工7、下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查8、荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人9、要调查你校学生学业负担是否过重,选用下列哪种方法最恰当( )A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查10、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二、填空题(5小题,每小题4分,共计20分)1、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)2、如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是__________.(填“甲”或“乙”)3、牛奶里含有丰富的营养成分,某品牌牛奶所含营养成分如图所示.若同学们每天喝一支200克的这种牛奶,则能补充的蛋白质为________克.4、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.5、如图,小强同学统计了他家5月份的长途电话明细清单,按通话时间画出直方图,观察直方图,通话时间不超过5min的次数是________次.三、解答题(5小题,每小题10分,共计50分)1、电视台需要在本市调查某节目的收视率,每个看电视的人都要被问到吗?对一所中学学生的调查结果能否作为该节目的收视率?你认为对不同地区、不同年龄、不同文化背景的人进行的调查结果会一样吗?2、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:(1)求本次抽取的学生的人数.(2)请根据以上信息直接在答题卡中补全条形统计图.(3)求扇形统计图中a的值.(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.3、某校为了解学生“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人必须报且只能报一项)进行调查.下面是根据调查数据绘制的两幅不完整的统计图请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名学生;(2)扇形统计图中“艺术鉴赏”部分的圆心角是多少度;(3)选“数学思维”的人数比“科技制作”的人数多几分之几?4、某校为了调查学生视力变化情况,从该校2010年入校的学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据进行处理,制成折线统计图和扇形统计图(如图1、图2所示).(1)该校被抽查的学生共有多少名?(2)现规定视力达到5.0及以上为合格,若被抽查年级共有500名学生,估计该年级在2012年有多少名学生视力合格.5、某地区随机抽调了一部分市民进行了一次法律知识测试,测试成绩(得分取整数)进行整理后分成五组,并绘制成频数直方图:(1)这次活动共抽取了多少人测试?(2)测试成绩的整体分布情况怎样?---------参考答案-----------一、单选题1、A【详解】根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.2、D【详解】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3、B【详解】试题分析:A、总体是:某市参加中考的32000名学生的体质情况,故本选项错误,B、样本是:1600名学生的体重,故本选项正确,C、每名学生的体重是总体的一个个体,故本选项错误,D、是抽样调查,故本选项错误,故选B.考点:1.总体、个体、样本、样本容量;2.全面调查与抽样调查.4、B【详解】试题分析:采用全面调查时,调查的对象要小,A、C、D三个选项的调查对象庞大,不宜适用全面调查,只能采用抽样调查的方式.考点:调查的方式.5、A【分析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【详解】设湖中有x条鱼,则:15:200=100:x解得:x=40003≈1333(条).故选A.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6、C【详解】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.7、D【详解】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.8、D【详解】【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【详解】A、本次抽样调查的样本容量是200040%=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,故选D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体等知识是解题的关键,另外注意学会分析图表.9、B【详解】要调查你校学生学业负担是否过重,A、查阅文献资料,这种方式太片面,不合理;B、对学生问卷调查,比较合理;C、上网查询,这种方式不具有代表性,不合理;D、对校领导问卷调查,这种方式太片面,不具代表性,不合理,故选B.【点睛】本题考查了调查特点,关键是在选取样本时,选取的样本要全面,具有代表性.10、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似来进行判断.【详解】A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、全面调查【分析】根据全面调查和抽样调查的概念判断即可.解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.2、乙【分析】根据折线统计图中的数据判断即可.【详解】解:由折线统计图知,甲种酒从2012年到2020年价格增长量是60840-=2.5元,乙种酒从2016年到2020年价格增长量是60440-=5元,故乙种酒价格增长速度比甲快,故答案为:乙.【点睛】此题主要考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况,如增长率.3、12【分析】根据扇形统计图的数据直接求解即可.⨯=2006%12故答案为:12【点睛】本题考查的是扇形统计图的概念,理解概念是解题的关键.4、折线扇形【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.5、30【分析】根据频数分布直方图所反映的数量信息可得答案.【详解】解:由频数分布直方图可知,通话时间不超过5min的次数为30次,故答案为:30.【点睛】本题考查频数分布直方图,从频数分布直方图中获取信息是解决问题的关键.三、解答题1、见解析【分析】利用样本的代表性,并且被抽查的样本容量要合适,即可作出判断.【详解】解:一般而言,在一个城市调查某电视节目的收视率,不可能对每个看电视的人都进行调查,因为一个城市的人口太多,调查量太大,不合适;一所中学的学生不具有代表性,其调查结果不能作为该节目的收视率;对不同地区、不同年龄、不同文化背景的人所进行的调查结果是不一样.【点睛】此题考查了抽样调查的对象的选取问题.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析.2、(1)200人;(2)图见解析;(3)20;(4)144︒.【分析】(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;(3)利用喜欢艺术学生的人数除以调查的总人数即可得;(4)利用喜欢器乐的学生人数所占百分比乘以360︒即可得.【详解】解:(1)3015%200÷=(人),答:本次抽取的学生有200人;(2)喜欢书画的学生人数为20025%50⨯=(人),由此补全条形统计图如下:(3)40200100%20%÷⨯=,则20a=;(4)80200100%360144÷⨯⨯︒=︒,答:喜欢器乐的学生人数所对应圆心角的度数为144︒.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.3、(1)50人;(2)144度;(3)选“数学思维”的人数比“科技制作”的人数多三分之一.【分析】(1)用阅读写作的人数除以其所占百分比即可得到总人数;(2)用360°乘以艺术鉴赏的所占百分比即可得到答案;(3)先求出数学思维的人数,由此进行求解即可.【详解】解:(1)由题意得:调查的人数=50÷25%=200人,答:得出人数为50人;(2)80360144200⨯=,答:扇形统计图中“艺术鉴赏”部分的圆心角是144度;(3)数学思维的人数:200﹣80﹣30﹣50=40人,科技制作的30人,(40﹣30)÷3013=,答:选“数学思维”的人数比“科技制作”的人数多三分之一.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,解题的关键在于能够准确根据题意求出总人数.4、(1)该校被抽查的学生共有300名;(2)估计该年级在2012年有300名学生视力合格.【分析】(1)利用折线图中10年的视力为5.0以下人数120和扇形图中的百分比40%,即可求出总人数;(2)用样本估计总体可直接求算结果.【详解】解:(1)120÷40%=300人.故该校被调查的学生共有300名.(2)500×(10%+20%+30%)=300人.估计该年级在2012年有300名视力合格.【点睛】本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.5、(1)48人;(2)测试成绩为70至80分的人数最多,不及格和90分以上的人相对较少.【分析】(1)将每一组的频数相加即可求出这次活动共抽取的人数;(2)根据统计图可知每一组的人数的多与少,进而即可作答.【详解】解:(1)根据题意得:3+12+18+9+6=48(人),答:这次活动共抽取了48人测试;(2)根据统计图可知:测试成绩为70至80分的人数最多,不及格和90分以上的人相对较少.【点睛】此题考查了频数(率)分布直方图,正确读懂频数分布直方图是解本题的关键.。
一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数B解析:B 【分析】根据方差的意义即可判断. 【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 故选:B . 【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3 B .4C .5D .9C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.3.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.4.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。
初中数学七年级下册第六章数据与统计图表专项测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%2、九年级一班同学根据兴趣分成 A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人3、要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图4、以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高5、在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.406、一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组B.9组C.8组D.7组7、我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图B.扇形图C.折线图D.频数分布直方图8、如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是().A.B.C.D.9、某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%10、体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16% B.24% C.30% D.40%二、填空题(5小题,每小题4分,共计20分)1、某校举办“数学计算能手大赛”,赛后将参赛学生的成绩按分数段分为三组,把大赛成绩80≤x≤100分记为“优秀”,60≤x<80分记为“良好”,x<60分记为“一般”,并绘制成如图所示的扇形统计图,则“良好”部分所对应的圆心角θ的度数为 ___.2、如图,是小垣同学某两天进行四个体育项目(ABCD)锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是__.3、某中学七年级(1)班全体40名同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”等级的百分比是“D”等级的2倍,则评价为“A”等级有______人.4、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,则:①该班有50名同学参赛;②第五组的百分比为16%;③成绩在70﹣80分的人数最多;④80分以上的学生有14名,其中正确的个数有 __个.5、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.三、解答题(5小题,每小题10分,共计50分)1、有人针对公交车上是否主动让座做了一次调查,结果如下:(1)参与本次调查的人数是多少?(2)“从来不让座的人”占调查总人数的百分比是多少?(3)面对以上的调查结果,你还能得到什么结论?2、下面是A,B两球从不同高度自由下落到地面后反弹高度的统计图.(1)比较两个球反弹高度的变化情况,哪个球的弹性大?(2)如果两个球下落的起始高度继续增加,那么你认为A球的反弹高度会继续增加吗?B球呢?(3)分别比较A球、B球的反弹高度和起始高度,你认为反弹高度会超过起始高度吗?3、小华在A班随机询问了30名不同的同学,其中有10人患有近视;他又在同年级的B班询问了2名同学,发现其中有1人患有近视.于是他认为B班的近视率比A班高,你同意他的观点吗?4、(1)设法收集你所在地区连续30天的空气污染指数;(2)空气质量等级划分如下:根据上述划分,请将你收集到的数据制作成频数直方图.5、制作适当的统计图表示下列数据.(1)全世界受到威胁的动物种类数:(2)对某城市家庭人口数的一次统计结果表明:2口人家占23%,3口人家占42%,4口人家占21%,5口人家占9%,6口人家占3%,其他占2%.(3)1949年以后我国历次人口普查情况:---------参考答案-----------一、单选题1、B【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2、C【分析】从条形统计图可看出 A 的具体人数,从扇形图找到所占的百分比,可求出总人数,然后结合 D所占的百分比求得 D小组的人数.【详解】总人数=510%=50(人),D 小组的人数=50×86.4360=12(人)),故选C.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中找到必要的信息进行解题是关键.3、C【详解】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.4、C【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.【详解】解: A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查;D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查;故选C5、C【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系6、A【详解】在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.故选A.【点睛】此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.7、B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能反映各个部分占总体的百分比,折线统计图能反映样本或总体的趋势,频数分布直方图能反映样本或总体的分布情况,熟练掌握各统计图的特点是解题的关键.8、D先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断.【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选D.【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象9、C【解析】∵816%50÷=,5064%=32⨯,∴选项A、B的说法正确.--=,∵(116%64%)20%∴图中“记不清”所对应的圆心角为:36020%=72⨯,∴选项C的说法错误.由样本数据可估计总体情况可知:选项D的说法正确.故选C.10、D【详解】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选D.二、填空题【分析】先根据题意以及扇形统计图算出成绩“良好”所占的比例,然后再用360︒乘以这个比例即可.【详解】扇形统计图中成绩“优秀”的占比 48%,成绩“一般”的占比 7%,∴成绩“良好”的占比:100%-48%-7%=45%,∴“良好”部分所对应的圆心角θ的度数为:36045%=162︒⨯︒,故答案为:162︒.【点睛】本题考查了扇形统计图,属于基础题,掌握扇形统计图的基础知识,计算出比例是解题关键.2、C【分析】根据统计图上的百分比求出两天的各项运动时间即可.【详解】解:由统计图可知,这两天锻炼时间,A有60×20%+40×20%=20(分钟),B有60×30%+40×20%=26(分钟),C有60×50%=30(分钟),D有40×60%=24(分钟),∵20<24<26<30,∴小垣这两天体育锻炼时间最长的项目是C,故答案为:C.本题主要考查了扇形统计图的应用,熟记概念是解题的关键,注意第一天和第二天锻炼时间是不相同的.3、12【分析】设“A”等级有x人,则x+12x=40(1-20%-35%),解方程可得.【详解】设“A”等级有x人,则x+12x=40(1-20%-35%)解得x=12故答案为:12【点睛】考核知识点:扇形图.从统计图获取信息,理解百分比的意义是关键.4、3【分析】根据频数分布直方图中每一组内的频率总和等于1,可得出第五组的百分比,又因为第五组的频数是8,即可求出总人数,根据总人数即可得出80分以上的学生数,从而得出正确答案.【详解】解:第五组所占的百分比是:1﹣4%﹣12%﹣40%﹣28%=16%,故②正确;则该班有参赛学生数是:8÷16%=50(名),故①正确;从直方图可以直接看出成绩在70~80分的人数最多,故③正确;80分以上的学生有:50×(28%+16%)=22(名),故④错误;其中正确的个数有①②③,共3个;故答案为:3.【点睛】本题考查了数据的统计分析,根据频率分布直方图得出正确信息是解题关键.5、50 0.16【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意120.2450÷=(人)÷=8500.16故答案为:50,0.16【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.三、解答题1、(1)参与本次调查的人数是34921人;(2)“从来不让座的人”占调查总人数的百分比约是2%;(3)从来不让座的人所占比例是很少的,绝大多数的人都会让座(答案不唯一).【分析】(1)将所有情况的人数全部加起来求和即可;(2)用“从来不让座的人”除以总人数即可;(3)根据条形统计图得出其中一个结论即可.【详解】(1)参与本次调查的人数是:15365+13270+4540+1048+698=34 921人,答:参与本次调查的人数是34 921人;(2)“从来不让座的人”占调查总人数的百分比是:698≈,100%2%34921答:“从来不让座的人”占调查总人数的百分比约是2%;(3) 从来不让座的人所占比例是很少的,绝大多数的人都会让座.【点睛】本题主要考查了条形统计图的知识,属于基础题,根据条形统计图的数据计算是解题关键.2、(1)A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)不会超过起始高度.【分析】(1)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;(2)由折线统计图可知A球的反弹高度变化趋势还非常明显,而B球的反弹高度变化趋势趋于平缓,由此即可判断;(3)从折线统计图可知,反弹的高度是不会超过下路的起始高度的.【详解】解:(1)比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)从统计图上看,反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.【点睛】本题主要考查了折线统计图,解题的关键在于能够准确读懂统计图.3、不同意.在小华的抽样中,B班的样本数明显地小于A班,因此B班的样本不具有广泛性和代表性.【分析】根据抽样要具有代表性,广泛性的要求去抽取样本,后计算判断.【详解】不同意.理由如下:在小华的抽样中,B班的样本数明显地小于A班,因此B班的样本不具有广泛性和代表性.故得到结果是不合理的.【点睛】本题考查了抽样调查的特点,熟记抽样要具有代表性,广泛性,全面性是解题的关键.4、(1)见解析;(2)见解析【分析】(1)调查本地区连续30天的空气污染指数即可;(2)根据所调查的数据填好频数分布表,进而即可画出相应的频数分布直方图.【详解】解:(1)本地区连续30天的空气污染指数如下:32,41,53,37,33,34,38,34,52,47,45,32,27,22,38,52,63,39,32,29,21,30,48,42,45,39,36,25,27,36;(2)频数分布表如下:∴频数分布直方图如下:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用所调查的数据画出相应的频数分布表是解决本题的关键.5、(1)条形统计图;见解析;(2)扇形统计图;见解析;(3)折线统计图或条形统计图,作一个即可,见解析.【分析】各统计图特点如下:条形统计图能清楚地表示出每个项目的具体数据;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比,由各小题的数据结合统计图的特点选择合适的统计图即可【详解】解:(1)选择条形统计图,如下图所示:(2)选择扇形统计图,如下图所示:(3)选择条形统计图或折线统计图,作一个即可,如下图所示:【点睛】本题主要考查统计图,属于基础题,能根据已知条件选择适当的统计图,并能正确地作出统计图是解题关键。
一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.某天7名学生在进入校门时测得体温(单位℃)分别为:36.5,36.7,36.4,36.3,36.4,36.2,36.3,对这组数据描述正确的是( )A .众数是36.4B .中位数是36.3C .平均数是36.4D .方差是1.93.某专卖店专销售某品牌运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:A .平均数B .中位数C .众数D .方差4.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>5.某排球队6名场上队员的身高(单位:cm )是180,184,188,190,190,194.现用两名身高分别为185cm 和188cm 的队员换下场上身高为184cm 和190cm 的队员.与换人前相比,场上队员的身高( ) A .平均数变小,众数变小 B .平均数变小,众数变大 C .平均数变大,众数变小 D .平均数变大,众数变大6.某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是( )A .0B .0.6C .0.8D .1.17.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7.已知这组数据的平均数是 5?,则这组数据的众数和中位数分别是( ) A .4,4 B .4,5 C .5,4D .5,58.为了解某电动车一次充电后行驶的里程数(千米),抽检了10辆车统计结果是:200、210、210、210、220、220、220、220、230、230,则这组数据中众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,2109.某校书法兴趣小组20名学生日练字页数如表所示:这些学生日练字页数的众数、平均数分别是()日练字页数23456人数26543A.3页,4页B.3页,5页C.4页,4页D.4页,5页10.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是()A.80分B.99分C.100分D.110分11.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A.极差是6 B.众数是7 C.中位数是5 D.方差是8 12.某学校生物兴趣小组11人到校外采集标本,其中3人每人采集4件,4人每人采集3件,4人每人采集5件,则这个兴趣小组平均每人采集标本()A.3件B.4件C.5件D.6件二、填空题13.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则跳远成绩最稳定的是____.14.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S2甲=1.25和S2乙=3,则成绩比较稳定的是__________(填甲或乙).15.若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.16.数据-3、-1、0、4、5的方差是_________.17.已知7,11,8,8,8,6,7,6,9,10.这10个数据的方差是________.18.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.19.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是_____.20.若一组数据123,,n x x x x ⋯⋯的平均数是a ,方差是b ,则1232323,2323n x x x x ---⋯⋯-、的平均数是_____________,方差是__________.三、解答题21.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为 人,扇形统计图中的m = ,条形统计图中的n = ;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.22.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表:一周诗词背诵数量3首4首5首6首7首8首人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图;(2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?23.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A,B两个代表队的竞赛成绩分布图及统计表展示如下:组别平均分中位数方差合格率优秀率A队88906170%30%B队a b7175%25%(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?24.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?25.为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数;(2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C组中的数据是:94,94,90.根据以上信息,解答下列问题: (1)直接写出上述图表中a ,b ,c 的值;(2)计算d 的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由; (3)该中学七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(x≥95)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题目中的方差公式,众数的定义以及平均数的求法即可进行判断; 【详解】根据方差的公式可知样本容量为5,故A 正确;样本的平均数为:78889=85++++ ,故B 正确;样本的众数为8,故C 正确;样本的方差为:()()()()()22222212788888898558=s ⎡⎤=-+-+-+-+-⎣⎦,故D 错误; 故选:D . 【点睛】本题考查了方差、样本容量、平均数、众数,解答本题的关键是明确题意,会求一组数据的方差、样本容量、平均数以及众数.2.C解析:C 【分析】按照众数,中位数,平均数,方差的定义计算判断即可. 【详解】∵这组数据为36.5,36.7,36.4,36.3,36.4,36.2,36.3, ∴平均数0.10.300.100.20.136.47x ++-+--=+=36.4,∴选项C 正确;∵36.3,36.4都出现了2次, ∴数据的众数为36.3和36.4, ∴选项A 错误;∵按从小到大进行排序为36.2,36.3,36.3,36.4,36.4,36.5,36.7, ∴数据的中位数为36.4, ∴选项B 错误;∵方差为2222220.10.300.100.10.247175S ++++++==, ∴选项D 错误; 故选:C . 【点睛】本题考查了数据的集中趋势特征量的计算和离散度特征量的计算,熟记定义和公式是解题的关键.3.C解析:C 【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.B解析:B 【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题. 【详解】解:由题意可得,去掉一个最低分,平均分为x ,此时x 的值最大;若去掉一个最高分,平均分为y ,则此时的y 一定小于同时去掉一个最高分和一个最低分后的平均分为z ,故x z y>>,故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.5.A解析:A【分析】根据平均数的计算公式、众数的定义即可得.【详解】185188373+=,184190374+=,374373>,∴由平均数计算公式得:与换人前相比,场上队员的身高的平均数变小,换人前的众数为190,换人后队员的身高为180,185,188,188,190,194,其众数为188,∴与换人前相比,场上队员的身高的众数变小,故选:A.【点睛】本题考查了平均数、众数,熟记公式和定义是解题关键.6.D解析:D【分析】利用加权平均数公式计算解答.【详解】这10只手表的平均日走时误差是031422311.110⨯+⨯+⨯+⨯=,故选:D.【点睛】此题考查加权平均数计算公式,熟记公式及正确理解表格的含义是解题的关键.7.B解析:B【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【详解】解:∵这组数据的平均数是5,∴4455677x++++++=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:B.【点睛】本题考查了众数、算术平均数、中位数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.A解析:A【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【详解】数据220出现了4次,最多,故众数为220,重新排序后为:200、210、210、210、220、220、220、220、230、230,排序后位于第5和第6位的数均为220,故中位数为220,故选:A.【点睛】本题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.A解析:A【分析】人数最多的即为众数,通过平均数的公式可求解平均数.【详解】日练字3页的人数有6人,最多,故众数为:3平均数=22364554634 26543⨯+⨯+⨯+⨯+⨯=++++故选:A.【点睛】本题考查众数和平均数的求解,本题的平均数类似于求解加权平均数.10.B解析:B【分析】设一班总人数为m,二班总人数为n,总成绩为y,根据已知条件列式即可;【详解】设一班总人数为m ,二班总人数为n ,总成绩为y , 则110y m =,90y n =, ∴11090m n =,得到911m n =, ∴两个班的平均分9110901109018011999201111n n m nn m nn n n ⨯++====++. 故答案是B . 【点睛】本题主要考查了平均数的知识点,准确分析是解题的关键.11.D解析:D 【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断. 【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9. A .极差1138=-=,结论错误,故A 不符合题意; B .众数为5,7,11,3,9,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D .平均数是()57113957++++÷=,方差()()()()()2222221577711737975S ⎡⎤=-+-+-+-+-⎣⎦8=.结论正确,故D 符合题意. 故选D . 【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.12.B解析:B 【分析】根据加权平均数的计算公式,先列出算式,再进行计算即可. 【详解】解:∵3人每人采集4件,4人每人采集3件,4人每人采集5件, ∴则这个兴趣小组平均每人采集标本是(4×3+3×4+5×4)÷11=4(件). 故选:B . 【点睛】本题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是找出权重,根据公式列出算式.二、填空题13.丁【分析】根据方差的意义求解可得【详解】解:∵S甲2=065S乙2=055S 丙2=050S丁2=045∴S丁2<S丙2<S乙2<S甲2∵他们的平均成绩相同∴跳远成绩最稳定的是丁故答案为:丁【点睛】本解析:丁.【分析】根据方差的意义求解可得.【详解】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∵他们的平均成绩相同,∴跳远成绩最稳定的是丁.故答案为:丁.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.甲【分析】根据方差的意义即可求得答案【详解】∵S甲2=125S乙2=3∴S 甲2<S乙2∴甲的成绩比较稳定故答案为:甲【点睛】此题考查方差的意义掌握方差的意义是解题的关键即方差越大其数据波动越大即成绩解析:甲【分析】根据方差的意义即可求得答案.【详解】∵S甲2=1.25,S乙2=3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为:甲.【点睛】此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.15.2【分析】先由平均数的公式计算出x的值再根据方差的公式计算即可【详解】解:∵数据6x234的平均数是4∴(6+x+2+3+4)÷5=4解得:x=5∴这组数据的方差是(6-4)2+(5-4)2+(2-解析:2【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算即可.【详解】解:∵数据6,x ,2,3,4的平均数是4,∴(6+x+2+3+4)÷5=4,解得:x=5,∴这组数据的方差是15[(6-4)2+(5-4)2+(2-4)2+(3-4)2+(4-4))2]=2; 故答案为:2.【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数. 16.2【分析】根据公式求出这组数据的平均数与方差【详解】这组数据的平均数是:方差是故答案为:92【点睛】本题考查了求数据的平均数与方差的问题解题时利用平均数与方差的公式进行计算即可解析:2.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:(3)(1)04515x -+-+++== 方差是2222221[(31)(11)(01)(41)(51)]9.25s =--+--+-+-+-=.故答案为:9.2.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可. 17.4【分析】先计算出平均数再根据方差的定义计算即可【详解】解:∵平均数∴方差故答案为:24【点睛】本题考查求方差掌握方差的定义是解题的关键 解析:4【分析】先计算出平均数,再根据方差的定义计算即可.【详解】解:∵平均数72118362910810x ⨯++⨯+⨯++==, ∴方差()()()()()()2222222178211888368298108 2.410s ⎡⎤=-⨯+-+-⨯+-⨯+-+-=⎣⎦, 故答案为:2.4.【点睛】本题考查求方差,掌握方差的定义是解题的关键.18.【分析】由图得到男子足球队的年龄及对应的人数再根据中位数的概念即可得答案【详解】由图可知:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∵∵足球队共有队员2+6解析:15【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.19.8【分析】按照所给的比例进行计算即可小明本学期的数学学习成绩=平时测试×30+期中考试×30+期末考试×40【详解】小明本学期的数学学习成绩=135×30+135×30+122×40=1298(分)解析:8【分析】按照所给的比例进行计算即可,小明本学期的数学学习成绩=平时测试×30%+期中考试×30%+期末考试×40%.【详解】小明本学期的数学学习成绩=135×30%+135×30%+122×40%=129.8(分).故答案为129.8.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.权的大小直接影响结果.20.4b【分析】根据平均数和方差的变化规律即可得出答案【详解】∵数据x1x2…xn的平均数是a∴数据2x1-32x2-3…2xn-3的平均数是;∵数据x1x2…xn的方差是b∴数据2x1-32x2-3…a 4b解析:23根据平均数和方差的变化规律,即可得出答案.【详解】∵数据x1、x2、…、x n的平均数是a,∴数据2x1-3、2x2-3、…、2x n-3的平均数是23a-;∵数据x1、x2、…、x n的方差是b,∴数据2x1-3、2x2-3、…、2x n-3的方差是224b b⋅=,故答案为:23a-;4b.【点睛】本题考查了平均数与方差,关键是掌握平均数与方差的计算公式和变化规律:若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题21.(1)40,25,15;(2)平均数:7,方差:1.15【分析】(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m和n的值;(2)根据统计图中的数据,可以得到平均数,计算出方差.【详解】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,即m=25,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,x=140×(5×4+6×8+7×15+8×10+9×3)=7,s2=140[(5﹣7)2×4+(6﹣7)2×8+(7﹣7)2×15+(8﹣7)2×10+(9﹣7)2×3]=1.15.【点睛】本题考查了扇形统计图及条形统计图的信息关联、平均数和方差,熟练掌握概念和求法是解题的关键.22.(1)45,图见解析;(2)4.5首;(3)450人【分析】(1)根据5首的人数和在扇形统计图中所对圆心角的度数,可以求得本次抽取的学生人数,然后可以计算出4首的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到中位数;(3)根据统计图中的数据,可以计算出大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数.解:(1)20÷60360=120人, 背诵4首的学生有:120×135360=45(人), 补全的条形统计图如图所示;(2)活动启动之初学生“一周诗词背诵数量”的中位数是(4+5)÷2=4.5(3)☆=120-10-10-15-25-20=40人,1200×(402520161311120120++++-)=450(人) 所以,大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了450人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)87a =,85b =;(2)B 队;(3)A 队【分析】(1)结合条形图中的数据,再根据平均数和中位数的概念求解即可(2)由A 队的中位数为90分高于平均分88分,B 队的中位数85分低于平均数87分可得答案(3)从平均分,合格率,优秀率及方差的意义即可解答【详解】(1)B 对成绩的平均分702803856904952100387236423a ⨯+⨯+⨯+⨯+⨯+⨯==+++++ 中位数8585852b +== (2)A 队的中位数为90分高于平均分88,B 队的中位数为85分低于平均分87, ∴小明应属于B 队.(3)应该颁给A 队.理由如下:①A组的平均分和中位数高于B队,优秀率也高于B队,说明A队的总体平均水平高于B 队;②A队的中位数高于B队,说明A队高分段学生较多;③虽然B队合格率高于A队,但A队方差低于B队,即A队的成绩比B队的成绩整齐.所以集体奖应该颁给A队.【点睛】本题考查了条形统计图,中位数,平均数,以及方差,读懂题意,熟练掌握平均数,中位数的概念以及方差的意义是解题关键.24.(1)28,(2)1.5元,1.8元;(3)960【分析】(1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.【详解】解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.5元,1.8元;(3)3000×32%=960(枚),答:价格为1.8元的约960枚.故答案为:960.【点睛】本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)500人,120人;(2)1小时;(3)1400人【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数;(2)根据条形统计图可以得到这组数据的中位数;(3)用样本中超过1小时的比例乘以总人数3500,即可得该校九年级每天体育活动时间超过1小时的学生有多少人.【详解】解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%,故被调查的人数有:100÷20%=500(人),1.5小时的人数有:500×24%=120(人);(2)由(1)可知被调查学生500人,∴中位数是第250和251对应的数的平均数,由条形统计图可得,中位数是1小时;(3)∵12080500+×3500= 1400(人), ∴该地九年级每天体育活动时间超过1小时的学生约为1400人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.26.(1)a =40,b =94,c =99;(2)52,八年级的成绩较稳定,见解析;(3)估计参加此次竞赛活动获得成绩优秀的学生有972人【分析】(1)根据扇形统计图的制作方法可求出“D 组”所占的百分比,即可求出a 的值,根据中位数、众数的意义可求出b 、c 的值;(2)先求出七年级的方差,再根据方差进行分析得出答案;(3)求出样本中的优秀率,进而得到总体的优秀率,再求出总体中的优秀人数.【详解】解:(1)∵八年级成绩在“C 组”的有3人,占3÷10=30%,∴“D 组”所占的百分比为1﹣10%﹣20%﹣30%=40%,∴a =40,∵八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是94,∴中位数是94,即b =94,∵七年级10名学生成绩出现次数最多的是99,∴众数是99,即c =99 ,∴a =40,b =94,c =99;(2)()()()2222180-9286-92399-9210S ⎡⎤=⨯+++⨯⎣⎦七 =52 ,即:d=52, ∵50.4<52,∴八年级的成绩较稳定;(3)抽取的10名八年级学生中,成绩优秀的有 10×40%=4(人),抽取的10名七年级学生中,成绩优秀的有5人,∴抽取的20名学生中,成绩优秀的共有9人∴2160×920=972(人) 答:估计参加此次竞赛活动获得成绩优秀的学生有972人.【点睛】本题考查扇形统计图、中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数、方差的意义和计算方法是正确解答的关键.。
数据分析测试题一、选择题(每小题3分,共30分)1.有19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差2.某特警部队为了选拔“神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是环,甲的方差是,乙的方差是,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定3.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确结论的个数为()4.综合实践活动中,同学们做泥塑工艺制作.小明将活动组各同学的作品完成情况绘成了下面的条形统计图.根据图表,我们可以知道平均每个学生完成作品()件.5.某公司员工的月工资如下表:A. B.C. D.6.下列说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数. 个个 个个7.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得( )分.8.样本方差的计算公式中,数字20和30分别表示样本的( ) A.众数、中位数 B.方差、偏差 C.数据个数、平均数 D.数据个数、中位数9.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是( )10.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是( ) A.甲运动员得分的方差大于乙运动员得分的方差 B.甲运动员得分的中位数大于乙运动员得分的中位数 C.甲运动员得分的平均数大于乙运动员得分的平均数 D.甲运动员的成绩比乙运动员的成绩稳定 二、填空题(每小题3分,共24分)11.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg )98 102 97 103 105这棵果树的平均产量为 kg ,估计这棵果树的总产量为 kg. 12.在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分. 13.已知一组数据它们的中位数是,则______.14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,则这个数的中位数是_______.15.若已知数据的平均数为,则数据的平均数(用含的表达式表示)为_______. 16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:测试成绩素质测试小李小张小赵计算机70 90 65商品知识50 75 55语言80 35 80公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权重4,3,2,则这三人中将被录用.年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是_____cm.18.某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55 135 149 191乙55 135 151 110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).三、解答题(共46分)19.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件数如下:加工零件数/件540 450 300 240 210 120人数 1 1 2 6 3 2(1(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理为什么?20.(6分)为调查八年级某班学生每天完成家庭作业所需时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?21.(6分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类型的人数绘制成扇形统计图(如图①)和条形统计图(如图②),经确认扇形统计图是正确的,而条形统计图尚有一处错误. 回答下列问题:(1)写出条形统计图中存在的错误,并说明理由. (2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的: 第一步:求平均数的公式是12nx x x x n+++=;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7; 第三步:4567554x .+++==(棵).②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵22.(7分)某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下表:分数 50 60 70 80 90 100 人数甲班 1 6 12 11 15 5 乙班351531311(1)甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班(2)甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班(3)甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的是哪个班23.(7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(分)测试项目甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分.(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?24.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩身高163 171 173 159 161 174 164 166 169 164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?25.(7分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):为参考.请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小.(4)根据以上三条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.九年级数学数据分析专题检测试卷参考答案解析:19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛,中位数就是第10位同学的成绩,因而要判断自己能否进入决赛,他只需知道这19位同学成绩的中位数就可以.故选B .解析:本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士总成绩相同的条件下,∵ >,∴ 乙的成绩比甲的成绩稳定.解析:将这组数据从小到大排列为:2,2,3,3,3,3,3,3,6,6,10,共11个数,所以第6个数据是中位数,即中位数为3.因为数据3的个数为6,所以众数为3.平均数为,由此可知①正确,②③④均错误,故选A. 解析:625.862412610692481276=+++⨯+⨯+⨯+⨯.解析:元出现了次,出现的次数最多,所以这组数据的众数为元;将这 组数据按从大到小的顺序排列,中间的(第5个)数是元,即其中位数为元; ,即平均数为2 200元.解析:一组数据的中位数和平均数只有一个,但出现次数最多的数即众数,可以有多个,所以①②对,③错;由于一组数据的平均数是取各数的平均值,中位数是将原数据按由小到大顺序排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错; 一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数可能发生改变,也可能不发生改变,所以⑤错.解析:利用求平均数的公式解决.设第五次测验得分,则588768295x++++, 解得.解析:设其他29个数据的和为,则实际的平均数为,而所求出的平均数为,故.11. 解析:抽取的5棵果树的平均产量为; 估计这棵果树的总产量为. 解析:13. 解析:将除外的五个数从小到大重新排列后为中间的数是,由于中位数是,所以应在20和23中间,且21220=+x,解得.14. 解析:设中间的一个数即中位数为,则,所以中位数为. 15. 解析:设的平均数为,则31)(21)(21)(2321+++++x x x 13233)2(321321+++⨯=+++=xx x x x x .又因为3321x x x ++=x ,于是y . 16.小张 解析:∵ 小李的成绩是:9565234280350470=++⨯+⨯+⨯,小张的成绩是:9772234235375490=++⨯+⨯+⨯,小赵的成绩是:65234280355465=++⨯+⨯+⨯,∴ 小张将被录用.解析:众数是在一组数据中,出现次数最多的数据,这组数据中168出现了3次,出现的次数最多,故这组数据的众数为168.18. ①②③ 解析:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确. 19.解:(1)平均数:540450300224062103120226015++⨯+⨯+⨯+⨯=(件);中位数:240件,众数:240件.(2)不合理,因为表中数据显示,每月能完成件以上的一共是4人,还有11人不能达到此定额,尽管是平均数,但不利于调动多数员工的积极性.因为既是中位数,又是众数,是大多数人能达到的定额,故定额为件较为合理.20.解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55. (2)这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为.因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求. 21.分析:(1)A 类型人数为20×20%=4,B 类型人数为20×40%=8,C 类型人数为20×30%=6,D 类型人数为20×10%=2,所以条形统计图中D 类型数据有错.(2)这20个数据中,有4个4,8个5,6个6,2个7,所以每人植树量的众数是5棵,中位数是5棵.(3)小宇的分析是从第一步出现错误的,公式不正确,应该使用4458667220x ⨯+⨯+⨯+⨯=计算出正确的平均数.把这个平均数乘260可以估计这260名学生共植树的棵数. 解:(1)D 有错. 理由:10%×20=2≠3. (2)众数为5棵. 中位数为5棵. (3)①第一步. ②4458667220x ⨯+⨯+⨯+⨯==(棵).估计这260名学生共植树:×260=1 378(棵).点拨:(1)众数是一组数据中出现次数最多的数据.(2)求一组数据的中位数时,一定要先把这组数据按照大小顺序排列.(3)在求一组数据的平均数时,如果各个数据都重复出现若干次,应选用加权平均数公式112212(=)k kk x w x w x w x n w w w n+++=+++求出平均数.22.解:(1)甲班中分出现的次数最多,故甲班的众数是分; 乙班中分出现的次数最多,故乙班的众数是分. 从众数看,甲班成绩好.(2)两个班都是人,甲班中的第名的分数都是分,故甲班的中位数是分; 乙班中的第名的分数都是分,故乙班的中位数是分.甲班成绩在中位数以上(包括中位数)的学生所占的百分比为 ;乙班成绩在中位数以上(包括中位数)的学生所占的百分比为 .从中位数看,成绩较好的是甲班. (3)甲班的平均成绩为 ;乙班的平均成绩为 .从平均成绩看,成绩较好的是乙班.23.分析:通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.解:(1)甲、乙、丙的民主评议得分分别为:50分、80分、70分. (2)甲的平均成绩为:75935021872.6733++=≈(分),乙的平均成绩为:80708023076.6733++=≈(分),丙的平均成绩为:90687022876.0033++==(分).由于76.677672.67>>,所以乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么 甲的个人成绩为:472.9433⨯75+3⨯93+3⨯50=++(分),乙的个人成绩为:477433⨯80+3⨯70+3⨯80=++(分),丙的个人成绩为:477.4433⨯90+3⨯68+3⨯70=++(分),由于丙的个人成绩最高,所以丙将被录用. 24.解:(1)平均数为()163171173159161174164166169164166.4cm 10+++++++++=,中位数为166164165cm 2+=(),众数为164cm ().(2)选平均数作为标准: 身高x 满足166.412%166.412%x ⨯-⨯+()≤≤(),即163.072169.728x ≤≤时为“普通身高”,此时⑦、⑧、⑨、⑩男生的身高为“普通身高”.(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为428011210⨯=. 25.解:(1)甲班的优秀率:52, 乙班的优秀率:53.(2)甲班5名学生比赛成绩的中位数是97个;乙班5名学生比赛成绩的中位数是100个. (3)甲班的平均数=100597+118+96+100+89=(个),甲班的方差 ;乙班的平均数=1005104+91+110+95+100=(个),乙班的方差 .∴ .即乙班比赛数据的方差小.(4)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.。
初中数学七年级下册第十章数据的收集、整理与描述综合测评(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.2 D.302、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A .一,二B .二,一C .一,一D .二,二3、某运动品牌经销商对鞋码大小进行抽样调查,经销商最感兴趣的数据是( )A .中位数B .平均数C .众数D .方差4、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<5、中学生骑电动车上学给交通安全带来隐患,为了了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A .调查方式是普查B .该校只是360个家长持反对态度C .样本是360个家长D .该校约有90%的家长持反对态度6、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )A.1月份生产量最大B.这七个月中,每月的生产量不断增加C.1﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少7、下列调查中,最适合采用全面调查的是()A.疫情防控阶段进出某小区人员的体温检测 B.调查湖北省七年级学生的身高C.检测一批手持测温仪的使用寿命D.端午节期间市场上粽子质量8、下列调查适合作抽样调查的是()A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查9、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是()A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.410、如下条形图、扇形图分别是甲、乙两户居民家庭全年支出费用的统计图.根据统计图,对两户“教育”支出占全年总支出的百分比所作出的判断中,正确的是()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定哪一户多二、填空题(5小题,每小题4分,共计20分)1、为了考察我市5000名七年级学生数学知识与能力测试的成绩,从中抽取100份试卷进行分析,那么样本容量是_____.2、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.3、甲、乙两公司经营同种产品,近年的销售量如图所示销量增速较快的是__公司.4、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:(1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.5、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)三、解答题(5小题,每小题10分,共计50分)1、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?2、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场推出的C类礼盒有盒;(2)在扇形统计图中,C部分所对应的圆心角等于度;(3)请将条形统计图补充完整;(4)你觉得哪一类礼盒销售最快,请说明理由.3、一个面粉批发商统计了前48个星期的销售量(单位:t):请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.4、学校为了了解全校1600名学生对“初中学生带手机上学”现象的看法,在全校随机抽取了若干名学生进行问卷调查.问卷给出了四种看法供学生选择,每人只能选一种,且不能不选.将调查结果整理后,绘制成如图①、图②所示的条形统计图与扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图和扇形统计图;(3)估计全校有多少名学生对“初中学生带手机上学”现象持“不赞同”的看法.5、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?---------参考答案-----------一、单选题1、B【解析】【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,∴选择“5G时代”的频率是:30100=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.2、A【解析】【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.故选A.【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.3、C【解析】【分析】经销商最感兴趣的是这组鞋号中销售量最大的尺码,即这组鞋号的众数.【详解】解:由于众数是数据中出现次数最多的数.经销商最感兴趣的是这组鞋号中销售量最大的尺码,故应关注众数的大小.故选:C.【点睛】本题主要考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.4、D【解析】【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D.【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、D【解析】【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;B.在调查的400个家长中,有360个家长持反对态度,该校只有36025002250400⨯=个家长持反对态度,故本项错误,不符合题意;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;D.该校约有90%的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.6、B【解析】【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7、A【解析】【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:A 疫情防控阶段进出某小区人员的体温检测,适合采用全面调查方式,故本选项符合题意;B 调查湖北省七年级学生的身高,适合采用抽样调查,故本选项不合题意;C 检测一批手持测温仪的使用寿命,适合采用抽样调查,故本选项不合题意;D 调查端午节期间市场上粽子质量,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【解析】【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为2465320++++=.则频率为80.420=. 故选D .【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.10、B【解析】【分析】根据条形统计图求得教育支出的具体数,进而求得甲居民家庭教育支出所占百分比,结合扇形统计图进行比较即可【详解】1200100%20%1200200012001600⨯=+++, 根据扇形统计图可知乙居民家庭教育支出所占百分比为25%,∴乙比甲多,故选B .【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二、填空题1、100【解析】【分析】直接利用样本容量的定义分析得出答案.解:∵从中抽取100份试卷进行分析,∴样本容量是:100.故答案为:100.【点睛】本题考查了总体、个体、样本、样本容量的知识,属于基础题,解答本题的关键是分清具体问题中的总体、个体与样本.2、 9万名考生的数学成绩每名考生的数学成绩被抽出的2000名考生的数学成绩2000【解析】【分析】根据抽样中总体、个体、样本以及样本容量的概念解答即可.【详解】根据题意,在这个抽样中,总体是9万名考生的数学成绩,个体是每名考生的数学成绩,样本是被抽出的2000名考生的数学成绩,样本容量是2000.故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.【点睛】本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.3、乙【分析】根据两个统计图中数据的变化情况进行判断.【详解】解:甲公司2016年至2019年,销售量从4万件增加到7万件,而乙公司2016年至2019年,销售量从4万件增加到约8.2万件,因此乙公司增速较快,故答案为:乙.【点睛】本题考查折线统计图的意义,掌握折线统计图中数量的变化情况是正确判断的前提.4、 60 18 0.3【解析】【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.【详解】解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),故答案是:60;(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,故答案是:18,0.3.【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5、全面调查【解析】【分析】根据全面调查和抽样调查的概念判断即可.【详解】解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.三、解答题1、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)200;(2)72;(3)见解析;(4)A类礼盒销售最快,见解析.【分析】(1)求出C类礼盒所占的百分比即可计算其数量;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)求出销售的C类礼盒的数量,即可补全条形统计图;(4)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×(1﹣35%﹣25%﹣20%)=200(盒),故答案为:200;(2)360°×(1﹣35%﹣25%﹣20%)=72°,故答案为:72;(3)1000×50%﹣168﹣80﹣150=102(盒),补全条形统计图如图所示:(4)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查了条形统计图、扇形统计图的意义和制作方法,理解统计图中各个数量之间的关系是解决问题的关键.3、见解析【分析】先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;【详解】解:计算最大值与最小值的差:数据的最小值是18.5t,最大值是24.4t,24.418.5 5.9-=(t),决定组距与组数:取组距为1t,则分成6组,设每星期销售面粉x t,则可分为:x≤≤,20.521.5≤≤,18.519.5xx≤≤,19.520.5x≤≤≤≤,23.524.5≤≤,22.523.5x21.522.5x频数分布表:正正频数分布直方图:∵这组数据的中位数在21.522.5≤≤,x∴这批面粉批发商每星期进22吨面粉比较合适.【点睛】本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.4、(1)200名;(2)见解析;(3)720名【分析】(1)根据对“初中学生带手机上学”现象赞同的学生数除以所占的百分比即可求出调查的学生总数;(2)根据学生总数求出“无所谓”的学生数,补全条形统计图,再根据“无所谓”,“赞同”,“不赞同”的百分比求出“很赞同”的百分比,补全扇形统计图即可;(3)利用“不赞同”学生数所占的百分比,乘以1600即可得到结果;【详解】解:()1由题意可得,÷=名),这次调查的学生有:5025%200(即在这次调查中,一共抽取了200名学生;()2无所谓的学生有:20020509040(---=名),很赞同所占的百分比为:120%25%45%10%---=,补全的条形统计图和扇形统计图如图所示,()3160045%720(⨯=名),【点睛】本题考查了扇形统计图和条形统计图的综合,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.5、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×1240=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×1040=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
统计学综合测试题(Ⅰ)一、填空(10分)1.统计整理阶段的主要任务是___________。
2.统计调查误差有______,_____。
•二者主要区别是__________________。
3.两不同总体比较其均衡性时,因为_______不同,•故需要计算变异系数。
4.长期趋势的直线趋势预测方法主要有______、•__________。
5.编制指数应注意的事项有______、_____、____。
二、判断(10分)1. 对任何数据资料,一旦给出其频数分布,便可以计算其算术平均数了( ) 。
2. 对分组数据,其算术平均数、众数均为近似值( )。
3. 由间断时点数列计算的序时平均数,其假定条件是在两个相邻时点之间的变动是均匀的( )。
4. 在拟合长期趋势时,若观察值的一次差(逐期增长量)大体相同时,可用二次曲线拟合( )。
5. 在指数体系分析中,在实际应用时采用的是基期权数加权的数量指数和报告期权数加权的质量指数形成的指数体系( )。
三、简答题(25分)1. 用几何平均法与方程式法(累积法)计算时间数列的平均发展速度有什么不同? 你认为哪些现象适应几何平均法? 哪些现象适用方程式法?2. 测定总体中各单位标志值变异程度的指标有几种? 实际中哪些指标应用的最多? 为什么?3. 当市场调查者在全国范围内调查消费者对一件新产品的看法时,他们往往不用总体数据而用抽样数据进行研究,请指出他们这么做的三个理由。
4. 说明移动平均剔除法的数学模型与计算步骤。
5. 比较拉式价格指数与帕氏价格指数的各自优劣。
四、计算(55分,第一题10分,后三题每题15分)1. 已知如下资料,计算中位数与众数。
2. 美国最大公司的执行总裁的年薪平均有多少?一项含有8个公司的抽样数据如下表,请计算: (1)在α=0.05下,总体均值的区间估计。
(2)美国最大公司执行总裁平均年薪与标准差的点估计。
单位$1003. 近年来,某大型建筑公司承揽的国外工程项目已成为其核心业务。
初中数学七年级下册第六章数据与统计图表专项测评(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况2、下列调查工作需采用普查方式的是()A.环保部门对长江某段水域的水污染情况的调查;B.电视台对正在播出的某电视节目收视率的调查;C.质检部门对各厂家生产的电池使用寿命的调查;D.企业在给职工做工作服前进行的尺寸大小的调查.3、请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A.①②B.①④C.②④D.②③4、某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40A B C D E F共6门选修课,选取了若干学生进行了我最喜欢的一门5、某学校准备为七年级学生开设,,,,,选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).下列说法不正确的是()A.这次被调查的学生人数为400人B.E对应扇形的圆心角为80C.喜欢选修课F的人数为72人D.喜欢选修课A的人数最少6、某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%7、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人8、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四9、某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%10、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40二、填空题(5小题,每小题4分,共计20分)1、中学生骑电动车上下学给交通安全带来隐患,为了了解某中学823个家长对“中学生骑电动车上下学”的态度,从中随机抽取150个家长进行调查,结果有136个家长持反对态度.则这次调查中样本容量是________.2、下列调查中,调查方式选择正确的是_____.①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.3、为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是 ___.4、甲、乙两公司经营同种产品,近年的销售量如图所示销量增速较快的是__公司.5、下列抽样调查较科学的有________.①小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝;②小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况;③小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;④小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查.三、解答题(5小题,每小题10分,共计50分)1、吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)如果用扇形统计图表示这次数学考试成绩,那么成绩在69.5~79.5范围内的扇形圆心角的度数为________度.2、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?3、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题:(1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______ ;(2)请将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名? (4)根据上图, 你可以获得什么信息?4、请将下面表格中的身高数据按3cm 分段,用频数直方图表示. 下表是某校七(2)班的同学入学信息表:5、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?(2)制订一个调查方案,展开调查.(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.---------参考答案-----------一、单选题1、C【解析】解:A.了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B.了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C.调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D.调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选C.2、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.C、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,适合抽样调查.D、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适合全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【详解】试题分析:在某大城市调查我国的扫盲情况,不具备代表性,故①正确;在十个城市的十所中学里调查我国学生的视力情况,具备代表性,故②不正确;在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况,具备代表性,故③不正确;在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不具备代表性,故④正确.故选B.4、D【详解】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.5、B【分析】根据表格和扇形图,通过计算,对每个选项分别进行判断,即可得到答案. 【详解】解:这次被调查的学生人数为:60÷15%=400(人),故A正确;∵D所占的百分比为:100100%=25%400⨯,A所占的百分比为:40100%=10%400⨯,∴E对应的圆心角为:360(118%10%15%12%25%)36020%72︒⨯-----=︒⨯=︒;故B错误;∵喜欢选修课F的人数为:40018%=72⨯(人),故C正确;∵喜欢选修课C有:40012%=48⨯(人),喜欢选修课E有:40020%=80⨯(人),∴喜欢选修课A的人数为40人,是人数最少的选修课;故D正确;故选:B.【点睛】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6、C【解析】∵816%50÷=,5064%=32⨯,∴选项A、B的说法正确.∵(116%64%)20%--=,∴图中“记不清”所对应的圆心角为:36020%=72⨯,∴选项C的说法错误.由样本数据可估计总体情况可知:选项D的说法正确.故选C.7、D【详解】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8、A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.9、B根据扇形统计图给出的信息逐项计算即可.【详解】试题分析:捐赠款的圆心角的度数为:360°×60%=216°.选项B错误故选B【点睛】本题考查扇形统计图.10、B【详解】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.二、填空题1、150【分析】根据样本容量是样本中包含的个体的数目,可得答案.【详解】解:为了解某中学823个学生家长对“中学生骑电动车上学”的态度,从中随机抽取了150个家长进行调查,故样本容量为150.故答案为:150.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、80【分析】根据样本容量是指样本中个体的数目,可得答案.【详解】解:为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是80.故答案为:80.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.【分析】根据两个统计图中数据的变化情况进行判断.【详解】解:甲公司2016年至2019年,销售量从4万件增加到7万件,而乙公司2016年至2019年,销售量从4万件增加到约8.2万件,因此乙公司增速较快,故答案为:乙.【点睛】本题考查折线统计图的意义,掌握折线统计图中数量的变化情况是正确判断的前提.5、①④.【分析】根据抽样调查的方式逐个分析即可【详解】小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝,故①的调查方法合适,符合题意;琪为了了解某市2007年的平均气温,应该查询每个月的气温情况,故②的调查方法不科学,不符合题意;小明为了了解初中三个年级学生的平均身高,应该在七、八、九年级各抽一个班学生做调查,故③的调查方法不科学,不符合题意;小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查,故③的调查方法符合题意.综上所述,符合题意的有①④.故答案为①④.【点睛】本题考查了抽样调查,理解抽样调查的方式是解题的关键.三、解答题1、(1)见解析;(2)72【分析】(1)根据69.5-79.5这一组的频数为10,频率为0.2,求出总人数,由此进行求解即可;(2)依据扇形的圆心角度数=360°×占比进行求解即可.【详解】解:(1)∵69.5-79.5这一组的频数为10,频率为0.2,∴总人数=10÷0.2=50人,∴59.5-69.5这一组的人数=50×0.1=5人,∴89.5-100.5这一组的频率=6÷50=0.12,列表如下:补全统计图如下:(2)由题意可得成绩在69.5~79.5范围内的扇形圆心角的度数=360°×0.20=72°,故答案为:72.【点睛】本题主要考查了频率与频数分布表,频数分布直方图,求扇形圆心角度数,解题的关键在于能够熟练掌握相关知识进行求解.2、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)200;81;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付;采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示:(3)()60451200630200+⨯=名. 答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.4、见解析【分析】根据所给信息表先填好身高的频数分布表,进而即可画出相应的频数分布直方图.【详解】解:由信息表可知:∴频数分布直方图如图所示:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用信息表画出相应的身高统计表是解决本题的关键.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)分析题意,根据题目信息,即可回答;(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;(3)根据抽样调查的特点,写一份调查报告即可.【详解】(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?对象:接受调查的人可选择抽样调查的调查方式;样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;(2)结合(1)中信息即可制定合理的调查方案,如:问卷调查表:简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;根据抽样调查的特点,自己写一份调查报告即可.【点睛】本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.。
第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。
2021年高中数学 第二章 统计综合测试题(含解析)新人教B 版必修3一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列哪种工作不能使用抽样方法进行( ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况 [答案] D[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.故选D.2.高一·一班李明同学进行一项研究,他想得到全班同学的臂长数据,他应选择的最恰当的数据收集方法是( )A .做试验B .查阅资料C .设计调查问卷D .一一询问[答案] A[解析] 全班人数不是很多,所以做试验最恰当.3.设有一个回归方程为y ^=2-2.5x ,变量x 增加一个单位时,变量y ( ) A .平均增加1.5个单位 B .平均增加2个单位 C .平均减少2.5个单位D .平均减少2个单位 [答案] C[解析] 因为随变量x 增大,y 减小,x 、y 是负相关的,且b ^=-2.5,故选C. 4.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,根据此图估计学生在课外读物方面的支出费用的中位数为( )元( )A .45B .3909C.4009D .46[答案] C [解析] 40+10×0.160.36=4009. 5.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽取:①将160人从1至160编上号,然后用白纸做成1~160号的签160个放入箱内拌匀,然后从中抽取20个签,与签号相同的20个人被选出;②将160人从1至160编上号,按编号顺序分成20组,每组8人,即1~8号,9~16号,…,153~160号.先从第1组中用抽签方法抽出k 号(1≤k ≤8),其余组的(k +8n )号(n =1、2、…、19)亦被抽出,如此抽取20人;③按20160=18的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用随机数表法从各类人员中抽取所需的人数,他们合在一起恰好抽到20人.上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序是( ) A .①、②、③ B .②、①、③ C .①、③、② D .③、①、②[答案] C[解析] ①是简单随机抽样;②是系统抽样;③是分层抽样,故选C.6.样本中共有五个个体,其值分别为a 、0、1、2、3.若该样本的平均值为1,则样本方差为( )A.65 B .65C. 2 D .2[答案] D [解析] ∵a +0+1+2+35=1,∴a =-1,故S 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )8 9 79 3 1 6 4 0 2A .91.5和91.5 C .91和91.5 D .92和92[答案] A[解析] 将这组数据从小到大排列,得87、89、90、91、92、93、94、96. 故平均数x -=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5,故选A.8.对变量x 、y 有观测数据理据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u 、v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.由散点图可以判断变量x与y负相关,u与v正相关.9.已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左到右依次为2431,则第2组的频率和频数分别是( )A.0.4,12 B.0.6,16C.0.4,16 D.0.6,12[答案] A[解析]因为各小长方形的高的比从左到右依次为2431,所以第2组的频率为0.4,频数为30×0.4=12.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高y(单位:cm)对年龄x(单位:岁)的回归直线方程y=73.93+7.19x,用此方程预测儿子10岁时的身高,有关叙述正确的是( )A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右[答案] D[解析]用回归直线方程预测的不是准确值,而是估计值.当x=10时,y=145.83,只能说身高在145.83 cm左右.11.设矩形的长为a,宽为b,其比满足b a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定[答案] A[解析]本小题主要考查学生的知识迁移能力和统计的有关知识.x -甲=0.598+0.625+0.628+0.595+0.6395=0.617,x -乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A.12.某示范农场的鱼塘放养鱼苗8万条,根所这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,试估计鱼塘中鱼的总质量约为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg[答案] A[解析] 平均每条鱼的质量为x -=40×2.5+25×2.2+35×2.840+25+35=2.53(kg),所以估计这时鱼塘中鱼的总质量约为80 000×95%×2.53=192 280(kg).二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.) 13.一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.[答案] 12 [解析] ∵2898=27,即每7人抽取2人,又知女运动员人数为98-56=42, ∴应抽取女运动员人数为42×27=12(人).分层抽样中抓住“抽样比”是解决问题的关键.14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为________和________.[答案] 24 23[解析] x -甲=110(10×2+20×5+30×3+17+6+7)=24,x -乙=110(10×3+20×4+30×3+17+11+2)=23.15.(xx·山东临沂高一期末测试)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55)、[55,65)、[65,75)、[75,85)、[85,95),由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是________.[答案]13[解析]由频率分布直方图知[55,75)之间的频率为(0.040+0.025)×10=0.65,故[55,75)之间的人数为0.65×20=13.16.某校甲、乙两个班级各有5名编号为1、2、3、4、5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲组67787乙组67679则以上两组数据的方差中较小的一个为s2=______.[答案]2 5[解析]x甲=6+7+7+8+75=7,x乙=6+7+6+7+95=7.∴s2甲=6-72+7-72+7-72+8-72+7-725=25,s2乙=7-62+7-72+7-62+7-72+7-925=65,则两组数据的方差中较小的一个为s2甲=25 .三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回,再拿一件,连续玩了5件;(3)从200个灯泡中逐个抽取20个进行质量检查. [解析] (1)不是简单随机抽样,因为这不是等可能抽样. (2)不是简单随机抽样,因为它是有放回的抽样.(3)是简单随机抽样,因为它满足简单随机抽样的几个特点.18.(本题满分12分)已知某班4个小组的人数分别为10、10、x 、8,这组数据的中位数与平均数相等,求这组数据的中位数.[解析] 该组数据的平均数为14(28+x ),中位数一定是其中两个数的平均数,因为x不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序为x,8,10,10,其中位数为12(10+8)=9.若14(x+28)=9,则x =8,此时中位数为9.(2)当8<x ≤10时,原数据按从小到大顺序排列为8,x,10,10,其中位数为12(x +10),若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内, ∴舍去.(3)当x >10时,原数据为8,10,10,x , 其中位数为12(10+10)=10.若14(x +28)=10,则x =12,∴此时中位数为10. 综上所述,这组数据的中位数为9或10.19.(本题满分12分)一箱方便面共有50包,从中用随机抽样方法抽取了10包称量其重量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60(1)指出总体、个体、样本、样本容量; (2)指出样本数据的众数、中位数、平均数; (3)求样本数据的方差.[解析] (1)总体是这50包方便面所有的包重,个体是这一箱方便面中每一包的包重,样本是抽取的10包的包重,样本容量为10.(2)这组样本数据的众数是60,中位数为60,样本平均数x -=110×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.(3)样本数据的方差为s 2=110[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.20.(本题满分12分)(xx·安徽黄山高一期末测试)某班的全体学生共有50人,参加数学测试(百分制)成绩的频率分布直方图如图,数据的分组依次为:[20,40)、[40,60)、[60,80)、[80,100].依此表可以估计这一次测试成绩的中位数为70分.(1)求表中a、b的值;(2)请估计该班本次数学测试的平均分.[解析](1)由中位数为70可得,0.005×20+0.01×20+a×10=0.5,解得a=0.02.又20(0.005+0.01+0.02+b)=1,解得b=0.015.(2)该班本次数学测试的平均分的估计值为30×0.1+50×0.2+70×0.4+90×0.3=68分.21.(本题满分12分)有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5,24.5)内的可能性约是多少?[解析](1)频率分布表为:分组频数频数频率[12.5,15.530.06)[15.5,18.580.16)[18.5,21.590.18)[21.5,24.5110.22)[24.5,27.5)100.20[27.5,30.5)50.10[30.5,33.5)40.08合计50 1.00(2)频率分布直方图如图所示:(3)数据落在[15.5,24.5)内的可能性为:8+9+1150=0.56.22.(本题满分14分)(x x·河南新乡市高一期末测试)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求线性回归方程y=b x+a;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是 3.5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).(参考公式与数据:6i=1x i y i=4 066,∑i=16x2i=434.2,∑i=16x i=51,∑i=16y i=480.b^=∑i=16x i y i-n x y∑i=16x2i-n x2,a^=y-b^x)[解析](1)x=16(8+8.2+8.4+8.6+8.8+9)=516=8.5,y=16(90+84+83+80+75+68)=4806=80.b ^=∑i =16x i y i -n x y∑i =16x 2i -n x 2=4 066-6×8.5×80434.2-6×8.52=-20, a ^=y -b ^x =80-(-20)×8.5=250.∴线性回归直线方程为y ^=-20x +250. (2)设工厂的利润为y ,依题意得y =(-20x +250)(x -3.5)=-20(x -8)2+405,∴当x =8时,y 取最大值405.即该产品的单价应定为8元时,工厂获得最大利润.i25332 62F4 拴! 7 23630 5C4E 屎26225 6671 晱32922 809A 肚360488CD0 賐22375 5767 坧(NF。
最新初中数学数据分析经典测试题含答案(2)一、选择题1.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.4.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.段高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()A.20分,22分B.20分,18分C.20分,22分D.20分,20分【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】数据排列为18,20,20,20,22,23,25,则这组数据的众数为20,中位数为20.故选:D.【点睛】此题考查众数和中位数,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,众数与中位数分别是1.75,1.70.故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.8.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A .点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.样本数据3,a ,4,b ,8的平均数是5,众数是3,则这组数据的中位数是( ) A .2 B .3C .4D .8【答案】C 【解析】 【分析】先根据平均数为5得出a b 10+=,由众数是3知a 、b 中一个数据为3、另一个数据为7,再根据中位数的定义求解可得. 【详解】解:Q 数据3,a ,4,b ,8的平均数是5,3a 4b 825∴++++=,即a b 10+=, 又众数是3,a ∴、b 中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C . 【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.11.下列说法正确的是( ) A .对角线相等的四边形一定是矩形B .任意掷一枚质地均匀的硬币10次,一定有5次正面向上C .如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 【答案】D 【解析】 【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可. 【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.13.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.14.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.15.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.16.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5.【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.17.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8 B .5C .6D .3【答案】A 【解析】 【分析】先由平均数的公式计算出a 的值,再根据方差的公式计算即可. 【详解】∵数据6、4、a 、3、2平均数为5, ∴(6+4+2+3+a )÷5=5, 解得:a=10, ∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 故选:A . 【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s =B .1x x =,221s s >C .1x x =,221s s <D .1x x =,221s s = 【答案】B【解析】【分析】根据平均数和方差的公式计算比较即可.【详解】 设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n ,第i 个同学没登录,第一次计算时总分是(n−1)x ,方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n -+=x , 方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n -s 2, 故221s s >,故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )A .25和30B .25和29C .28和30D .28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D .【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。
一、选择题1.若样本1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为10,方差为4,则对于样本13x -,23x -,33x -,⋅⋅⋅,3n x -,下列结论正确的是( )A .平均数为10,方差为2B .众数不变,方差为4C .平均数为7,方差为2D .中位数变小,方差不变2.某专卖店专销售某品牌运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:A .平均数B .中位数C .众数D .方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42,则射击成绩比较稳定的是( ) A .甲B .乙C .丙D .丁4.八年级一,二班的同学在一次数学测验中的成绩统计情况如下表:于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( ) A .②③B .①②C .①③D .①②③5.为了解某电动车一次充电后行驶的里程数(千米),抽检了10辆车统计结果是:200、210、210、210、220、220、220、220、230、230,则这组数据中众数和中位数分别是( ) A .220,220 B .220,210C .200,220D .230,2106.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是( )A .平均数是2B .众数和中位数分别是-1和2.5C .方差是16D 7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.2022年北京张家口将举办冬季奥运会,下表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差2s :根据表中数据,要从中选择出一名成绩好且发挥稳定的运动员,应该选择( ) A .甲B .乙C .丙D .丁9.某班七个学习小组的人数如下:2,3,3,x ,4,6,6,已知这组数据的平均数是4,则这个组数据的中位数是( ) A .4 B .4.5 C .5 D .6 10.已知一组数据:92,94,98,91,95的中位数为a ,方差为b ,则a+b=( ) A .98B .99C .100D .10211.已知:x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b ,则x 1,x 2,x 3...x 50的平均数是( ) A .a +bB .2a b+ C .105060a b+ D .104050a b+ 12.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10,下列关于这组数据描述正确的是( ) A .中位数是10B .众数是10C .平均数是9.5D .方差是6二、填空题13.八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为90分,八(2)班54人,平均成绩为80分,则这两个班的平均成绩为_____________分. 14.某公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:1:3:4的比确定.甲应试者的各项成绩如下表:则甲应试者的综合成绩为________.15.某学校八年级3班有50名同学,30名男生的平均身高为170,20cm 名女生的平均身高160cm ,则全班学生的平均身高是__________cm .16.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.17.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.18.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比计算学期成绩.小明同学本学期三项成绩依次为90分、80分、90分,则小明同学本学期的体育成绩是_____分.19.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.20.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.三、解答题21.某中学八年级四个班组织征文比赛,共收到参赛学生的文章100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整).比赛设一、二等奖若干,结果共有25人获奖,其中三班参赛学生的获奖率为20%,一、a.二、三、四班获奖人数的比为6:7::5(1)填空:①四班有_______人参赛,α=______︒.②a=______,各班获奖学生数的众数是______.(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?22.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图;(2)学生参加户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?23.为了了解某学校初四年级学生每周平均课外阅读的时间情况,随机抽查了该学校初四年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题: ①求m 的值; ②补全条形统计图.(2)求出这组数据的中位数和平均数.24.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度; (3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?25.某校为了解学生的身体素质情况,对全校学生进行体能测试,现从七、八两个年级各随机抽取10名学生的成绩(满分为100分)进行调查分析,过程如下: (1)收集数据七年级:90,85.80,95,80,90,80,85,95,100 八年级:90,85,90,80,95,100,90,85,95,100 (2)整理数据 分数 80 85 90 95 100 七年级人数32221八年级人数1232a平均数中位数众数方差七年级88c d e八年级b909039(1)直接写出表格中的值:a=_________,b=_________,c=_________,d=__________,e=_________.(2)该校七、八年级各有学生800人,本次竞赛成绒不低于90分的为“优秀”,估计这两个年级共有多少名学生达到“优秀”?26.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(1)求这50个样本数据的平均数、众数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用平均数、中位数、众数和方差的意义进行判断.【详解】解:∵样本x1,x2,x3,…,x n的平均数为10,方差为4,∴样本x1﹣3,x2﹣3,x3﹣3,…,x n﹣3的平均数为12312333333nn x x x x x n x n n x x n+++⋯+⋯+++=-﹣﹣+﹣﹣ =7,原众数和中位数减小了3,方差为各数据偏离平均数的平方,各数都减小了3,平均数也减小了3,但偏离平均数的程度不变,故方差不变. 故选:D . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.2.C解析:C 【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3.D解析:D 【分析】直接利用方差的意义求解即可. 【详解】解:∵S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42, ∴S 丁2<S 乙2<S 丙2<S 甲2, ∴射击成绩比较稳定的是丁, 故选:D . 【点睛】本题考查方差的意义,理解和掌握方差是描述数据波动情况的量,方差越小,波动越小是解题关键.4.B解析:B 【分析】根据平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小. 【详解】解:从表中可知,平均成绩都是80,故①正确;一班的中位数是84,二班的中位数是85,由于优生线85分,故二班优生人数多于一班,故②正确;一班的方差大于二班的,又说明一班的波动情况大,所以③错误. 故选:B 【点睛】本题考查了平均数,中位数,方差的应用.解答关键是按照相关定义进行判定.5.A解析:A 【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可. 【详解】数据220出现了4次,最多, 故众数为220,重新排序后为:200、210、210、210、220、220、220、220、230、230, 排序后位于第5和第6位的数均为220, 故中位数为220, 故选:A . 【点睛】本题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.C解析:C 【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断. 【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求;()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;=3S ,故D 选项不符合要求. 故选:C 【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.7.B解析:B 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.B解析:B 【分析】比较平均数与方差,选择平均数较大且方差较小的运动员参加. 【详解】 解:x x x x =>=甲乙丁丙,∴从乙和丁中选择一人参加比赛,2222s s s s =<<甲乙丁丙,∴要从中选择出一名成绩好且发挥稳定的运动员,应该选择乙.故选:B . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.也考查了平均数.9.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数的定义求解即可. 【详解】解:∵2、3、3、x 、4、6、6的平均数是4, ∴(2+3+3+x+4+6+6)÷7=4, 解得:x=4,将这组数据从小到大排列为2、3、3、4、4、6、6, 最中间的数是4,则这组数据的中位数是4. 故选:A . 【点睛】本题考查平均数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.C解析:C 【分析】分别根据中位数和方差的定义求出a 、b ,然后即可求出答案. 【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94, 该组数据的平均数为15×(92+94+98+91+95)=94, 其方差为15×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2] =6,所以b=6,所以a+b=94+6=100, 故选C . 【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.11.D解析:D 【分析】根据平均数及加权平均数的定义解答即可. 【详解】∵x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b , ∴x 1,x 2,x 3...x 50的平均数是:10401040104050a b a b++=+. 故选D. 【点睛】本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.12.B解析:B 【分析】根据中位数,众数,平均数和方差的概念逐一判断即可.【详解】中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.这组数据中按顺序排列之后中间位置的数是9,10,所以中位数是9101922+=,故A选项错误;众数:一组数据中出现次数最多的数据为这组数据的众数.这组数据中,10出现2次,次数最多,所以众数是10,故B选项正确;平均数为10691181096x+++++==,故C选项错误;方差为()()()()()()2222222109699911989109863s-+-+-+-+-+-==,故D选项错误;故选:B.【点睛】本题主要考查中位数,众数,平均数和方差,掌握中位数,众数,平均数和方差的求法是解题的关键.二、填空题13.6【分析】先算出两个班的总成绩再除以两个班的总人数即可【详解】解:(90×46+80×54)÷(46+54)=846(分)故答案为:846【点睛】本题考查了加权平均数关键是掌握加权平均数的计算公式解析:6【分析】先算出两个班的总成绩,再除以两个班的总人数即可.【详解】解:(90×46+80×54)÷(46+54)=84.6(分),故答案为:84.6.【点睛】本题考查了加权平均数,关键是掌握加权平均数的计算公式.14.【分析】根据加权平均数的定义列式计算可得【详解】甲应试者的综合成绩为故答案为:804【点睛】本题主要考查加权平均数解题的关键是掌握加权平均数的定义解析:80.4【分析】根据加权平均数的定义列式计算可得.【详解】甲应试者的综合成绩为73280182383480.42134⨯+⨯+⨯+⨯=+++, 故答案为:80.4.【点睛】 本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.15.【分析】只要运用求平均数公式:即可求得全班学生的平均身高【详解】全班学生的平均身高是:故答案为:166【点睛】本题考查的是样本平均数的求法熟记公式是解决本题的关键解析:166【分析】 只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高. 【详解】 全班学生的平均身高是:()301702016016650x cm ⨯+⨯==. 故答案为:166.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键. 16.33【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445∴中位数解析:3, 3,32. 【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 17.5【分析】根据平均分=总分数÷总人数求解即可【详解】这个兴趣小组实验操作得分的平均分=(分)故答案为:875分【点睛】本题考查了加权平均数的求法熟记公式:是解决本题的关键解析:5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=105+98+84+73175==87.55+8+4+320⨯⨯⨯⨯(分). 故答案为:87.5分.【点睛】 本题考查了加权平均数的求法.熟记公式:11221212 ( 0)n n n n x f x f x f x f f f f f f ++⋯++++≠+++=是解决本题的关键.18.87【分析】根据加权平均数的计算方法进行计算即可【详解】解:故答案为:87【点睛】本题考查加权平均数的意义和计算方法理解加权平均数的意义掌握加权平均数的计算方法是正确解答的前提解析:87【分析】根据加权平均数的计算方法进行计算即可.【详解】解:90280390587235x ⨯+⨯+⨯==++, 故答案为:87.【点睛】 本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.19.7【分析】根据平均数求出x 的值再根据中位数定义求出答案【详解】由题意得:解得x=8将数据重新排列为:5667889∴这组数据的中位数是7故答案为:7【点睛】此题考查平均数的计算公式中位数的定义求一组解析:7【分析】根据平均数求出x 的值,再根据中位数定义求出答案.【详解】由题意得:56678977x ++++++=⨯,解得x=8,将数据重新排列为:5、6、6、7、8、8、9,∴这组数据的中位数是7,故答案为:7.此题考查平均数的计算公式,中位数的定义,求一组数据的中位数.20.64【分析】根据平均数的计算公式众数和中位数的定义即可得【详解】平均数为因为这组数据中6出现的次数最多所以它的众数是6将这组数据按从小到大进行排序为则它的中位数是4故答案为:464【点睛】本题考查了 解析:6 4【分析】根据平均数的计算公式、众数和中位数的定义即可得.【详解】 平均数为1646345++++=, 因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为1,3,4,6,6,则它的中位数是4,故答案为:4,6,4.【点睛】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.三、解答题21.(1)25人,90°,7,7;(2)一、二等奖学生人数分别为10人,15人.【分析】(1)先求出四班参赛人数,再用所占比例乘以360就得到α的度数.再根据一、二、三、四班获奖人数为6:7:a :5,求出a 的值;得到各班获奖学生数的众数;(2)设获一二等奖的学生人数分别为x 人,y 人,根据共有25人和共用去1900元,可以列方程组即可求得.【详解】解:(1)①九(四)班参赛人数有100×(1-20%-20%-35%)=25人;α=360×(1-20%-20%-35%)=90;②三班参赛人数有100×35%=35,获奖者有35×20%=7,因为一、二、三、四班获奖人数为6:7:a :5,所以a=7;即一、二、三、四班获奖人数分别为6,7,7,5.所以各班获奖学生数的众数是7;故答案为:①25人,90°②7,7;(2)设获一二等奖的学生人数分别为x 人,y 人,则25100601900x y x y +=⎧⎨+=⎩,解得:1015x y =⎧⎨=⎩, 即获一二等奖学生人数分别为10人,15人.此题考查了学生的综合应用能力,解题的关键是掌握扇形图和方程组的应用以及众数的意义.22.(1)答案见解析;(2)众数是1小时,中位数为1小时;(3)符合要求,理由见解析.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【详解】(1)被调查的学生总数为32÷40%=80(人),∴0.5小时的人数为80×20%=16(人),补全图形如下:(2)户外活动时间的众数是1小时,达到32人,中位数为第40、41个数据的平均数,即1112+=(小时); (3)本次调查中学生参加户外活动的平均时间是0.516132 1.520212 1.17580⨯+⨯+⨯+⨯=(小时), ∴符合要求.【点睛】 本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用. 23.(1)①60;②20,图见解析;(2)中位数为3小时;平均数为324小时 【分析】(1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m 的值;②求得总人数后减去其他小组的人数即可求得第三小组的人数,再补全统计图即可; (2)利用中位数的定义及平均数的计算公式确定即可.【详解】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为90°÷360°=14, ∵课外阅读时间为2小时的有15人,∴m =15÷14=60; ②∵课外阅读时间为3小时的人数()60101510520=-+++=,∴补全条形统计图如下:()2将60个数据由小到大排序,由条形统计图知,最中间的两个数都是3,这两数的平均值3=(小时),∴中位数为3小时;1011522031045532604x ⨯+⨯+⨯+⨯+⨯==(小时), 这组数据的平均数为324小时. 【点睛】 本题考查了众数、中位数、平均数及扇形统计图和条形统计图的知识,解题的关键是能够结合两个统计图并找到进一步解题的有关信息,难度不大.24.(1)见解析;(2)108 ;(3)C 组;见解析;(4)150人【分析】(1)根据B 组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C 组的人数,即可补全条形统计图;(2)用360°乘以D 组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A :60≤x <70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C 组人数为60-(6+12+18)=24(人),补全图形如下:(2)D 组对应圆心角度数为:360°1810860⨯=︒, 故答案为:108; (3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C 组,所以中位数落在C 组;(4)1500615060⨯=(人), 答:这次竞赛成绩在A :60≤x <70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)2,91,87.5,80,46;(2)960【分析】(1)用总人数10减去其他得分的人数即可得到a 的值;根据平均数、中位数、众数、方差的定义依次计算可得答案;(2)用每个年级的总人数乘以成绩“优秀”的比例,两者相加即可得到答案.【详解】解:(1)a=10-1-2-3-2=2;80185290395210029110b ⨯+⨯+⨯+⨯+⨯==; 859087.52c +==; d=80;222223(8088)(8588)(9088)1(9588)(100822248)610e ⨯---⎡⎤=+⨯--+⨯+⨯+=⎣⎦;故答案为:2,91,87.5,80,46; (2)2213228008009601010++++⨯+⨯=(人), 答:这两个年级共有960名学生达到“优秀”.【点睛】此题考查统计知识,正确掌握平均数、中位数、众数、方差的定义及计算方法,求总体中部分的人数,利用部分的比例求总体中该部分的人数,正确计算是解题的关键. 26.(1)平均数是3.3次,众数是4次;(2)3960.【分析】(1)根据加权平均数的公式和众数的定义即可求出.(2)利用样本估计总体的方法,用1200×平均数即可.【详解】(1)观察条形统计图,可知这组样本数据的平均数是:132731741855 3.350x ⨯+⨯+⨯+⨯+⨯==次, 则这组样本数据的平均数是3.3次. 在这组样本数据中,4出现了18次,出现的次数最多,这组数据的众数是4次.(2)这组样本数据的平均数是3.3次,估计全校1200人参加活动次数的总体平均数是3.3次,故全校1200人参加活动次数为3.312003960⨯=次.【点睛】本题考查的是条形统计图,平均数,众数以及样本估计总体.读懂统计图,从统计图中得到必要的信息是解题的关键.。
页脚 综合测试题 一、选择题: 1.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,决定最终买什么水果,下面的调查数据中最值得关注的是( ). A.中位数 B.平均数 C.众数 D.加权平均数
2.为了了解某中学某班的睡眠情况,随机抽取该班10名学生,在一段时间里,每人平均每天的睡眠时间统计如下(单位:小时):6,8,8,7,7,9,10,7,6,9,由此估计该班多数学生每天的睡眠时间为( ) A.7小时 B.7.5小时 C.7.7小时 D.8小时
3.小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:米):3.6,3.8,4.2,4.0,3.8,4.0,那么这组数据的( ) A、 众数是3.9米 B、中位数是3.8米 C、极差是0.6米 D、平均数是4.0米
4.小伟五次数学考试成绩分别为:86分、78分、80分、85分、92分,老师想了解小伟数学学习变化情况,则老师最关注小伟数学成绩的( ) A、 平均数 B、众数 C、中位数 D、方差
5.已知一组数据为:4、5、5、5、6,其中平均数、中位数和众数的大小关系是( ) A、 平均数>中位数>众数 B、中位数<众数<平均数 C、众数=中位数=平均数 D、平均数<中位数<众数
6.如果一组数据6,x,2,4的平均数是3,那么x是( ). A. 0 B.3 C.4 D. 2 7.某班一次英语测验的成绩如下:得100分的3人,得95分的6人,得90分的5人,得80分的2人,得70分的18人,得60分的6人,则该班这次英语测验成绩的众数是( ). A.70分 B. 18人 C. 80分 D.10人
8.某校四个科技兴趣小组在“科技活动周”上交的作品数分别如下:10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是( ) A.8 B. 12 C.9 D. 10
9.甲、乙两人在同样的条件下练习射击,每人打5发子弹,命中环数如下: 甲:6,8,9,9,8 乙: 10,7,7,7,9 则两人射击成绩谁更稳定( ). A.甲 B.乙 C.一样稳定 D.无法确定
10.若数据的平均数为m,2,5,7,1,4,n则的平均数为4,则m、n的平均数为( ) A、7.5 B、5.5 C、2.5 D、4.5 页脚
11.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有( ) A.bac B.cab C.abc D.bca
12.下列说法中:①2,3,4,5,5这组数据的众数是2; ②6,8,6,4,10,10这组数据的众数是1(610)82;③存在这样一组数据:众数,中位数与平均数是同一数据.其中真命题的个数有( ) (A)0个 (B)1个 (C)2个 (D)3个
二、填空题: 13.11.某次射击训练中,一小组的成绩如下表所示: 环数 6 7 8 9 人数 1 3 2 若该小组的平均成绩为7.7环,则成绩为8环的人数是 .
14.一组数据33,28,37,x,22,23它的中位数是26,那么x等于 .
15.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是________. 16.汶川震牵动每个人的心,一方有难,八方支援, 5位籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;
三、解答题: 17.某公司销售部有五名销售员,2007年平均每人每月的销售额分别是6、8、11、9、8(万元).现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数.最后正式录用三人中平均月销售额最高的人是谁?请说明理由.
18.某油桃种植户今年喜获丰收,他从采摘的一批总质量为900千克的油桃中随机抽取了10个油桃,称得其质量(单位:克)分别为:
0 1 2 3 4 人数 4 5 6 零件数
第11题图 页脚
106,99,100,113,111,97,104,112,98,110。 (1)估计这批油桃中每个油桃的平均质量; (2)若质量不小于110克的油桃可定为优级,估计这批油桃中,优级油桃占油桃总数的百分之几?达到优级的油桃有多少千克? 19.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
捐款(元) 10 15 30 50 60 人数 3 6 11 13 6 因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?
20.某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图6-1-23所示的统计图,根据图中所提供的信息,回答下列问题: (1)共抽取了多少名学生的数学成绩进行分析? (2)如果80分以上(包括80分)为优生,估计该市的优生率为多少? (3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?
21.新华机械厂有15名工人,某月这15名工人加工的零件数统计如下: 人数(名) 1 2 3 4 5 6 加工的零件数(件) 540 450 300 240 210 120 (1)求这15名工人该月加工的零件数的平均数、中位数和众数; (2)假如部门负责人把每位工人每月加工零件的任务确定为260件,你认为是否合理?为什么?如果不合理,你认为多少较合适?
22.为了让广大青少年学生走向操场、走进自然、走到下,积极参加体育锻炼,我国启动了“全国亿万学生体育运动”.短跑运动,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图3所示,请根据图中所示解答以下问题. (1)请根据图息,补齐下面的表格;
第1次 第2次 第3次 第4次 第5次 页脚 014岁60岁以上4159岁1540岁年龄
人数60230
10050
100
1502002504159岁1540岁
014岁60岁以上
46%22%ba
(2)从图中看,小明与小亮哪次的成绩最好? (3)分别计算他们的平均数、极差和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?
23.某单位欲从部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,该单位组织200名职工利用投票推荐的方式对三人进行评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分. (1) 请算出三人的评议得分; (2) 如果根据三项测试的平均成绩确定录用人选,那么谁将被录用? (3) 根据实际需要,该单位将笔试、面试、评议三项得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?
24.典典同学学完统计知识后,随机调查了她所在辖区若干居民的年龄,将调查的数据绘制成如下扇形和条形统计图:
请根据以上不完整的统计图提供的信息,解答如下问题: (1)典典同学共调查了 名居民的年龄,扇形统计图中a= ,b= ;
小明 13.3 13.4 13.3 13.3 小亮 13.2 13.1 13.5 13.3
测试项目 测试成绩/分 甲 乙 丙 笔试 75 80 90 面试 93 70 68
第1次 第2次 第3次 第4次 第5次 13.6 13.5 13.4 13.3 13.2 13.1
时间(秒) 小明 小亮
图 3 页脚 频数分布直方图
ⅥⅤⅣⅢⅡⅠ组户数
22201816141210864
20
(2)补全条形统计图; (3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民人数.
25.今年是我国施行“清明”小长假的第二年,在长假期间,某校团委要求学生参加一项社会调查活动。九年级学生小青想了解她所居住的小区500户居民的家庭人均收入情况,从中随机调查了40户居民家庭的人均收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图:
根据以上提供的信息,解答下列问题: (1)补全频数分布表、频数分布直方图; (2)这40户家庭收入的中位数落在哪一个小组? (3)被调查的家庭中,参加“清明扫墓“活动的家庭统计如下表:
收入情况 600-799 800-999 1000-1199 1200-1399 1400-1599 1600-1800
参加扫墓家庭数被调查家庭数 1
2 3
1 6
1
41
1 1
问:估计该小区共有多少户家庭参加了扫墓活动.
参考答案: 1-6:CACDCA 7-12:BBADAB 13.4 14.24 15.8 16.600,600或500,700 17.略
18.(1)x=101(106+99+100+113+111+97+104+112+98+110)=105(克).由此估计这一批油桃中,每个油桃的平均质量为105克;
分组 频数 频率 Ⅰ:600-799 2 0.05 Ⅱ:800-999 6 0.15 Ⅲ:1000-1199 0.45 Ⅳ:1200-1399 8 0.20 Ⅴ:1400-1599 Ⅵ:1600-1800 2 0.05 合计 40 1.00