南京市高中数学学业评价试卷答案
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
南京市2025届高三年级学情调研数学参考答案 2024.09一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得6分,部分选对得部分分,不选或有错选的得0分.三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上. 12.240 13.3π14.33四、解答题:本大题共5小题,共77分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(1)假设H 0:8点前到单位与方案选择无关,则χ2=100×(28×30-12×30)240×60×42×58······································································ 2分=800203≈3.94>3.841, ············································································ 4分 所以有95%的把握认为8点前到单位与路线选择有关. ······································ 6分 (2)选择A 方案上班,8点前到单位的概率为0.7,选择B 方案上班,8点前到单位的概率为0.5. ················································ 8分 当X =3时,则分两种情况: ①若周一8点前到单位,则P 1=0.7×C 24(1-0.5)2×0.52=2180. ····························································· 10分 ②若周一8点前没有到单位,则P 2=(1-0.7)×C 34(1-0.5)×0.53=680. ·························································· 12分DABC EFMNO xy z 综上,P (X =3)=P 1+P 2=2780. ····································································· 13分16.(本小题满分15分)解:(1)因为E ,F 分别为线段AB ,BC 中点,所以EF ∥AC . ························································································· 2分 因为AM →=2MD →,CN →=2ND →,即DM DA =DN DC =13,所以MN ∥AC ,所以EF ∥MN . ···································································· 4分 又MN ⊂平面MNB ,EF ⊄平面MNB ,所以EF ∥平面MNB . ················································································· 6分 (2)取AC 中点O ,连接DO ,OE . 因为△ACD 为正三角形,所以DO ⊥AC .因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC = AC ,DO ⊂平面ACD ,所以DO ⊥平面ABC . ·············································································· 8分因为O ,E 分别为AC ,AB 中点,则OE ∥BC .又因为AC ⊥BC ,所以OE ⊥AC .以O 为坐标原点,OE ,OC ,OD 所在直线分别为x ,y ,z 轴建立空间直角坐标系, ······································································································· 10分 则D (0,0,332),B (3,32,0),M (0,-12,3),N (0,12,3),故→BM =(-3,-2,3),→MN =(0,1,0),→BD =(-3,-32,332).设平面MNB 的法向量为n =(x ,y ,z ),直线BD 与平面MNB 所成角为θ, 则⎩⎪⎨⎪⎧n ·→BM =0,n ·→MN =0,即⎩⎨⎧-3x -2y +3z =0,y =0.取n =(3,0,3). ··················································································· 12分 则sin θ=|cos<→BD ,n >|=|→BD ·n ||→BD ||n |=|-33+0+932|9+94+274×3+9=33232×23=28,所以BD 与平面MNB 所成角的正弦值为28. ·················································· 15分17.(本小题满分15分)解:(1)因为a n =(-1)n +2n ,则a 1=1,a 2=5,a 3=7,a 4=17.又b n =a n +1-λa n ,则b 1=a 2-λa 1=5-λ,b 2=a 3-λa 2=7-5λ,b 3=a 4-λa 3=17-7λ. ····················· 2分 因为{b n }为等比数列,则b 22=b 1·b 3,所以(7-5λ)2=(5-λ)(17-7λ),…………………4分整理得λ2-λ-2=0,解得λ=-1或2. 因为λ>0,故λ=2.当λ=2时,b n =a n +1-2a n =(-1)n +1+2n +1-2[(-1)n +2n ]=(-1)×(-1)n +2n +1-2×(-1)n -2n +1=-3×(-1)n . ····································· 6分则b n +1b n =-3×(-1)n +1-3×(-1)n=-1,故{b n }为等比数列, 所以λ=2符合题意. ············································································· 7分 (2) b n ·n 2=-3×(-1)n ·n 2,当n 为偶数时,T n =-3×[-12+22-32+42-52+62-…-(n -1)2+n 2]=-3×(1+2+…+n )=-32n (n +1). ······················································ 10分当n 为奇数时,T n =T n +1-b n +1(n +1)2=-32(n +1)(n +2)+3(n +1)2=32n (n +1).······················································································· 12分 综上,T n =⎩⎨⎧32n (n +1),n 为奇数,-32n (n +1),n 为偶数.因为T i ·T i +2>0,又T i ·T i +2=15T i +1,故T i +1>0,所以i 为偶数. ··································································· 13分 所以[-32i (i +1)]·[-32(i +2)(i +3)]=15×32(i +1)(i +2),整理得i 2+3i -10=0,解得i =2或i =-5(舍),所以i =2. ························································································ 15分18.(本小题满分17分)解:(1)由题意可知c =6,点T 在C 上,根据双曲线的定义可知|TF 1|-|TF 2|=2a ,即2a =(36)2+(10)2-(6)2+(10)2=4,所以a =2, ··························· 2分则b 2=c 2-a 2=2,所以C 的方程为x 24-y 22=1. ····································································· 3分(2)①设B (x 0,y 0),DB →=(x 0-1,y 0). 因为DA →=3DB →,所以DA →=(3x 0-3,3y 0),所以A 点坐标为(3x 0-2,3y 0), ··································································· 5分 因为A ,B 在双曲线C 上,所以⎩⎨⎧x 204-y 202=1,(3x 0-2)24-(3y 0)22=1,解得x 0=3,y 0=±102, ········································································ 7分 所以A 点坐标为(7,±3102),所以S ΔF 1F 2A =12|y A |×|F 1F 2|=12×3102×26=315. ··································· 8分②当直线l 与y 轴垂直时,此时PQ =4不满足条件.设直线l 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),P (x P ,0),Q (x Q ,0).直线l 与C 联立⎩⎪⎨⎪⎧ x 24-y 22=1, x =ty +1,消去x ,得(t 2-2)y 2+2ty -3=0,所以y 1+y 2=-2t t 2-2,y 1y 2=-3t 2-2. ····················································· 10分由⎩⎨⎧Δ=4t 2+12(t 2-2)>0,t 2-2≠0.,得t 2>32且t 2≠2.以AB 为直径的圆方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,令y =0,可得x 2-(x 1+x 2)x +x 1x 2+y 1y 2=0,则x P ,x Q 为方程的两个根,所以x P +x Q =x 1+x 2,x P x Q =x 1x 2+y 1y 2, ··················································· 13分 所以PQ =|x P -x Q |=(x P +x Q )2-4x P x Q =(x 1+x 2)2-4(x 1x 2+y 1y 2)=(x 1-x 2)2-4y 1y 2=t 2(y 1-y 2)2-4y 1y 2 =t 2(y 1+y 2)2-4(t 2+1)y 1y 2=4t 4(t 2-2)2+12(t 2+1)t 2-2=16t 4-12t 2-24(t 2-2)2=2. ··························································· 15分解得t 2=-2(舍)或t 2=53,即t =±153,所以直线l 的方程为:3x ±15y -3=0. ·················································· 17分19.(本小题满分17分)解:(1)当a=1时,f(x)=e x-1+x2-3x+1,则f'(x)=e x-1+2x-3,所以曲线y=f(x)在x=1处切线的斜率k=f'(1)=0.又因为f(1)=0,所以曲线y=f(x)在x=1处切线的方程为y=0.···················································3分(2)f(1)=e1-a-2a+1,f'(x)=e x-a+2ax-3a,则f'(1)=e1-a-a,当a>1时,f''(x)=e x-a+2a>0,则f'(x)在(1,+∞)上单调递增.因为f'(1)=e1-a-a<e1-1-1=0,f'(a)=1+2a2-3a=(2a-1)(a-1)>0,所以存在唯一的x0∈(1,a),使得f'(x0)=0.·······················································5分当x∈(1,x0)时,f'(x)<0,所以f(x)在[1,x0)上单调递减;当x∈(x0,+∞)时,f'(x)>0,所以f(x)在(x0,+∞)上单调递增.又因为f(1)=e1-a-2a+1<e0-2+1=0,所以f(x0)<f(1)<0.又因为f(3)=e3-a+1>0,所以当a>1时,f(x)在[1,+∞)上有且只有一个零点.··································· 8分(3)①当a>1时,f(1)=e1-a-2a+1<e0-2+1=0,与当x≥0时,f(x)≥0矛盾,所以a>1不满足题意. ··········································································· 9分②当a≤1时,f(0)=e-a+1>0,f'(x)=e x-a+2ax-3a,f''(x)=e x-a+2a,f''(0)=e-a+2a.记函数q(x)=e-x+2x,x≤1,则q'(x)=-e-x+2,当x∈(-ln2,1)时,q'(x)>0,所以q(x)在(-ln2,1)单调递增;当x∈(-∞,-ln2)时,q'(x)<0,所以q(x)在(-∞,-ln2)单调递减,所以q(x)≥q(-ln2)=2-2ln2>0,所以f''(0)>0.又因为f''(x)在[0,+∞)上单调递增,所以f''(x)≥f''(0)>0,所以f'(x)在[0,+∞)上单调递增.································ 11分(i)若f'(0)=e-a-3a≥0,则f'(x)≥f'(0)≥0,所以f(x)在[0,+∞)上单调递增,则f(x)≥f(0)>0,符合题意;··································································· 13分(ii)若f'(0)=e-a-3a<0,可得a>0,则0<a≤1.因为f'(1)=e1-a-a≥0,且f'(x)在[0,+∞)上单调递增,所以存在唯一的x1∈(0,1],使得f'(x1)=0.当x∈(0,x1)时,f'(x)<0,所以f(x)在(0,x1)上单调递减,当x∈(x1,+∞)时,f'(x)>0,所以f(x)在(x1,+∞)上单调递增,其中x1∈(0,1],且e x1-a+2ax1-3a=0. ························································15分所以f(x)≥f(x1)=e x1-a+ax12-3ax1+1=3a-2ax1+ax12-3ax1+1=ax12-5ax1+3a+1=a(x12-5x1+3)+1,因为x1∈(0,1],所以x12-5x1+3∈[-1,3).又因为a∈(0,1],所以a(x12-5x1+3)≥-1,所以f(x)≥0,满足题意.结合①②可知,当a≤1时,满足题意.综上,a的取值范围为(-∞,1]. ····························································· 17分。
江苏省南京市2025届高三学业水平调研考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={(x,y )|x 2+y 2=4},B ={(x,y )|y =2cos x },则A ∩B 的真子集个数为( )A. 5个B. 6个C. 7个D. 8个2.在复平面内,复数z 对应的点Z 在第二象限,则复数z4i 对应的点Z 1所在象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某考生参加某高校的综合评价招生并成功通过了初试,在面试阶段中,8位老师根据考生表现给出得分,分数由低到高依次为:76,a ,b ,80,80,81,84,85,若这组数据的下四分位数为77,则该名考生的面试平均得分为( )A. 79B. 80C. 81D. 824.“tan 2α=14”是“tan 3αtan α=11”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若单位向量a ,b 满足⟨a ,b⟩=120∘,向量c 满足(c−a )⊥(c−b ),则a ⋅c +b ⋅c 的最小值为( )A.3−14B. 1−34C.3−12 D. 1−326.设数列{a n }的前n 项和为S n ,已知a 1=12,a n +1=2a na n +1,若S 2024∈(k−1,k),则正整数k 的值为( )A. 2024B. 2023C. 2022D. 20217.已知双曲线C:x 2−y 2b 2=1,在双曲线C 上任意一点P 处作双曲线C 的切线(x p >0,y p >0),交C 在第一、四象限的渐近线分别于A 、B 两点.当S △OPA =2时,该双曲线的离心率为( )A.17B. 32C.19D. 258.在▵ABC 中,A <B <C 且tan A,tan B,tan C 均为整数,D 为AC 中点,则BCBD 的值为( )A. 12B.22C.32D. 1二、多选题:本题共3小题,共15分。
2022届南京市高二(下)数学期末学业水平测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知各棱长均相等的正三棱锥、正四棱锥、正五棱锥的侧面与底面所成角的大小分别为αβγ,,,则( ) A .αβγ== B .αβγ<< C .αβγ>> D .前三个答案都不对2.若4cos 5α=-,α是第三象限的角,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .7210 B .7210-C .210-D .2103.若0a <b <,则下列不等式中成立的是( ) A .|a|>b -B .1a b< C .a b -<- D .11a b< 4. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A .2B .3C .10D .155.已知函数()3,0{1,02xkx x f x x +≥=⎛⎫< ⎪⎝⎭,若方程()()20ff x -=恰有三个实数根,则实数k 的取值范围是( ) A .[)0,+∞B .[]1,3C .11,3⎛⎤-- ⎥⎝⎦D .11,3⎡⎤--⎢⎥⎣⎦6.已知复数z 满足4z z +=(i 为虚数单位),其中z 是z 的共轭复数,22z =,则复数z 的虚部为( ) A .2±B .2i ±C .2D .2i7.在极坐标中,点2,3π⎛⎫⎪⎝⎭到圆4cos ρθ=的圆心的的距离为( )A .3πB .3C .2D .249π+8.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 A .60种B .63种C .65种D .66种9.已知函数()y f x =对于任意的(,)22x ππ∈-满足'()cos ()sin >0f x x f x x +(其中'()f x 是函数()f x 的导函数),则下列不等式成立的是 A .()>(0)3f f π-B .(0)>2()4f f πC .(1)>(1)f f -D .(1)>(0)cos1f f10.对于实数x ,符号[x]表示不超过x 的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f (x )=x ﹣[x],则下列命题中正确的是①函数f (x )的最大值为1; ②函数f (x )的最小值为0; ③方程()()12G x f x =-有无数个根; ④函数f (x )是增函数. A .②③B .①②③C .②D .③④11.为了弘扬我国优秀传统文化,某中学广播站在春节、元宵节、清明节、端午节、中秋节五个中国传统节日中,随机选取两个节日来讲解其文化内涵,那么春节和端午节恰有一个被选中的概率是( ) A .310B .25C .35D .71012.执行如图所示的程序框图,输出S 的值为( )A .3B .-6C .10D .12二、填空题(本题包括4个小题,每小题5分,共20分)13. 设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=x ,则tan α=________. 14.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()70,100N ,已知成绩在80到90分之间的学生有120名,若该校计划奖励竞赛成绩在90分以上(含90分)的学生,估计获奖的学生有________.人(填一个整数)(参考数据:若()2~,X Nμσ有()0.6826P X μσμσ-<+=…,(22)0.9544,(33)0.9974)P X P X μσμσμσμσ-<+=-<+=剟15.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____16.已知a R ∈,直线1l :22x y a +=+和直线2l :221x y a -=-分别与圆E :22()(1)4x a y -+-=相交于A 、C 和B 、D ,则四边形ABCD 的面积为__________. 三、解答题(本题包括6个小题,共70分)17.已知公差不为0的等差数列{}n a 的前n 项和n S ,11S +,3S ,4S 成等差数列,且1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若4S ,6S ,n S 成等比数列,求n 及此等比数列的公比.18.已知0x ≠时,函数()0f x >,对任意实数,x y 都有()()()f xy f x f y =,且()()11,279f f -==,当01x ≤<时, ()[)0,1f x ∈ (1)判断()f x 的奇偶性;(2)判断()f x 在[)0,+∞上的单调性,并给出证明; (3)若0a ≥且()1f a +≤a 的取值范围. 19.(6分)己知角α的终边经过点()1,1P .()1求tan α的值;()2求()sin cos 2sin πααπα⎛⎫++ ⎪⎝⎭-的值. 20.(6分)已知函数()(1)xf x ax e =-,a R ∈.(1)讨论()f x 的单调性;(2)若1a =,求证:当1x >-时,()ln(1)1xf x e x x ≥+--. 21.(6分)已知函数()21f x x a x =+--. (1)当1a =时,解不等式()2f x >;(2)当0a =时,不等式2()7f x t t >--对任意x ∈R 恒成立,求实数t 的取值范围. 22.(8分)己知复数1z 满足1(2)34i z i +=+,2z m i =-,其中m R ∈,i 为虚数单位. (l )求21z :(2)若1212z z z +<.求实数m 的取值范围.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.C 【解析】 【分析】通过作出图形,分别找出正三棱锥、正四棱锥、正五棱锥的侧面与底面所成角,通过计算余弦值比较大小即可知道角度大小关系. 【详解】如图,正三棱锥P ABC -,正四棱锥P ABCD -,正五棱锥P ABCDE -,设各棱长都为2,在正三棱锥中,取AC 中点D ,连接PD,BD ,可知PDB ∠即为侧面与底面所成角,可知,==3PD BD ,由余弦定理得1cos 3α=;同理3cos β=,11cos 12γ=,于是cos cos cos αβγ<<,而由于αβγ,,为锐角,所以αβγ>>,故选C.【点睛】本题主要考查面面角的相关计算,意在考查学生的转化能力,空间想象能力,计算能力,难度中等. 2.B【解析】 【分析】先利用同角三角函数的基本关系计算出sin α的值,然后利用两角和的正弦公式可计算出sin 4πα⎛⎫+ ⎪⎝⎭的值. 【详解】αQ 是第三象限角,sin 0α∴<,且3sin 5α===-,因此,34sin sin cos cos sin 444525210πππααα⎛⎫⎛⎫⎛⎫+=+=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选B. 【点睛】本题考查两角和的正弦公式计算三角函数值,解题时充分利用同角三角函数的基本关系进行计算,考查运算求解能力,属于基础题. 3.A 【解析】 【分析】对于A ,用不等式的性质可以论证,对于B ,C ,D ,列举反例,可以判断. 【详解】∵a <0,∴|a|=﹣a ,∵a <b <0,∴﹣a >﹣b >0,∴|a|>﹣b ,故结论A 成立; 取a =﹣2,b =﹣1,则 ∵21ab=>,∴B 不正确;1==C 不正确;112a =-,11b =-,∴11a b>,∴D 不正确. 故选:A . 【点睛】本题考查不等式的性质,解题的关键是利用不等式的性质,对于不正确结论,列举反例. 4.C 【解析】 【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果. 【详解】设阴影部分的面积是s ,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 5.C 【解析】当0k ≥时,画出函数图像如下图所示,由图可知,()()()2,1ff x f x ==-无解,不符合题意,故排除A,B 两个选项.当1k =-时,画图函数图像如下图所示,由图可知()()2ff x =,()1f x =-或()1f x =,解得4,2x x ==不符合题意,故排除D 选项,选C .点睛:本题主要考查分段函数的图像与性质,考查复合函数的研究方法,考查分类讨论的数学思想方法,考查零点问题题.题目所给的分段函数当0x <时,图像是确定的,当0x ≥时,图像是含有参数k 的,所以要对参数进行分类讨论.在分类讨论的过程中,围绕()()2f f x =的解的个数来进行.6.A 【解析】分析:设,,z a bi a b R =+∈,利用z 的共轭复数是z a bi =-,列出方程组求a 、b 的值即可. 详解:设,,z a bi a b R =+∈,∴z 的共轭复数是z a bi =-,又4z z +=,∴2a =,又Q z =248b ∴+=, ∴2b =±.故选:A.点睛:本题主要考查了复数的共轭复数与代数运算的应用问题. 7.C 【解析】分析:先把点的坐标和圆的方程都化成直角坐标方程,再求点到圆心的距离得解.详解:由题得2cos1,2sin33x y ππ=⨯==⨯=∴点的坐标为,因为4cos ρθ=,所以222224cos ,40,(2)4x y x x y ρρθ=∴+-=∴-+=,所以圆心的坐标为(2,0),2=,故答案为:C.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查两点间的距离的求法,意在考查学生对这些知识的掌握水平. (2)极坐标化直角坐标的公式为cos ,sin .x y ρθρθ== 8.D 【解析】试题分析:要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有44C 1=种结果,当取得4个奇数时,有45C 5=种结果,当取得2奇2偶时有2245C C ⋅61060=⨯=种结果,共有156066++=种结果.故答案为D.考点:分类计数原理.9.D 【解析】 【分析】根据题目条件,构造函数()()cos f x g x x =,求出()g x 的导数,利用“任意的(,)22x ππ∈-满足'()cos ()sin >0f x x f x x +”得出()g x 的单调性,即可得出答案。
2022届南京市高二(下)数学期末学业水平测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.设函数()f x 满足下列条件:(1)()f x 是定义在R 上的奇函数;(2)对任意的[]121,x x a ∈、,其中,常数1a >,当21x x >时,有()()210f x f x >>.则下列不等式不一定成立的是( ). A .()()0>f a fB .12a f f +⎛⎫>⎪⎝⎭C .()1331a f f a -⎛⎫>-⎪+⎝⎭D .()131a f f a a -⎛⎫>-⎪+⎝⎭【答案】C 【解析】 【详解】因为()f x 是定义在R 上的奇函数,所以()00f =,由条件(2)得()()00f a f >=;因为112a+>>,所以12a f f +⎛⎫> ⎪⎝⎭;因为()2131011a a a a a ---=>++,所以3111a a a ->>+,即()31,1a f a f a -⎛⎫> ⎪+⎝⎭即()131a f f a a -⎛⎫>- ⎪+⎝⎭;当3a <时,311a f a -⎛⎫⎪+⎝⎭与()3f 大小不定,所以选C.2.若0k m n ≤≤≤,且m ,n ,k ∈N ,则CC mn m k n k n k --==∑( )A .2m n+B .C 2n mmC .2C n mnD .2C m mn【答案】D 【解析】 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和.【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n k n m kn mn k n n C C n m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()0102mmn m k m k m mm m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑L 故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.3.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为( )A .-10B .0C .10D .20【答案】C 【解析】 【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论. 【详解】由题意,根据表格中的数据, 可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+, 取5x =,得ˆ652050y=⨯+=, 所以随机误差的效应(残差)为605010-=,故选C. 【点睛】本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题. 4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,a b 分别为12,4,则输出的n 等于( )A .4B .5C .6D .7【答案】A 【解析】 【详解】分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误). 详解:模拟程序的运行,可得12,4,1,18,8a b n a b =====, 不满足结束循环的条件a b ≤,执行循环体,2,27,16n a b ===;不满足结束循环的条件a b ≤,执行循环体,813,,322n a b ===; 不满足结束循环的条件a b ≤,执行循环体,2434,,644n a b ===; 满足结束循环的条件a b ≤,退出循环,输出n 的值为4,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5.已知曲线()322f x x ax =-+在点()()1,1f 处切线的倾斜角为34π,则a 等于( ) A .2 B .-2 C .3 D .-1 【答案】A【解析】因为()232f x x ax '=-,所以()132f a '=-,由已知得321a -=-,解得2a =,故选A.6.若不等式()()2210a a xx -++≤对一切()0,2x ∈恒成立,则a 的取值范围是 ( )A .13,2⎛-∞ ⎝⎦ B .132⎡⎫++∞⎪⎢⎪⎣⎭C.⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭D.⎣⎦【答案】C 【解析】 【分析】本题是通过x 的取值范围推导出a 的取值范围,可先将a 与x 分别放于等式的两边,在通过x 的取值范围的出a 的取值范围。
南京市2025届高三年级学情调研数 学 2024.09.19 注意事项:1.本试卷考试时间为120分钟,试卷满分150分.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.已知集合A ={x |x -3>0},B ={x |x 2-5x +4>0},则A ∩B =A .(-∞,1)B .(-∞,3)C .(3,+∞)D .(4,+∞)2.已知a x =4,log a 3=y ,则a x +y =A .5B .6C .7D .123.已知|a |=3,|b |=1.若(a +2b )⊥a ,则cos<a ,b >=A .-32B .-33C .33D .324.已知数列{a n }为等差数列,前n 项和为S n .若S 3=6,S 6=3,则S 9=A .-18B .-9C .9D .185.若a 是第二象限角,4sin2α=tan α,则tan α= A .-7 B .-77 C .77D .7 6.甲、乙、丙、丁共4名同学参加某知识竞赛,已决出了第1名到第4名(没有并列名次).甲、乙、丙三人向老师询问成绩,老师对甲和乙说:“你俩名次相邻”,对丙说:“很遗憾,你没有得到第1名”.从这个回答分析,4人的名次排列情况种数为A .4B .6C .8D .127.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为A .24B .32C .96D .1288.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,点P 在C 上,点Q 在l 上.若PF =2QF ,PF ⊥QF ,则△PFQ 的面积为A .254B .25C .552D .55二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z ,下列命题正确的是A .若z +1∈R ,则z ∈RB .若z +i ∈R ,则z 的虚部为-1C .若|z |=1,则z =±1D .若z 2∈R ,则z ∈R10.对于随机事件A ,B ,若P (A )=25,P (B )=35,P (B |A )=14,则 A .P (AB )=320 B .P (A |B )=16 C .P (A +B )=910 D .P (―AB )=1211.设函数f (x )=1|sin x |+8|cos x |,则 A .f (x )的定义域为{x |x ≠k π2,k ∈Z } B .f (x )的图象关于x =π4对称 C .f (x )的最小值为5 5 D .方程f (x )=12在(0,2π)上所有根的和为8π三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.(2x +1x)4展开式中的常数项是 ▲ . 13.与圆柱底面成45°角的平面截圆柱得到如图所示的几何体.截面上的点到圆柱底面距离的最大值为4,最小值为2,则该几何体的体积为 ▲ .(第13题图)14.已知椭圆C 的左、右焦点分别为F 1,F 2,上顶点为B ,直线BF 2与C 相交于另一点A .当cos ∠F 1AB 最小时,C 的离心率为 ▲ .四、解答题;本大题共5小题,共77分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)小王早晨7:30从家出发上班,有A ,B 两个出行方选择,他统计了最近100天分别选择A ,B 两个出行方案到达单位的时间,制成如下表格:(1)判断并说明理由:是否有95%的把握认为在8点前到单位与方案选择有关;(2)小王准备下周一选择A方案上班,下周二至下周五选择B方案上班,记小王下周一至下周五这五天中,8点前到单位的天数为随机变量X.若用频率估计概率,求P(X=3).附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d,16.(本小题满分15分)如图,在四面体ABCD中,△ACD是边长为3的正三角形,△ABC是以AB为斜边的等腰直角三角形,E,F分别为线段AB,BC的中点,→AM=2→MD,→CN=2→ND.(1)求证:EF∥平面MNB;(2)若平面ACD⊥平面ABC,求直线BD与平面MNB所成角的正弦值.(第16题图)已知数列{a n },{b n },a n =(-1)n +2n ,b n =a n +1-λa n (λ>0),且{b n }为等比数列.(1)求λ的值;(2)记数列{b n ⋅n 2}的前n 项和为T n .若T i ⋅T i +2=15T i +1(i ∈N *),求i 的值.18.(本小题满分17分)已知 F 1,F 2是双曲线线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,F 1F 2=26,点T (26,10)在C 上.(1)求C 的方程;(2)设直线l 过点D (1,0),且与C 交于A ,B 两点.①若→DA =3→DB ,求△F 1F 2A 的面积;②以线段AB 为直径的圆交x 轴于P ,Q 两点,若|PQ |=2,求直线l 的方程.已知函数f(x)=e x-a+ax2-3ax+1,a∈R.(1)当a=1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>1时,试判断f(x)在[1,+∞)上零点的个数,并说明理由;(3)当x≥0时,f(x)≥0恒成立,求a的取值范围.。
江苏省南京市南京师大附中2025届数学高三第一学期期末学业质量监测试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( )A .−8B .−6C .6D .82.设等差数列{}n a 的前n 项和为n S ,若5632a a a +=+,则7S =( )A .28B .14C .7D .2 3.已知20,()1(0),{|()},{|(())()}a f x ax x x A x f x x B x f f x f x x >=-+>=≤=≤≤,若A B φ=≠则实数a 的取值范围是( )A .(0,1]B .3(0,]4 C .3[,1]4 D .[1,)+∞4.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .85.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( ) A.5 B.7 C- D.9-6.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6] C .[5,8] D .[6,7]7.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加、、A B C 三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( ) A .24B .36C .48D .64 8.若函数()2x f x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦ 9.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<10.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37 D .92811.若i 为虚数单位,则复数22sin cos 33z i ππ=-+,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为() A .1229,510⎡⎫⎪⎢⎣⎭ B .1229,510⎛⎤⎥⎝⎦ C .1229,510⎛⎫⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦二、填空题:本题共4小题,每小题5分,共20分。
江苏省南京市高一上期末学情调研数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.1.函数y=ln(x+1)的定义域为A.(1,+∞) B.(-1,+∞) C.[-1,+∞) D.(-∞,-1)2.“a>1”是“a2>1”A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在一次物理实验中,某同学采集到如下一组数据:A.y=2x B.y=x2-1 C.y=2x-2 D.y=log2x4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形天地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为(单位:弧度)注:匝,意为周,环绕一周叫一匝.(第4题图)A.4 B.5 C.6 D.75.已知函数f (x )=⎩⎨⎧cos x ,x <0,x 12,x ≥0,则f [f (-π3)]的值为 A . 2 B .22 C .4 D .146.函数f (x )=x 2sin x 的图象大致为A .B .C .D .7.在科学技术中,常常使用以e =2.71828…为底的对数,这种对数称为自然对数.若取e 3≈20,e 7≈1100,则ln55≈A .73B .113C .4D .6 8.函数f (x )=x +log 2x -4的零点为x 1,函数g (x )=x +log a (x -1)-5(a >1)的零点为x 2,若x 2-x 1>1,则实数a 的取值范围是A .(1,2)B .(1,2)C .(2,+∞)D .(2,+∞)二、多项选择题:本大题共4小题,每小题5分,共20分.全部选对得5分,部分选对得2分.9.已知角θ的终边经过点(2a ,a )(a >0),则A .sin θ=55B .cos θ=55C .tan θ=12D .tan θ=2 10.若0<m <1<a <b ,则A .m a <m bB .a m <b mC .log m a <log m bD .b a +m >a b +m11.已知函数f (x )=tan x +1tan x,则 A .f (x )的最小正周期为π B .f (x )的图象关于y 轴对称C .f (x )的最小值为2D .f (x )在(π4,π2)上为增函数 12.已知函数y =f (x ),对于任意x ,y ∈R ,f (x )f (y )=f (x -y ),则 A .f (0)=1 B .f (x 2)=2f (x )C .f (x )>0D .f (x )-f (y )2≥f (x +y 2) 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置.......上. 13.函数y =2cos x 的图象关于点 ▲ 中心对称.(写出一个正确的点坐标即可)14.已知关于x 的不等式ax +b >0的解集为(-3,+∞),则关于x 的不等式ax 2+bx <0的解集为 ▲ .15.已知定义在R 上的函数f (x )满足f (x +4)=f (x ),且当x ∈[0,4)时,f (x )=2x +m ,若f (2023)=3f (1),则m = ▲ .全科免费下载公众号-《高中僧课堂》16.对于非空集合M ,定义ΦM (x )=⎩⎨⎧∈∉,,,,M x M x 10若A ,B 是两个非空集合,且A ⊆B ,则ΦA (x )[1-ΦB (x )]= ▲ ;若A ={x |sin x ≥12},B =(a ,2a ),且存在x ∈R ,ΦA (x )+ΦB (x )=2,则实数a 的取值范围是 ▲ . 四、解答题:本大题共6小题,共70分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)求下列各式的值:(1)(212·223)6;(2)log 28-log 139+e ln3.18.(本小题满分12分)若5sin α+4sin(π2+α)=cos(π+α)+1. (1)求sin α·cos α的值;(2)若a ∈(0,π),求tan α的值.19.(本小题满分12分)已知集合A ={x |x x +4>1},B ={x |(x -2m )(x -m -3)<0}. (1)若m =-3,求A ∪B ;(2)在①A ∩B =B ,②A ∩B = 这两个条件中任选一个,补充在下面问题中,并解答该问题.若 ▲ ,求实数m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.20.(本小题满分12分)函数f (x )=A sin(ωx +φ)(A >0,0<φ<π)在一个周期内的图象如图所示.(1)求f (x )的解析式;(2)将f (x )的图象向右平移2π3个单位长度后得到函数g (x )的图象,设h (x )=f (x )-g (x ),证明:h (x )为偶函数.(第20题图)21.(本小题满分12分)某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x (单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年..需缴纳的水费C (单位:万元)与设备占地面积x 之间的函数关系为C (x )=20x +5(x >0).将该企业的净水设备购置费与安装后4.年.需缴水费之和合计为y (单位:万元).(1)要使y 不超过7.2万元,求设备占地面积x 的取值范围;(2)设备占地面积x 为多少时,y 的值最小?22.(本小题满分12分)已知函数f (x )=12(2x +2-x ),g (x )=12(2x -2-x ). (1)利用函数单调性的定义,证明:f (x )在区间[0,+∞)上是增函数;(2)已知F (x )=4f 2(x )-4mf (x )+9,其中m 是大于1的实数,当x ∈[0,log 2m ]时,F (x )≥0,求实数m 的取值范围;(3)当a ≥0,判断g (x )f (x )与af (x )+(1-a )的大小,并证明你的结论.。
江苏省2023年普通高中学业水平合格性考试试卷数学参考公式:锥体的体积公式:13V Sh=,其中S 是底面积,h 是高.一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >3.已知3i z =-,则z =()A.3B.4C. D.104.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3B.4C.5D.65.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++< D.x ∃∈R ,210x x ++>6.已知角α的终边经过点(2,1)P -,则sin α= A.55B.5-C.255D.5-7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞8.要得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.6210.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.3411.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.314.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1B.2C.3D.416.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.217.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.618.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A .1B.32C.22D.3320.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx =+B.x y a b =+C.log b y a x=+ D.b y a x=+21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45C.55D.25522.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE+=B.AB AC BC-=C.12EF AB= D.12DE DF ⋅=23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面24.已知向量()(()()2,0,,a b a kb ka b ==+⊥-,则实数k =()A.1-B.0C.1D.1-或125.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30min km ,则θ=()A.30︒B.45︒C.60︒D.75︒26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A .4πB.8πC.12πD.16π28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.江苏省2023年普通高中学业水平合格性考试试卷数学一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-【答案】A【分析】根据交集定义直接计算即可.【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >【答案】A【分析】由不等式的基本性质逐一判断即可.【详解】A 选项:a b >,则33a b +>+,故A 正确;B 选项:a b >,则a b -<-,所以33a b -<-,故B 错误;C 选项:当0a b >>或0a b >>时,11a b <,则33a b<,故C 错误;D 选项:当0a b >>时,22a b <,故D 错误.故选:A .3.已知3i z =-,则z =()A.3B.4C.D.10【答案】C【分析】根据复数的模的计算公式,即可求得答案.【详解】因为3i z =-,所以z ==故选:C.4.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3 B.4C.5D.6【答案】B【分析】根据平均数的计算公式列式计算,即可求得答案.【详解】由题意可得26534,201645a a ++++=∴=-=,故选:B5.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++<D.x ∃∈R ,210x x ++>【答案】B【分析】全称命题的否定是特称命题,任意改为存在,再把结论否定.【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤故选:B .6.已知角α的终边经过点(2,1)P -,则sin α=A.5B.55-C.5D.【答案】B【分析】由题意利用任意角的三角函数的定义,求得sin α的值.【详解】解:角α的终边经过点()2,1P -,则sin α55==-,故选B .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞【答案】D【分析】函数定义域满足101x ≥-,10x -≠,解得答案.【详解】函数()f x =101x ≥-,10x -≠,解得1x >.故选:D8.要得到函数2sin 3y x π⎛⎫=+⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位【答案】A【分析】根据三角函数的图像变换中的相位变换确定结果.【详解】根据相位变换的左加右减有:2sin y x =向左移动3π个单位得到2sin 3y x π⎛⎫=+⎪⎝⎭,故选A.【点睛】本题考查三角函数的图象变换中的相位变换,难度较易.相位变换时注意一个原则:左加右减.9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.62【答案】C【分析】由扇形图计算参加数学类和理化类的人数,即可求得答案.【详解】由扇形统计图可知参加数学类的人数为20031%62⨯=,参加理化类的人数为20015%30⨯=,故参加数学类的人数比参加理化类的人数多623032-=,故选:C10.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.34【答案】D【分析】列举出所有的基本事件,然后得到甲被选中的情况,利用古典概型求解即可【详解】从甲、乙、丙、丁4名同学中任选3名同学共有:(甲乙丙),(甲丙丁),(甲乙丁),(乙丙丁),4种情况,甲被选中共有3种情况,故对应的概率为34故选:D11.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<【答案】A【分析】利用对数函数的单调性得到a<0,0l b <<,1c >,得到答案.【详解】331log log 102a =<=;33310log log 2l g 13ob <=<<=;22log 321logc ==>,所以a b c <<.故选:A12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直【答案】B【分析】若l 与m 相交,得到l 与α有交点,这与题设矛盾,得到答案.【详解】直线l 平面α,直线m ⊂平面α,则l 与m 可能平行,异面和垂直,若l 与m 相交,l m A = ,则∈A l ,A m ∈,直线m ⊂平面α,故A α∈,即l 与α有交点,这与题设矛盾.故选:B13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.3【答案】C【分析】()2f x x -=在()0,∞+上单调递减,A 错误,()12f x x =不是偶函数,B 错误,定义判断C 正确,()3f x x=函数为奇函数,D 错误,得到答案.【详解】对选项A :2α=-,()2f x x -=,函数在()0,∞+上单调递减,错误;对选项B :12α=,()12f x x =,函数定义域为[)0,∞+,不是偶函数,错误;对选项C :2α=,()2f x x =,函数定义域为R ,()()()2f x x f x -=-=,函数为偶函数,且在()0,∞+上单调递增,正确;对选项D :3α=,()3f x x =,函数定义域为R ,()()()3f x x f x -=-=-,函数为奇函数,错误;故选:C14.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-【答案】B【分析】根据三角函数同角的函数关系式,结合齐次式法求值,可得答案.【详解】由题意tan 3α=-,可知cos 0α≠,则sin 2cos tan 2321sin cos tan 1314αααααα++-+===----,故选:B15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1 B.2C.3D.4【答案】C【分析】计算{}0,1,1A B *=-,得到元素个数.【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C16.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.2【答案】A【分析】利用奇函数性质代入数据计算得到答案.【详解】因为函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,所以()()()311log 211f f -=-=-+=-.故选:A.17.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.6【答案】C【分析】甲乙都不能译出密码得概率为1049P =.,密码被破译的概率为11P -,得到答案.【详解】甲乙都不能译出密码得概率为()()110.310.30.49P =-⨯-=,故密码被破译的概率为110.51P -=.故选:C18.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁【答案】A【分析】分别假设甲、乙、丙、丁的预测错误,看能否推出与题意相矛盾的情况,即可判断答案.【详解】若甲预测错误,则其余三人预测正确,即丁第一,乙第二,丙第三或第四,甲第四或第三,符合题意;若乙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丁预测错误,则其余三人预测正确,则甲和乙的预测相矛盾,这样有两人预测错误,不符合题意;故选:A19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A.1B.2C.2D.33【答案】C【分析】连接BD ,1DD ⊥平面ABCD ,故1DBD ∠是1BD 与平面ABCD 所成角,计算得到答案.【详解】如图所示:连接BD ,因为1DD ⊥平面ABCD ,故1DBD ∠线1BD 与平面ABCD 所成角,设正方体棱长为1,则11,DD DB ==,112tan 2DD DBD DB ∴∠==.故选:C20.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx=+ B.x y a b =+C.log b y a x=+ D.b y a x=+【答案】B 【分析】由函数模型的增长方式以及定义域可确定选项.【详解】由散点图的定义域可排除C 、D 选项,由散点图的增长方式可知函数模型为指数型.故选:B21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45 C.55 D.255【答案】D【分析】确定sin 0A >,再利用二倍角公式计算得到答案.【详解】()0,πA ∈,sin 0A >,23cos212sin 5A A =-=-,解得25sin 5A =.故选:D22.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE += B.AB AC BC -= C.12EF AB = D.12DE DF ⋅= 【答案】D 【分析】根据向量的运算法则得到ABC 错误,12cos 60DE DF DE DF =⋅⋅︒= ,D 正确,得到答案.【详解】对选项A :AB+AC =2AE ,错误;对选项B :AB AC CB -= ,错误;对选项C :12EF BA = ,错误;对选项D :1cos 6011212DE DF DE DF =︒=⋅⋅=⨯⨯ ,正确.故选:D23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面【答案】B 【分析】易得空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,证明PA PB PC ==即可.【详解】空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,则OA OB OC ==,且,,OA OB OC ⊂平面ABC ,所以直线l OA ⊥,直线l OB ⊥,直线l OC ⊥,当点P 与点O 重合时,PA PB PC ==,即直线l 的点到ABC 的三个顶点距离相等,当点P 与点O 不重合时,由勾股定理可得PA PB PC ==,即直线l 的点到ABC 的三个定点距离相等,综上直线l 的点到ABC 的三个顶点距离相等,反之到ABC 的三个顶点距离相等的点都在直线l 上,所以空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线.故选:B24.已知向量()(()()2,0,,a b a kb ka b ==+⊥- ,则实数k =()A.1- B.0 C.1D.1-或1【答案】D 【分析】求出()(),a kb ka b +- 的坐标表示,根据向量垂直的坐标表示,可列方程,即可求得答案.【详解】由已知向量()(2,0,a b == ,可得()()(2),(21,a kb k ka b k +=+-=- ,由()()a kb ka b +⊥- 可得(2)(21,0k k +⋅-=,即(2)(21)30k k k +--=,解得1k =±,故选:D25.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30minkm ,则θ=()A.30︒B.45︒C.60︒D.75︒【答案】C【分析】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,再利用余弦定理即可得解.【详解】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,则5km,4km,AB AC BC BAC θ===∠=,则2222516211cos 22542AB AC BC AB AC θ+-+-===⋅⨯⨯,又因090θ︒<<︒,所以60θ=︒.故选:C.26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍【答案】C 【分析】代入数据计算16.8110E =,13.8210E =,计算得到答案.【详解】1lg 4.8 1.5816.8E =+⨯=,16.8110E =;2lg 4.8 1.5613.8E =+⨯=,13.8210E =,16.83113.82101010E E ==.故选:C27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A.4πB.8πC.12πD.16π【答案】B【分析】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为4πS =案.【详解】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为2242π4π4π×8π2r r S r +-=⋅==,当且仅当r =,即r =时等号成立.故选:B.28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个【答案】B 【分析】根据分段函数的解析式,讨论m 的范围,确定每段的函数最小值,由题意列方程,求得m 的值,可得答案.【详解】当3x <时,()2221(1)f x x x m x m m =--+=--≥-,当3x ≥时,()sin 1f x m x =+,若0m =,()f x 的值域为[)0,∞+,不合题意;若0m >,则3x ≥时,[]()1,1f x m m ∈-++,min ()1f x m =-+,由于1m m -+>-,由题意可知需使2,2m m -=-∴=;若0m <,则3x ≥时,[]()1,1f x m m ∈+-+,min ()1f x m =+,0m ->,故需使12,3m m +=-∴=-,即实数m 的可能值共有2个,故选:B二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.【答案】(1)证明见解析(2)1【分析】(1)利用线面平行的判定定理即可求证;(2)先证明PN ^平面ABC ,即可求出三棱锥的体积【小问1详解】因为,M N 分别是,AB BC 的中点,所以//MN AC ,因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以MN //平面PAC ;【小问2详解】因为PBC 是等边三角形,N 是BC 的中点,所以PN BC ⊥,因为PN AN ⊥,,AN BC ⊂平面ABC ,,AN BC N ⋂=所以PN ^平面ABC ,因为底面ABC 和侧面PBC 都是边长为2的等边三角形,所以1132231334P ABC ABC V S PN -=⨯=⨯⨯⨯ 30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+ ⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.【答案】(1)π(2)21,2⎡⎫-++∞⎪⎢⎪⎣⎭【分析】(1)确定πsin 23y x ⎛⎫=+ ⎪⎝⎭,再计算周期即可.(2)设1sin 2x t -=,31,22t ⎡⎤∈-⎢⎥⎣⎦,考虑0t >,0=t ,0t <三种情况,利用均值不等式计算最值得到答案.【小问1详解】3π23πsin 2y f x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,最小正周期2ππ2T ==.【小问2详解】()()211[]28f x m f x +-≥,即211sin sin 28x m x +-≥,设1sin 2x t -=,1sin 2x t =+,31,22t ⎡⎤∈-⎢⎥⎣⎦,当0t >时,即21128t mt ⎛⎫++≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥-+- ⎪⎝⎭,111182t t ⎛⎫-+-≤-=- ⎪⎝⎭,当且仅当18t t =,即24t =时等号成立,故212m ≥--;当0=t 时,不等式恒成立;当0t <时,即21128t mt ⎛⎫+-≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥--++ ⎪-⎝⎭,1211182t t ⎛⎫--++≤-=- ⎪-⎝⎭,当且仅当18t t -=-,即24t =-时等号成立,故212m ≥-+.综上所述:12m ≥-+,即1,2m ⎡⎫∈-++∞⎪⎢⎪⎣⎭。
江苏省南京市(新版)2024高考数学部编版考试(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若函数,则()A.的最小正周期为B.的图象关于点对称C.在上有最小值D.的图象关于直线对称第(2)题人口普查是世界各国所广泛采用的搜集人口资料的一种科学方法,是提供全国基本人口数据的主要来源.根据人口普查的基本情况,可以科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作,人口普查资料是制定人口政策的依据和前提.截止2020年10月10日,我国共进行了六次人口普查,下图是这六次人口普查的人数和增幅情况,下列说法正确的是()A.人口数逐次增加,第二次增幅最大B.第六次普查人数最多,第四次增幅最小C.第六次普查人数最多,第三次增幅最大D.人口数逐次增加,从第二次开始增幅减小第(3)题下列方程中表示圆心在直线上,半径为,且过原点的圆的是()A.B.C.D.第(4)题2020年广东12月份天气预报历史记录中1号至8号的数据如表所示,则()日期最高气温/最低气温/12月1日231412月2日231312月3日201112月4日191012月5日21912月6日211512月7日231212月8日2311A.这8天的最高气温的极差为B.这8天的最高气温的中位数为C.这8天的最低气温的极差为D.这8天的最低气温的中位数为第(5)题设函数,方程恰有5个实数解,则正实数的取值范围是()A.B.C.D.第(6)题已知函数在处的切线与直线垂直,则a的值为()A.B.C.1D.2第(7)题将函数的图像上的各点的纵坐标不变,横坐标变为原来的2倍,再沿着轴向右平移个单位,得到的函数的一个对称中心可以是()A.B.C.D.第(8)题为确保马拉松赛事在某市顺利举行,组委会在沿途一共设置了7个饮水点,每两个饮水点中间再设置一个服务站,一共6个服务站.由含甲、乙在内的13支志愿者服务队负责这13个站点的服务工作,每一个站点有且仅有一支服务队负责服务,则甲队和乙队在不同类型的站点服务且不相邻的概率为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知四面体ABCD的所有棱长均为,M,N分别为棱AD,BC的中点,F为棱AB上异于A,B的动点,点G为线段MN上的动点,则()A.线段MN的长度为1B.周长的最小值为C.的余弦值的取值范围为D.直线FG与直线CD互为异面直线第(2)题下列说法不正确的是()A.存在,使得B.函数的最小正周期为C.函数的一个对称中心为D.若角的终边经过点,则角是第三象限角第(3)题已知函数,则()A.函数的值域为B.函数是一个偶函数,也是一个周期函数C .直线是函数的一条对称轴D.方程有且仅有一个实数根三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列的前n项和满足,则_________.第(2)题若满足约束条件,则的最大值为__________.第(3)题设函数,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题的内角A,B,C的对边分别为a,b,c,且b是a,c的等比中项.(1)求B的最大值:(2)若C为钝角,求的取值范围.第(2)题从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:数据分组频389121053数(1)根据频数分布表,求该产品尺寸落在的概率;(2)求这50件产品尺寸的样本平均数.(同一组中的数据用该组区间的中点值作代表);(3)根据产品的频数分布,求出产品尺寸中位数的估计值.第(3)题如图,四棱锥的底面是边长为2的菱形,为的中点,.(1)证明:平面平面.(2)若,且二面角的大小为,求四棱锥的体积.第(4)题记函数的导函数为,的导函数为,设是的定义域的子集,若在区间上,则称在上是“凸函数”.已知函数.(1)若在上为“凸函数”,求的取值范围;(2)若,判断在区间上的零点个数.第(5)题改革开放以来,我国农村7亿多贫困人口摆脱贫困,贫困发生率由1978年的下降到2018年底的,创造了人类减贫史上的中国奇迹,为全球减贫事业贡献了中国智慧和中国方案.“贫困发生率”是指低于贫困线的人口占全体人口的比例.2012年至2018年我国贫困发生率的数据如表:年份()2012201320142015201620172018贫困发生率10.28.57.2 5.7 4.5 3.1 1.4(1)从表中所给的7个贫困发生率数据中任选两个,求两个都低于的概率;(2)设年份代码,利用回归方程,分析2012年至2018年贫困发生率的变化情况,并预测2019年的贫困发生率.附:回归直线的斜率和截距的最小二乘估计公式为:,.。
2024-2025学年江苏省南京市金陵中学高一(上)学情调研数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设a,b∈R,集合A={0,a},集合B={−1,b},若A=B,则a+b的值为( )A. 1B. 0C. −1D. −22.命题“∀x>1,x2+x−2>0”的否定为( )A. ∃x>1,x2+x−2≤0B. ∃x≤1,x2+x−2≤0C. ∀x≤1,x2+x−2≤0D. ∀x>1,x2+x−2≤03.设x>0,y>0且x+y=2,则4x +1y的最小值为( )A. 9B. 52C. 4 D. 924.满足{a1,a2}⊆A⊆{a1,a2,a3,a4,a5}的集合A的个数为( )A. 5B. 4C. 8D. 75.设全集U=A∪B={1,2,3,5,8},A∩(∁U B)={1,5},B∩(∁U A)={2},则集合A为( )A. {1,2,5}B. {1,3,5,8}C. {3,8}D. {1,5}6.若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )A. a2+b2>2abB. a+b≥2abC. 1a +1b>2abD. ba+ab≥27.已知关于x的不等式(a−2)x2+2(a−2)x+1≤0的解集是⌀,则实数a的取值范围是( )A. [2,3)B. (−∞,2)∪(3,+∞)C. (2,3)D. (−∞,2]∪(3,+∞)8.设集合A={x|(x−2)(x−a)≤0},B={x|3<x<7},若A∩B中恰含有3个整数,则实数a的取值范围是( )A. (5,6]B. [6,+∞)C. [6,7)D. (6,7]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知a>b>c>0,下列不等式一定成立的是( )A. b<a+b2<a B. ca>cbC. ba−b>cb−cD. ab>a+cb+c10.下列叙述正确的是( )A. 已知a,b,c是实数,则“ac2>bc2”成立的充分不必要条件是“a>b”B. “x∈A∩B”是“x∈A∪B”的充分不必要条件C. “x>0且y>0”是“xy>0”的充分不必要条件D. “a2>1”是“a>1”的必要不充分条件11.关于x的不等式|x−a|≤2成立的必要不充分条件是−3<x≤316,则下列叙述正确的是( )A. 4−a+94−a的最小值为6B. 关于x的不等式x2−2ax+a2+a+1≤0的解集为⌀C. 关于x的不等式(x−a)(x−8)<0的解集中整数解最少3个D. {x|x≤a+1}∪{x|x≥2a−136}=R三、填空题:本题共3小题,每小题5分,共15分。
南京市高中数学学业评价试卷答案
一、选择题(每小题5分,共60分)
1.C 2.C 3.C 4.B 5.C 6.B 7.A 8.B 9.C 10.A 11.C 12.D
二、填空题(每小题5分,共30分)
13.{3,4,5}14.{x ︱x ≠2} 15.log 20.3<20.3 16.-12
17.a =6或a =-3 18.x +1,x -1
三、解答题解答题(第19,20题每小题10分,第21,22,23题每小题12分,第24题
14分,共70分)
19.解:212213216
=2.
20.解:∵A ∩B ={3},
∴9+3a +b =0,9+3c +15=0.故c =-8.x 2-8x +15=0,故A ={3}.
故a 2—4b =0, 即 a =—6,b =9.
21.解:设两个实根分别是x 1,x 2,
则有两个正根的条件是:⎩
⎪⎨⎪⎧∆=4-4(m +1) ≥0,
x 1+x 2=2>0,x 1x 2=m +1>0. 解得-1<m ≤0.
22.解:当x <0时,f (-x )=(12)-x -1,而f (x )=f (-x ),f (x )=12
)-x -1. 故f (x )=⎩⎨⎧(12)x -1,x ≥0,2x -1,x <0.
23.解:(1) 根据题意,光线通过1块玻璃板后,强度为y 1=910
a ; 通过2块玻璃板后,强度为y 2=910a ·910=(910)2·a ; 通过3块玻璃板后,强度为y 3=(910
)3·a ;… 故通过x 块玻璃板后,强度为y =(910x ·a (x ∈N*). (2) 要使光线强度削弱到原来的(910
)11以下, 只要 (910x ·a ≤(910)11a ,即(910)x ≤(910)11,解得x ≥11. 故至少通过11块玻璃板后,光线强度将削弱到原来的(910
)11以下. 24.解:(1)因为f (-x )=log 2-3x -1-3x +1= log 23x +13x -1= log 2(3x -13x +1
-1=-f (x ),所以函数f (x )是奇函数.(2)f (x )在(13
,+∞)上是增函数.
高一(七)班学生常规考核加分、扣分通知单
高一(七)班学生常规考核加分、扣分通知单
高一(七)班学生常规考核加分、扣分通知单
高一(七)班学生常规考核加分、扣分通知单
高一(七)班学生常规考核加分、扣分通知单。