F1
.
F0 A2 x
其中 a2 b2 c2 , a 0,b c 0 , F0 , F1, F2 是对应的焦点。 B1
(1)若三角形 F0 F1F2 是边长为 1 的等边三角形,求“果圆”的方程;
(2)若
A1 A
B1B
,求
b a
的取值范围;
解:(1)∵F0(c,0)F1(0, b2 c2 ),F2(0, b2 c2 )
①;
∵点 P1, P2 在双曲线上,∴点 P1, P2 的坐标适合方程①。
将 (3, 4
2
),
(
9 4
,
5)
分别代入方程①中,得方程组:
(4 2)2 a2
32 b2
25 a2
(
9)2 4 b2
1
1
将
1 a2
和
1 b2
1
看着整体,解得
a2 1
1 16
1
,
b2 9
∴
a 2 b2
16 即双曲线的标准方程为 y2
9
16
x2 9
1。
点评:本题只要解得 a2 ,b2 即可得到双曲线的方程,没有
必要求出 a,b 的值;在求解的过程中也可以用换元思想, 可能会看的更清楚。
(4) 与双曲线 x 2 y 2 1有共同渐近线, 9 16
且过点 (3,2 3) 。
解析:(4)设所求双曲线方程为 x2 y 2 ( 0) ,
3 m
5 n
1
定义,还要知道椭 圆中一些几何要素
所以,椭圆方程为 y2 x2 1 . 与椭圆方程间的关
10 6
系。
例 2.设椭圆的两个焦点分别为 F1、、F2,过 F2 作椭圆长轴的垂线交椭圆于点 P,若△F1PF2 为