电气绝缘用双向拉伸聚酯薄膜
- 格式:pdf
- 大小:244.72 KB
- 文档页数:12
双向拉伸聚酯薄膜生产线技术介绍引言双向拉伸聚酯薄膜生产线是一种常用的薄膜生产工艺,其通过经过多道工序对聚酯原料进行预处理,然后经过拉伸和冷却等环节,最终制备成高品质的聚酯薄膜产品。
本文将介绍双向拉伸聚酯薄膜生产线的工艺流程、设备配置以及生产线优势等。
工艺流程双向拉伸聚酯薄膜生产线的工艺流程主要包括以下几个环节:1.原料处理:将聚酯原料进行预处理,包括干燥和混合,以确保原料质量稳定。
2.熔融挤出:将经过预处理的聚酯原料送入挤出机,在高温高压下熔融成薄膜状。
3.拉伸:经过挤出机挤出的薄膜进入拉伸机,通过拉伸来改善薄膜的物理性能,如强度和透明度等。
4.冷却:拉伸后的薄膜经过冷却器冷却,使其保持所需形状和尺寸,并固化其分子结构。
5.切割:冷却后的薄膜经过切割机械切割为所需长度和宽度。
6.卷取:经过切割的薄膜被卷取到卷取机上,形成卷筒状的成品产品。
以上是双向拉伸聚酯薄膜生产线的主要工艺流程,每个环节都需要精密的控制和调节,以确保最终产品的质量和性能。
设备配置双向拉伸聚酯薄膜生产线是一个复杂的生产系统,包括多个关键设备。
以下是常见的设备配置:1.挤出机:用于将聚酯原料熔融并挤出成薄膜状。
2.拉伸机:通过不同的拉伸比例来改变薄膜的物理性能,如强度和透明度等。
3.冷却器:用于冷却拉伸后的薄膜并固化其分子结构。
4.切割机:用于将冷却后的薄膜切割为所需的长度和宽度。
5.卷取机:用于将切割后的薄膜卷取成卷筒状的成品产品。
以上设备配置只是一个典型的例子,实际的生产线配置可能会根据具体需求和生产规模做一定的调整。
生产线优势双向拉伸聚酯薄膜生产线具有以下几个优势:1.可调性强:通过调节拉伸比例和工艺参数,可以得到不同性能的薄膜产品,以满足不同行业的需求。
2.高品质:经过拉伸和冷却等环节后,薄膜产品具有较高的强度、透明度和平整度等优良性能。
3.生产效率高:双向拉伸聚酯薄膜生产线采用自动化控制系统,可以实现高速、连续和稳定的生产,提高生产效率。
随着光伏电池组件厂家对延长电池寿命和光电转换效率的要求进一步提高,对光伏电池配套材料---聚酯薄膜的要求越来越苛刻。
概括起来主要有以下几个方面的特殊要求:1.电气绝缘性能:太阳能电池背板的电气绝缘性能主要包括击穿电压和局部放电电压,这两个指标能否达到标准主要依赖聚酯薄膜。
普通双向拉伸聚酯薄膜的击穿电压可达到GB/T13542-2009国家标准或ASTMD-149美国电工标准,但是要达到IEC60664-1/IEC61730国际电工标准规定的电池背板的局部放电电压指标(取得TUV南德意志集团的光伏认证证书),需要对双向拉伸聚酯薄膜的原材料和生产工艺作很大调整。
2.耐水解老化性能:普通聚酯薄膜主要测试耐热老化性能,一般均能通过UL94认证RTI 105℃耐温标准。
目前,验证聚酯薄膜能否达到太阳能光伏电池耐水解老化性能,一般采用120℃、100%RH耐水解的测试方法,聚酯薄膜龟裂、脆化的时间不得少于96小时。
3.水蒸气透过率:太阳能光伏电池对背板的水蒸气透过率标准为小于2g/m2.天(ISO-15106-3测试方法),目前光伏组件品牌厂家一般都要求电池背板的“水透”指标小于1.5g/m2.天,甚至要求低于1g/m2.天。
电池背板的“水透”高低主要取决于聚酯薄膜,而普通250微米聚酯薄膜的“水透”一般为2.5~3.5g/m2.天,聚酯薄膜要想达到太阳能电池的“水透”要求,需从聚酯材料的改性上多下功夫。
4.尺寸稳定性能:聚酯薄膜纵向收缩率一般可以控制在1.5%(150℃,30min)以下,由于太阳能光伏电池都需要经过三次高温处理(太阳能背板复合两次、太阳能组件封装高温层压一次),这要求电池背板的基材要有极好的尺寸稳定性。
目前,国际上双向拉伸聚酯薄膜的纵向收缩率已能控制到0.5%以下(150℃,30min)。
5.耐撕裂性能:由于太阳能电池组件封装时需要从电池背板上穿孔(长方形状)引出电极,这要求聚酯薄膜要具有很好的耐撕裂性能和韧性,避免在组件加工过程中和室外的湿、热、干、冷环境下易撕裂、易脆化。
双向拉伸聚酯薄膜BOPET要点双向拉伸聚酯薄膜,也被称为BOPET薄膜,是一种由聚对苯二甲酸乙二醇酯(PET)制成的聚酯薄膜,通过双向拉伸工艺制得。
这种薄膜以其卓越的物理和化学性质,在包装、电子、建筑、印刷等领域有广泛的应用。
以下是关于双向拉伸聚酯薄膜BOPET的要点:1.做工艺:BOPET薄膜是通过将预制的PET薄膜进行双向拉伸而制成。
这种双向拉伸的过程能够提高薄膜的机械性能、透明度和热缩特性。
拉伸过程中,薄膜会被先拉伸到纵向,然后再拉伸到横向,这样可以实现纵向和横向的拉伸比例。
2.物理性质:BOPET薄膜具有很高的拉伸强度和模量,具有很好的机械强度。
它同时也具有很好的耐磨性、耐撕裂性和耐冲击性。
此外,它还具有很好的耐温性能,在高温下不易变形。
3.透明度:BOPET薄膜具有良好的透明度,可以在应用中保持产品的清晰度和外观。
这种透明度是由于拉伸过程中薄膜的晶格结构发生改变,使得光线通过时不易散射。
因此,这种薄膜非常适合用于视觉效果要求高的应用,比如电子产品的显示屏。
5.化学性质:BOPET薄膜具有很好的化学稳定性,对常见的腐蚀性物质具有抵抗能力。
它不易受到酸、碱、酶和一些溶剂的侵蚀,从而能够保持产品的质量和外观。
6.可回收性:BOPET薄膜是一种可回收的材料,对环境的影响较小。
由于它的化学稳定性,它可以通过物理方法进行回收和再利用,减少对环境的污染。
总的来说,双向拉伸聚酯薄膜BOPET是一种高性能的薄膜材料,具有多种优点,适用于不同领域的应用。
它的物理和化学性质使得它能够满足不同领域对材料性能的要求,同时它的可回收性也使得它成为一种环保的材料选择。
双向拉伸聚酯薄膜生产知识双向拉伸聚酯薄膜,也称为BOPET薄膜,是一种常见的塑料材料,广泛应用于包装、电子、建筑和印刷等行业。
它具有许多出色的特性,如高强度、优异的抗冲击性、化学稳定性和良好的热稳定性。
在生产BOPET薄膜之前,需要了解一些相关的生产知识。
BOPET薄膜的生产过程通常包括以下几个步骤:1.聚酯原料BOPET薄膜通常由聚酯树脂制成,最常见的聚酯树脂之一是聚对苯二甲酸乙二酯(PET)。
聚酯树脂会被加热并使其熔化,成为可用于生产薄膜的熔融物料。
2.流延法流延法是生产BOPET薄膜的常见方法之一、在流延法中,将熔融的聚酯树脂通过挤出机,经过加热和压力处理,使其形成一条薄片,然后将薄片拉伸至所需的厚度,并在过程中进行冷却和固化。
3.横向拉伸横向拉伸是生产BOPET薄膜的重要步骤之一、在横向拉伸过程中,薄片被拉伸至所需的宽度,在这个过程中,通过控制拉伸速度和温度,可以改变薄膜的物理性能。
通常,横向拉伸会使薄膜的强度和耐撕裂性增加,同时也会降低膨胀性。
4.纵向拉伸纵向拉伸也是生产BOPET薄膜的重要步骤之一、在纵向拉伸过程中,薄片被拉伸至所需的长度。
与横向拉伸类似,通过控制拉伸速度和温度,可以改变薄膜的物理性能。
通常,纵向拉伸会使薄膜的强度和透明度提高。
5.收卷和切割在薄膜的拉伸过程完成后,通过收卷机将薄膜收卷成卷筒状,并进行切割,以便于后续加工和使用。
通常,收卷机具有自动张力控制系统,以确保薄膜在收卷过程中的良好质量。
BOPET薄膜具有广泛的应用领域。
它可以用于包装食品、药品和化妆品等产品,并能提供良好的保湿性和耐气候变化性。
另外,BOPET薄膜还可以用于电子领域,如LCD显示器、太阳能电池板等,以提供保护和隔离。
此外,BOPET薄膜还可作为建筑材料,用于隔热层、防水层和阳光控制层等。
总而言之,双向拉伸聚酯薄膜(BOPET薄膜)的生产知识包括聚酯原料的选择、流延法的使用、横向和纵向拉伸的控制以及最后的收卷和切割。
双向拉伸聚酯薄膜BOPET要点1.原料:BOPET薄膜的主要原料是聚对苯二甲酸乙二醇酯(PET)树脂。
PET是一种高分子聚合物,具有优异的透明度、光泽和机械性能。
其化学结构中的酯键使其能够通过拉伸加工形成具有双向拉伸性能的薄膜。
2.制备工艺:BOPET薄膜的制备是通过将PET树脂熔融后,经过挤出、拉伸和定型等工艺步骤完成的。
首先,PET树脂熔融后通过挤出机挤出成一定厚度的薄膜片。
然后,薄膜片经过一系列的拉伸过程,包括先拉伸和横向拉伸,以增加薄膜的机械强度和透明度。
最后,薄膜进行冷却定型,使其保持所需的形状和尺寸。
3.物理性能:BOPET薄膜具有优异的物理性能。
首先,它具有出色的透明度和光泽,使其成为理想的包装材料。
其次,BOPET薄膜具有优异的拉伸强度和耐撕裂性能,能够承受高张力和破坏力。
此外,它还具有优良的耐热性、耐溶剂性和绝缘性能。
4.包装应用:BOPET薄膜在包装领域有广泛的应用。
它可以用于食品包装,如透明包装膜、真空包装薄膜和封口膜等。
BOPET薄膜还可以用于医药包装、化妆品包装和电子产品包装等。
由于其较低的透水率和气体渗透率,以及耐湿性能,BOPET薄膜可以保护包装物免受湿气、氧气和细菌的侵入。
5.电子应用:BOPET薄膜在电子领域也有广泛的应用。
它可以用作平面显示器背光模组的反射层和导光板的保护膜。
此外,BOPET薄膜还可以用于太阳能电池板的封装膜、电子电路的绝缘层和电容器的介质。
6.环保特性:BOPET薄膜具有良好的环保特性。
首先,PET树脂是一种可回收的材料,可以通过再生回收,降低对自然资源的依赖。
其次,BOPET薄膜自身具有可降解性能,能够在自然环境中分解,减少对环境的污染。
总结起来,BOPET薄膜是一种具有优异物理和化学性能的聚酯薄膜,适用于包装、电子、建筑和航空航天等领域。
它具有优异的透明度、光泽、拉伸强度和耐撕裂性能,以及良好的耐热性、耐溶剂性和绝缘性能。
同时,BOPET薄膜还具有可回收和可降解的环保特性。
BOPET分析报告1. 简介BOPET(双向拉伸聚酯薄膜)是一种聚酯薄膜,具有优异的物理和化学性能,广泛应用于包装、电子产品和工业等领域。
本文将对BOPET薄膜进行分析,包括其特性、应用以及市场前景。
2. 特性2.1 优异的物理性能BOPET薄膜具有高强度、高刚度和高熔点等特点。
其高强度使其具有较好的抗拉伸性能,能够承受较大的力,不易破裂。
而高刚度使得该薄膜适用于需要较高稳定性的应用场景。
此外,BOPET薄膜的高熔点使其具有较好的耐热性能,能够在高温环境下保持稳定。
2.2 优异的化学性能BOPET薄膜具有较好的耐腐蚀性和耐化学品性能。
它能够抵御大多数溶剂和化学物质的腐蚀,使其在包装和工业领域得到广泛应用。
此外,BOPET薄膜还具有较好的电气绝缘性能,可用于电子产品的保护。
3. 应用3.1 包装行业BOPET薄膜在包装行业中拥有广泛的应用。
其高强度、高稳定性和优异的物理性能使其成为食品包装的理想选择。
BOPET薄膜可以用于制作食品袋、瓶贴、保鲜膜等包装材料,能够有效保护食品的新鲜度和品质。
3.2 电子产品BOPET薄膜在电子产品领域中也有重要的应用。
其电气绝缘性能和耐热性能使其成为电子产品的常用保护材料。
BOPET薄膜可以用于制作电子产品的屏幕保护膜、电路板绝缘层等,能够有效延长电子产品的使用寿命。
3.3 工业领域BOPET薄膜在工业领域中发挥着重要作用。
由于其优异的物理性能和化学性能,BOPET薄膜可以用于制作工业设备的隔热材料、防护薄膜等,能够提高工业生产的效率和安全性。
4. 市场前景BOPET薄膜具有广阔的市场前景。
随着经济的发展和人们生活水平的提高,对包装行业和电子产品的需求不断增加。
作为这些领域的重要材料之一,BOPET薄膜的市场需求也将不断增加。
此外,随着环保意识的提高,对可持续发展和可回收材料的需求也在不断增加。
BOPET薄膜作为一种可回收的材料,符合环保要求,将在未来市场中有更广泛的应用。
双向拉伸聚乙烯(BOPE)薄膜1范围本文件规定了双向拉伸聚乙烯(BOPE)薄膜的术语和定义、分类、要求、试验方法、检验规则、标志、包装、运输和贮存;废膜的收集、暂存、转运、处置。
本文件适用于以聚乙烯树脂为主要原料,采用共挤平面拉伸法,沿纵向、横向拉伸所制得的薄膜。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T191包装储运图示标志GB/T1040.3塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件GB/T2410透明塑料透光率和雾度试验方法GB/T2828.1计数抽样检验程序第1部分:按接受质量限(AQL)检索的逐批检验抽样计划GB/T2918塑料试样状态调节和试验的标准环境GB/T6672塑料薄膜和薄片厚度测定机械测量法GB/T6673塑料薄膜和薄片长度和宽度的测定GB/T8807塑料镜面光泽试验方法GB/T10006塑料薄膜和薄片摩擦系数测定方法GB/T12027塑料薄膜和薄片加热尺寸变化率试验方法GB/T14216塑料膜和片润湿张力的测定GB/T26253塑料薄膜和薄片水蒸气透过率的测定红外检测器法GB/T37841塑料薄膜和薄片耐穿刺性测试方法QB/T2358塑料薄膜包装袋热合强度试验方法QB/T5609多层共挤流延聚乙烯薄膜3术语、定义QB/T5609界定的晶点、团聚点、起霜以及下列术语和定义适用于本文件。
3.1双向拉伸聚乙烯薄膜Biaxially oriented polyethylene(BOPE)film以聚乙烯树脂为主要原料,采用共挤平面拉伸法,沿纵向、横向拉伸所制得的薄膜。
薄膜的主要原料应占所采用所有原辅料总重量百分比大于等于90%,且添加的功能助剂及其他原料应不影响再次热塑性加工回收。
亦称为双向拉伸聚乙烯单一材质薄膜。
bopet薄膜厚度范围
【实用版】
目录
1.BOPET 薄膜的概述
2.BOPET 薄膜的厚度范围及其分类
3.BOPET 薄膜厚度对性能的影响
4.结论
正文
BOPET(双向拉伸聚酯薄膜)是一种高性能的塑料薄膜,由聚对苯二甲酸乙二醇酯(PET)经过双向拉伸而成。
BOPET 薄膜因其优良的物理性能、化学稳定性和环保特性,广泛应用于包装、电子、光电等领域。
BOPET 薄膜的厚度范围非常广泛,一般可分为以下几个等级:
1.超薄型:厚度在 1μm 以下,主要用于高端包装、电子器件等领域。
2.薄型:厚度在 1-3μm 之间,主要用于一般包装、印刷等应用。
3.中型:厚度在 3-10μm 之间,常用于复合包装材料、绝缘材料等。
4.厚型:厚度在 10-25μm 之间,主要用于汽车内饰、家具等耐磨、耐热场合。
BOPET 薄膜的厚度对其性能有很大影响。
一般来说,薄膜越薄,其透明度、柔软性、透气性等性能越好,但同时机械强度、耐热性等会相对较差。
反之,薄膜越厚,其机械强度、耐热性等性能会提高,但透明度、柔软性、透气性等会降低。
因此,在实际应用中,需要根据具体需求选择适当厚度的 BOPET 薄膜。
例如,在高端包装领域,通常选用超薄型的 BOPET 薄膜,以保证包装的透明度和美观度;在电子领域,则需要选用薄型或中型的 BOPET 薄
膜,以满足器件的绝缘、保护等要求。
总的来说,BOPET 薄膜的厚度范围广泛,不同厚度的薄膜具有不同的性能特点,可满足各种应用场景的需求。
双向拉伸聚酯薄膜工艺双向拉伸聚酯薄膜是一种常见的塑料薄膜,具有优良的物理性能和化学稳定性,广泛应用于包装、电子、建筑等领域。
本文将介绍双向拉伸聚酯薄膜的制备工艺及其特点。
一、制备工艺双向拉伸聚酯薄膜的制备主要包括预拉伸、热定型和终拉伸三个环节。
1. 预拉伸预拉伸是将聚酯片材加热至玻璃化转变温度以上,然后进行拉伸,使其在拉伸方向上达到一定的拉伸率。
这一步骤可以提高薄膜的强度和透明度。
2. 热定型热定型是将预拉伸后的聚酯片材加热至熔融温度,并在一定的张力下进行拉伸,使其在横向方向上达到一定的拉伸率。
随后,将薄膜冷却,使其保持拉伸状态。
这一步骤可以增加薄膜的收缩性能和热稳定性。
3. 终拉伸终拉伸是将热定型后的薄膜加热至熔融温度以上,然后进行拉伸,使其在拉伸方向上达到一定的拉伸率。
这一步骤可以进一步提高薄膜的强度和透明度。
二、特点双向拉伸聚酯薄膜具有以下几个特点:1. 高强度:经过预拉伸和终拉伸后,薄膜在拉伸方向和横向方向上都具有较高的强度,能够承受一定的拉伸和撕裂力。
2. 优良的透明度:由于薄膜的分子结构经过拉伸和热定型后得到改善,使得薄膜具有较高的透明度,能够满足包装行业对产品外观的要求。
3. 良好的热稳定性:经过热定型和终拉伸后的薄膜具有较好的热稳定性,能够在高温下保持较好的物理性能,不易变形或变色。
4. 优异的阻隔性能:双向拉伸聚酯薄膜具有较高的阻隔性能,能够很好地阻隔水汽、氧气、香气等物质的渗透,保持包装内产品的新鲜度和香味。
5. 良好的可加工性:由于聚酯薄膜具有良好的柔韧性和可塑性,可以通过印刷、复合、涂布等加工工艺,制作成各种不同的包装产品。
双向拉伸聚酯薄膜工艺制备的薄膜在包装、电子、建筑等领域有广泛的应用。
例如,在食品包装行业,双向拉伸聚酯薄膜可以制作成各种包装袋、瓶贴等产品,具有良好的透明度和阻隔性能,能够保持食品的新鲜度和卫生安全。
在电子行业,双向拉伸聚酯薄膜可以制作成绝缘材料,用于电路板的保护和封装。
双向拉伸聚酯薄膜欧标测试标准一、双向拉伸聚酯薄膜欧标测试标准概述双向拉伸聚酯薄膜在很多领域都有着重要的应用呢,那欧标测试标准就是来确保它的质量和性能等各方面都符合欧洲那边的要求啦。
这就像是给这个薄膜进行一场超级严格的考试,只有通过了这个欧标测试,才算是在欧洲市场有了入场券哦。
二、具体测试项目1. 厚度测试这是很基本的一项测试呢。
薄膜的厚度要是不均匀或者不符合标准的话,在很多应用场景下都会出问题的。
比如说在一些需要精确包装的产品中,如果薄膜厚度不对,可能就无法很好地保护产品或者会浪费材料。
一般会使用专门的测厚仪器,在薄膜的不同位置进行测量,然后取平均值等方式来确定厚度是否符合欧标要求。
2. 拉伸强度测试双向拉伸聚酯薄膜嘛,拉伸强度是非常关键的性能指标。
这就好比是测试一个人的力气有多大一样。
如果拉伸强度不够,在使用过程中薄膜可能就会轻易断裂。
测试的时候,会用专业的设备对薄膜进行拉伸,直到它断裂,然后记录下这个过程中的各种数据,像最大拉伸力等,再和欧标规定的数值进行比较。
3. 透明度测试对于一些需要展示内部产品的包装等用途,透明度就很重要啦。
就像我们买东西的时候,如果包装的薄膜很模糊,都看不到里面的东西,那肯定是不行的。
欧标会规定一个透明度的数值范围,测试的时候会用专门的光学仪器来测量薄膜的透明度,看看是否在标准范围内。
4. 热稳定性测试因为在实际使用中,薄膜可能会遇到不同的温度环境。
要是热稳定性不好,在温度稍微高一点或者低一点的时候,薄膜的性能就发生很大变化,那肯定是不可以的。
这个测试会模拟不同的温度环境,观察薄膜的物理和化学性质的变化,比如会不会变形、变色等,来判断是否符合欧标。
三、欧标测试的流程1. 样品采集首先得从生产的薄膜中选取合适的样品。
这个样品要具有代表性哦,不能专门选那些看起来特别好或者特别差的。
一般会按照一定的抽样规则,从不同批次、不同生产时间段的薄膜中选取足够数量的样品。
2. 预处理在进行测试之前,可能需要对样品进行一些预处理。
59一、双向拉伸聚酯薄膜技特点双向拉伸聚酯薄膜(BOPET)是一种综合性能优良的高分子薄膜材料,它是以聚对苯二甲酸乙二醇酯为主要原料,经结晶干燥、挤出熔融、铸片和双轴拉伸定向而得。
BOPET薄膜具有机械强度高、耐温性好、电绝缘性能优良、耐化学腐蚀、透气性小、透明、无毒、耐折等一系列特点,用途十分广泛。
不同厚度、不同品级的聚酯薄膜,使用于不同的领域。
例如它可用作电影片基感光材料,磁带带基,电容器介质和绝缘材料,复合包装材料,真空镀铝膜,金拉线及热烫金膜等。
二、双向拉伸聚酯薄膜生产工艺流程采用双向拉伸技术生产聚酯薄膜,即使用纵向拉伸和横向拉伸技术,一般是先纵向拉伸后再横向拉伸的工艺流程。
纵向拉伸技术是指聚酯膜厚片在辊筒间纵向拉伸、定型。
纵向拉伸的两种方式如图1所示;而横向拉伸技术是指在横向拉伸箱里对聚酯薄膜进一步拉伸、定型。
横向拉伸设备结构如图2所示。
图1 两种纵向拉伸方式设备结构图图2 横向拉伸方式设备结构图1.配料与混合生产双向拉伸聚酯薄膜所需要的主要原材料是聚酯薄膜母料切片。
聚酯切片又称聚对苯二甲酸乙二醇酯(PET),聚酯薄膜母料切片中含有二氧化硅、二氧化钛、碳酸钙等物质,同时可以根据生产聚酯薄膜的工艺需求选择不同的聚酯薄膜母料切片。
聚酯合成主要是使用精对苯二甲酸(PTA)和乙二醇(EG)直接进行混合反应得到,主要氛围混合配置、添加剂的投入、酯化、聚合反应、固相聚合五大步骤。
2.结晶和干燥经过聚合反应、抽真空、固相聚合后的聚酯 薄膜切片,必须经过结晶和干燥的工艺后才能对其进行双向拉伸。
结晶和干燥工艺流程的主要目的是为了提升聚合物的软化点,使得粒子在熔融过程中析出时不会相互粘合、结成块状。
同时,干燥的工艺流程能够去除其中的水分,而聚合物中的水分会在熔融过程中使聚合物水解或产生气泡。
聚酯薄膜切片的结晶和干燥工艺过程中,采用的设备一般是结晶床和干空气制备装置,使用空压机、去湿器对其干燥。
3.熔融挤出聚酯薄膜的生产工艺过程中,必须经过熔融挤出过程。
电气绝缘用薄膜第4部分:聚酯薄膜1 范围本文件规定了电气绝缘用聚酯薄膜 (以下简称薄膜 )的分类和要求。
本文件适用于由聚对苯二甲酸乙二醇酯 (PET)经铸片及均衡双轴定向而制得的薄膜。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 2423.50 环境试验第2部分:试验方法试验Cy: 恒定湿热主要用于元件的加速试验(GB/T 2423.50—2012,IEC 60068-2-67:1995,IDT)GB/T 13542.1—2009 电气绝缘用薄膜第1部分:一般要求(IEC 60674-1:1980,IDT)GB/T 13542.2—2021 电气用塑料薄膜第2部分:试验方法(IEC 60674-2:2019,MOD)UL94 设备和器具部件用塑料材料的可燃性试验(Tests for Flammability of Plastic Materials for Parts in Devices and Appliances)3 术语和定义本文件没有需要界定的术语和定义。
4 分类聚酯薄膜根据其应用和用途分为5种类型,如表1所示。
表1 聚酯薄膜的分类和型号5 命名聚酯薄膜应按下述命名方法予以识别:薄膜名称——GB/T 13542.4-PET 型号-厚度,μm-宽度,mm-长度,m-颜色。
举例:聚酯薄膜——GB/T 13542.4-PET-1型-100-20-200-nc。
(nc=天然色;其它颜色见IEC 60757)。
6 一般要求聚酯薄膜应由对苯二甲酸乙二醇酯制成;具有近似均衡取向的双轴定向结构并应满足GB/T 13542.1—2009中的要求。
对于某些应用,可提出在材料中加入添加剂(例如颜料、染料)的要求。
但除非另有规定,添加剂应不影响所列出的该型号薄膜的任何性能要求。
双向拉伸聚酯薄膜生产知识
双向拉伸聚酯薄膜(BOPET)是一种聚酯薄膜,它的主要成分是聚苯乙
烯(PET),它可以通过双向拉伸的工艺制备而成,BOPET特有的拉伸工
艺可以确保其优异的拉伸性能,同时具有受拉伸变形后变形恢复率高的优势,是世界上最流行的一种聚酯薄膜。
(1)具有优异的拉伸性能:双向拉伸聚酯薄膜具有优异的拉伸性能,它可以很好地满足客户的要求,从而获得正确的外观和尺寸。
(2)受拉伸变形恢复率高:双向拉伸聚酯薄膜的受拉伸变形恢复率高,它表现出很强的伸缩性和冲击强度,可以有效保护由外部或内部因素
引起的破裂和变形。
(3)耐温性能优良:双向拉伸聚酯薄膜的耐温性能优良,它可以承
受温度范围从-30℃到140℃的环境,耐潮性和耐老化性也很好。
(4)良好的电气特性:双向拉伸聚酯薄膜具有很好的绝缘性,容易
形成密封的接触面,从而有效地保护电气设备免受灰尘和污染的损害。
(5)耐腐蚀性:双向拉伸聚酯薄膜具有很高的耐腐蚀性,能够有效
地抵抗大多数有机溶剂和化学物。