龙门起重机结构设计
- 格式:doc
- 大小:875.00 KB
- 文档页数:18
基于ANSYS的龙门起重机门架结构动态设计与优化研究的开题报告一、研究背景和意义随着现代制造技术的不断发展,龙门起重机在物流设备、建筑施工等领域中被广泛应用。
龙门起重机的门架结构是其重要的组成部分,其质量和性能直接关系到整个起重机的稳定性和安全性。
因此,对龙门起重机门架结构动态设计与优化的研究是非常必要的。
目前,针对龙门起重机门架结构的设计与优化研究主要依靠试验和经验的方式,并且这样的方式在一定程度上缺乏科学性和系统性。
而基于ANSYS有限元仿真技术的门架结构动态设计和优化研究,能够从理论上提高龙门起重机门架结构的设计与优化效率和精度。
二、研究内容和方法本研究选取一款常用的龙门起重机门架结构,利用ANSYS有限元仿真技术,建立门架结构的动态模型,并对其进行模拟计算。
具体的研究内容包括:1.门架结构材料力学参数的确定:选取门架结构常用的材料,利用常用的试验方法,确定材料的力学性能参数。
2.门架结构动态特性分析:利用ANSYS有限元方法,对门架结构的动态特性进行分析,包括对门架结构的自然频率、振型、动态响应等进行计算和分析。
3.门架结构优化设计:根据门架结构动态分析结果,进行门架结构的优化设计,包括门架结构的结构参数的优化等。
4.门架结构模拟实验验证:根据ANSYS模拟结果,进行门架结构的模拟实验验证。
三、研究预期成果和意义本研究预期将基于ANSYS有限元仿真技术,对一款常用的龙门起重机门架结构进行动态设计与优化研究,在门架结构的动态特性分析、优化设计和模拟实验验证等方面进行全面的探讨,预期将取得以下成果:1.门架结构的设计和优化技术:将龙门起重机门架结构的动态设计与优化技术整合到有限元仿真工具中,实现门架结构的效率和精度的提高。
2.门架结构优化设计方案:将门架结构的优化设计方案从经验和试验中提取,形成科学合理的门架结构优化设计方案。
3.门架结构的动态响应研究:通过对门架结构的动态响应分析,提高门架结构的稳定性和安全性,为深入研究其它龙门起重机结构提供基础。
龙门式起重机的结构设计及其应用分析龙门式起重机是一种常见的起重设备,广泛应用于工矿企业、港口、码头等各种场所。
它具有结构简单、稳定性好、起重能力强等特点,适用于各种吊装、装卸作业,并能满足不同场合的各种要求。
一、龙门式起重机的结构设计1. 主要结构组成龙门式起重机主要由两道立柱、横梁、螺母、螺杆、钢丝绳、卷筒、壳体和电动机等组成。
立柱是支撑起重机的重要组成部分,它承受吊臂和荷载的重量,并通过螺杆和螺母实现升降运动。
横梁用于支撑卷筒和钢丝绳,在起重操作中起到支撑和引导的作用。
卷筒则是卷绕钢丝绳的装置,通过电动机驱动实现卷绕和拉伸钢丝绳的功能。
2. 结构设计原则(1)安全性设计:龙门式起重机的设计应确保其在运行过程中能够保持稳定性和可靠性,承载能力要符合相关标准要求。
(2)高效性设计:起重机设计应尽可能降低自身重量和体积,提高起重效率和作业速度。
(3)灵活性设计:起重机设计应考虑适应不同的作业环境和场所需求,具备一定的智能化和自动化功能。
(4)经济性设计:结构设计应考虑成本压缩,选用经济可行的材料和工艺,提高设备的使用寿命。
二、龙门式起重机的应用分析1. 工矿企业在工矿企业中,龙门式起重机主要应用于吊运和装卸重物,如钢铁厂、煤矿、石化厂等。
由于其承载能力强和操作灵活性好的特点,能够满足工矿企业大型货物吊运的需求,提高生产效率和工作安全性。
2. 港口码头在港口码头的货物装卸作业中,龙门式起重机被广泛应用。
它能够高效地完成集装箱、散货等重物的装卸作业,提高港口货物处理能力和吞吐量。
此外,其具备足够的自由度和作业空间,适用于不同码头的场地布置和货物装卸需求。
3. 建筑工地在城市建设和大型工程中,龙门式起重机扮演着重要的角色。
它能够进行大型吊装作业,如钢结构的安装、混凝土构件的搬运等。
通过龙门式起重机的应用,能够提高施工效率、降低人力成本,同时也能确保施工安全。
4. 水电站和风电场在水电站和风电场的建设过程中,龙门式起重机是必不可少的设备之一。
门式起重机结构的设计与分析作者:谢益忠来源:《科学与财富》2014年第06期摘要:门式起重机是我国应用范围相当广的起重机械之一,其迎风面积小和结构轻巧的特点面对频繁的拆卸、维修、安装都显得尤为重要,对于承受起重机运行荷载及其自重更是目前较为合理和经济的形式。
本文通过对我国现有门式起重机结构设计的参考,设计了一种桁架结构门式起重机结构。
该结构主要采用管桁结构,由无缝钢管焊接而成,无高强螺栓而采用的是销轴连接方式,且同时运用于大车轨道的连接,达到了抗风性能强、维护简便、排水便利的优点,减轻了啃轨对轨道造成的破坏。
关键词:门式起重机;设计与分析;有限元分析;瞬态分析一、门式起重机结构设计本文采用桁架作为起重机的主体结构,其迎风面积小和结构轻巧的特点面对频繁的拆卸、维修、安装都显得尤为重要,对于承受起重机运行荷载及其自重更是目前较为合理和经济的形式。
如图1所示,本门式起重机的主梁采取倒三角管桁架结构,再与由无缝钢管焊接组成的刚性支腿和柔性支腿通过销轴连接而成,具有抗风性能强、维护简便、排水便利的优点,再加上销轴比高强螺栓更加经济节约,施工起来快捷方便,成为了目前前景较好的结构形式。
其次,台车和横梁之间采取的十字轴连接形式,当出现啃轨现象时,整机会偏斜运动,十字连接轴受到偏斜力会在垂直方向稍稍转动,减轻了啃轨对轨道造成的破坏。
起重小车在上主弦的腹杆结构上运行,上主弦承受起小车的水平荷载和风荷载,保证了强度和稳定性。
之所以该结构采用刚柔结合的支腿形式,主要目的还是考虑大跨度门式起重机造成的温度变形影响,同时,为满足桁架刚度及我国规定的运输净空限定,本文将桁架高度取值为3m。
其次,为保证起重机通行宽度,门式起重机的跨度限定于2.8m。
对于悬臂长度,只需在跨度的0.2~0.35范围内即可,该结构取值为10.09m。
二、门式起重机的制造工艺及主梁预拱控制由于门式起重机是由规格不一的无缝钢管组合而成,其节点复杂、焊缝繁多、拱度较难控制及具有较大变形等缺点给工艺带来了不小的困难。
龙门式起重机的结构设计与性能优化分析龙门式起重机是一种常见的大型起重设备,广泛应用于港口、工地、仓库等场所。
在结构设计和性能优化方面,龙门式起重机需要综合考虑其承载能力、稳定性、工作效率和安全性等因素。
一、结构设计1. 主梁设计:主梁是龙门式起重机的主要承载结构,需要按照所需的起重能力和跨度进行合理设计。
主梁材料通常选择钢结构,高强度、刚性好,能够满足起重机的工作要求。
2. 支腿设计:龙门式起重机通常有两根支腿,支腿的设计需要考虑平衡起重机的重心,稳定机身。
支腿通常采用跨字式结构,可以提供更好的稳定性。
3. 提升机构设计:提升机构是起重机的核心部分,需要具备良好的承载能力和操作灵活性。
提升机构包括卷扬机、钢丝绳、滑轮等组成,能够提供可靠的起升功能。
4. 小车设计:小车是起重机上横移的装置,通常由电动机、行走轮、驱动机构等组成。
小车设计应考虑平稳移动、灵活操作和较大的承载能力。
二、性能优化分析1. 结构强度优化:通过材料选取和结构设计优化,提高起重机的结构强度和刚度,使其能够承受更大的起重能力和外力冲击。
2. 运动性能优化:通过优化起重机的运动机构,减小摩擦力和阻力,提高起重机的运动速度和精度,提高工作效率。
3. 能耗优化:采用先进的节能技术,如变频调速技术和能量回收技术,减少起重机的能耗,降低运营成本。
4. 安全性优化:加强起重机的安全保护装置,如限位器、断路器、防碰撞装置等,确保起重过程中的安全性。
5. 自动化控制优化:应用自动化控制系统,提高起重机的智能化水平,实现远程控制和自动化操作,降低人为操作错误的风险。
6. 维护性优化:设计起重机时,考虑易维修性和易保养性,减少故障发生的可能性,并方便维修和维护工作的进行。
结构设计和性能优化是龙门式起重机研发过程中重要的一环。
通过合理的结构设计和性能优化,可以提升起重机的承载能力、工作效率和安全性,满足不同场所的具体需求。
同时,结构设计和性能优化也应考虑可持续性发展的原则,采用环保和节能的设计理念,为工业发展和环境保护做出贡献。
龙门式起重机的结构设计与分析龙门式起重机是一种常见的起重设备,广泛应用于港口、建筑工地、物流仓储等领域。
本文将对龙门式起重机的结构设计与分析进行详细探讨,以期达到安全、高效地运行起重机的目标。
一、结构设计1.1 主梁设计龙门式起重机的主梁是起重机的骨架,主要承载起重导轨、滑车、吊钩等吊装部件。
主梁应采用高强度、轻质的材料制造,如合金钢或钢结构,以确保其承载能力和稳定性。
主梁设计时需要考虑吊重的大小、工作范围等因素,同时还要充分考虑施工等其他因素。
1.2 支腿设计龙门式起重机的支腿是支撑起重机整体结构的关键部件。
支腿应设计合理,能够提供足够的支撑力和稳定性,以防止起重机倾斜或倒塌。
支腿的材料和结构应符合强度和稳定性要求,并考虑现场环境等特殊因素。
1.3 大车设计大车是用来沿主梁行驶的组件,用于调整吊物的位置。
大车的设计应满足起重机的负载要求,并具有足够的稳定性和平衡性。
大车的结构应避免过度重量和不平衡,以确保运行的安全性和高效性。
二、结构分析2.1 受力分析龙门式起重机在工作过程中会受到多方向的力的作用,包括垂直重力、水平力和风力等。
对于垂直重力,主梁和支腿需要经受起重物的重量,对于水平力,吊物的运动和风力可能会对主梁和支腿产生侧向力。
为了保证结构的安全性,需要进行各个部位的受力分析,确保结构能够承受所有力的作用。
2.2 结构稳定性分析起重机的结构稳定性对于运行的安全性非常重要。
在设计中,需要考虑起重机在各个工况下是否能够保持平衡。
结构稳定性分析需要考虑主梁、支腿和大车等组件的连接方式,以及各个连接点的强度和稳定性。
通过有限元分析等方法,可以预测和验证起重机在各种不同工作条件下的稳定性。
2.3 振动分析在起重机运行过程中,振动是不可避免的。
振动可能会导致设备疲劳和损坏,甚至危及人员安全。
因此,需要对起重机的结构进行振动分析,以确定振动的频率和振幅,进而采取相应的减振措施,如增加结构刚度、使用减振器等,以降低振动对起重机结构和人员的影响。
龙门式起重机的结构设计及优化龙门式起重机是一种常见的工业起重设备,用于在工地、港口、仓库等场所进行货物的运输和搬运。
在这篇文章中,我们将探讨龙门式起重机的结构设计和优化,并介绍一些可以提高其性能和效率的方法。
1. 结构设计龙门式起重机的结构设计需要考虑以下几个关键因素:1.1 主梁设计:主梁是起重机结构的主要承重部分,其设计需要考虑强度、刚度和稳定性。
一般情况下,主梁采用箱梁结构,具有较高的强度和刚度。
此外,还可以采用杀伤性钢板焊接工艺,提高主梁的承载能力。
1.2 支撑结构设计:为了保证起重机的稳定性,在龙门式起重机的两侧设置支撑腿是必要的。
支撑腿的设计需要考虑均匀分布荷载、防止倾覆和减小地面压力等因素。
1.3 起重机车架设计:起重机车架是起重机移动和行走的基础部分,一般采用轮式或履带式结构。
在设计中,需要确保车架具有足够的强度和刚度,以满足起重机的工作需求。
1.4 提升机构设计:提升机构是起重机的核心部分,包括起重钩、卷筒、齿轮传动装置等。
设计时需要考虑提升机构的稳定性、动力传输和起重能力,以提高起重机的工作效率和安全性。
2. 优化方法为了提高龙门式起重机的性能和效率,可以采用以下一些优化方法:2.1 材料优化:选择适当的材料可以提高起重机的强度和耐久性。
例如,使用高强度钢材可以减少主梁的重量,提高结构的刚度和稳定性。
2.2 结构参数优化:通过对起重机的结构参数进行优化,可以提高其运动性能和负荷能力。
例如,通过调整支撑腿的角度和长度,可以提高起重机的稳定性。
2.3 液压系统优化:液压系统是起重机的重要部分,影响其提升和行走的效率。
通过优化液压系统的工作流程、降低能量损耗和提高控制精度,可以提高起重机的行走速度和提升效率。
2.4 自动化控制优化:采用自动化控制系统可以实现起重机的智能化操作和监控。
通过优化自动化控制系统,可以提高起重机的工作效率、减少人为误操作和增加安全性。
通过以上的结构设计和优化方法,龙门式起重机可以在提升能力、运动性能和工作效率方面得到明显的提升。
龙门吊设计计算书(ME50t+50t-38mA3三角桁架龙门吊)计算内容:龙门吊结构计算、龙门吊抗倾覆计算设计人:年月日校核人:年月日审定人:年月日目录龙门吊设计计算书 0一、设计依据 (2)二、主要性能参数 (2)三、龙门吊组成 (2)四、龙门吊结构设计计算 (2)五、龙门吊抗倾覆计算 (7)一、设计依据1、《起重机设计规范》(GB3811-2008);2、《钢结构设计规范》(GB50017-2003);3、《公路桥涵设计通用规范》(JTG D60-2004)4、起重机安装使用说明书、合格证、强度校核计算说明书;5、《特种设备安全法》;二、主要性能参数三、龙门吊组成四、龙门吊结构设计计算(一)提升小车(1)主要性能参数(2)起升机构计算已知:起重能力Q静=Q+W吊具=50t+1t=51t粗选:单卷扬,倍率m=10,滚动轴承滑轮组,效率η=0.91。
见《起重机设计手册》表3-2-11,P223。
则钢丝绳自由端静拉力S:S=QJ静/(η×m)=51/(0.91×10)=5.6t,选择一台8t卷扬机。
钢丝绳破断拉力总和∑t:∑t= S ×n/k=2.8×5/0.82=17t,选择钢丝绳:6×37—22—1570,GB8918-2006。
(二)C型主梁(以单根主梁分析)(1)计算载荷①额定起重量:Q1=500kN ②吊具自重:Q2=10kN③天车自重:Q3=65kN ④C型主梁自重:q=3.6kN/m(2)载荷系数:冲击系数:k1=1.1((GB3811-2008《起重机设计规范》P13)动载系数:k2=1.05 (GB3811-2008《起重机设计规范》P11)安全系数:[K]=1.22(3)载荷组合:P=1.1*(500+75)*0.5=316.25kN(4)计算参考数值:C型主梁截面技术特性:[σ]=215MPa E=2.1×105MPa [τ]=145MPa [f]=1/500 (5)内力计算(按最不利工况计算)①最大弯矩:计算简图M = 0.25PL+0.125qL2= 0.25×316.25×24+0.125×3.6×382= 2547.3 kN•m②强度校核:(以上弦计算)σx =Mx/Wx=2547.3×106/20924483=121 MPa安全系数:K=[σ]/σx=215/121=1.7 >[K]=1.22③刚度校核:f max =PL3/48EIx+5qL4/384EIx=316250×380003/(48×2.1×106×21944893353)+5×3.6×380004/(384×2.1×106×21944893353)=10mm<[f]=38000/500=76mm④剪力校核:(最不利工况)Q max =316.25KN A下=12960mm2τmax=1.5 Q max / A下=1.5×316.25×103/12960=37Mpa≤[τ]=145Mpa 验算结果:C型主梁强度、刚度、剪力均符合使用要求。
目录1、设计依据 (2)2、龙门吊总体结构 (2)3、计算荷载 (2)3.1 计算荷载 (2)3.2 荷载组合 (4)4、龙门吊结构计算 (5)4.1 吊具计算 (5)4.2 起吊平车吊梁计算 (5)4.3 门吊主梁、支腿结构计算 (6)4.4 门吊行走平车支座反力及抗倾覆稳定性计算 (11)5、结论 (12)1、设计依据(1)《XX 长江公路大桥跨江大桥工程施工图设计》 (2)《XX 长江公路大桥E06合同段60T 龙门吊设计图》 (3)《钢结构设计规范》(GB50017-2003)(4)《装配式公路钢桥多用途使作手册》(人民交通出版社) (5)《起重机设计规范》(GB/T 3811-2008) (6)《机械设计手册》 (7)《钢结构设计手册》2、龙门吊总体结构60T 龙门吊采用轨道行走式,轨道间距27m ,净高约13.5m 。
门吊主梁采用贝雷组拼桁架,每个主梁采用4排200型贝雷,门吊支腿采用钢管结构,支腿内立柱采用φ325×10钢管、外立柱采用Φ273×7钢管,支腿平联及斜撑采用φ159×5钢管。
起吊设备采用1台8t 卷扬机,80t 滑车组绕12线。
龙门吊总体构造见图1。
图1 60T 龙门吊总体构造图3、计算荷载3.1 计算荷载(1) 结构自重荷载:KN P G 630 (不包括起吊小车重量),由计算程序自动加入。
(2) 起升荷载:吊重荷载600kN ,吊具30kN ,起吊小车80kN 合计:N P Q k 77380)30600(1.1=++⨯= (3) 起吊小车行走制动荷载:按起升荷载10%取值,KN P P Q T 3.77%10773%10=⨯=⨯= (4) 龙门吊行走制动荷载:按结构自重和起升荷载的10%取值,门吊行走时起升荷载产生的制动荷载:KN P P Q MQ 3.77%10773%10=⨯=⨯= 门吊行走时结构自重产生的制动荷载:KN P P G MG 63%10630%10=⨯=⨯= (5) 风荷载: ① 工作状态风荷载风荷载的计算按《起重机设计规范》(GB3811-2008)进行,工作状态计算风速15.5m/s ,对应计算风压150N/m 2。
龙门式起重机的结构与工作原理分析龙门式起重机是一种常见的起重设备,其结构和工作原理非常重要。
本文将对龙门式起重机的结构和工作原理进行详细分析。
一、结构分析龙门式起重机主要由以下几部分组成:1. 上部结构:上部结构由主梁、主梁支撑和配重系统组成。
主梁是起重机的主要承重部分,上面安装有起重机的起重机构。
主梁支撑系统主要用于支撑和稳定上部结构。
配重系统用于平衡起重机吊钩和负载的重量,确保起重机的稳定性。
2. 起重机构:起重机构在龙门上移动,并且用于吊起和放下重物。
起重机构包括主钩、副钩、起升机构和运行机构。
主钩主要负责吊起和放下重物,副钩用于辅助吊运重物。
起升机构用于控制主钩和副钩的上升和下降。
运行机构包括起重机的移动和平移机构,用于将起重机移动到需要的位置。
3. 控制系统:控制系统是龙门式起重机的核心部分,包括电气控制系统和液压控制系统。
电气控制系统用于控制机械操作,如起升、行走和平移。
液压控制系统用于控制液压缸的运动,以实现机械的升降、伸缩和夹紧。
二、工作原理分析1. 吊重物:起重机的工作原理是通过起升机构将钩子下降到需要的位置,然后吊起重物。
起升机构通过电机和传动装置提供动力,控制钩具的运动。
当起升机构启动时,电机驱动传动装置带动钢丝绳或链条的升降,使得钩具在垂直方向上完成升降动作。
2. 移动和平移:龙门式起重机可以通过运行机构在工作场地上灵活移动和平移。
运行机构包括起重机的移动和平移机构。
移动机构使起重机沿轨道或轮胎行走,从一个工作区域移动到另一个工作区域。
平移机构使起重机在主梁范围内水平平移,以适应不同的工作需求。
3. 稳定性和安全性:龙门式起重机的结构设计保证了其稳定性和安全性。
主梁和主梁支撑系统能够承受起重机的重量和吊载荷的重量,确保起重机在工作过程中不会倾覆。
配重系统用于平衡起重机的重心,保持其稳定性。
此外,起重机还配备了安全装置,如限位器、重载保护器和防止碰撞的装置,以保障操作人员和设备的安全。
龙门式起重机的结构设计及工作原理分析龙门式起重机是一种常见的起重设备,其结构设计和工作原理的分析对于了解起重机的功能和性能至关重要。
本文将就龙门式起重机的结构设计和工作原理进行详细介绍。
一、结构设计1. 主要构件:龙门式起重机主要由龙门架、移动机构、起升机构和电气控制系统等部分组成。
2. 龙门架:龙门架是起重机的主体支撑结构,通常由高强度钢材制成,具有足够的刚度和稳定性。
龙门架的设计需要考虑起重机的工作条件、负荷要求、支撑点布置等因素。
3. 移动机构:移动机构是起重机的行走装置,通常包括轮轨、电机及传动装置等。
移动机构的设计需要考虑起重机的移动速度、运行平稳性和负载能力等因素。
4. 起升机构:起升机构是起重机的主要工作部分,通常由卷扬机、钢丝绳、滑轮等组成。
起升机构的设计需要考虑起重机的起升高度、负荷能力、工作速度和安全可靠性等因素。
5. 电气控制系统:电气控制系统主要用于对起重机的运行和控制进行监测和调节。
电气控制系统的设计需要考虑起重机的工作模式、安全保护装置和远程操作等要求。
二、工作原理分析1. 行走原理:龙门式起重机通过移动机构实现起重机的行走。
电机通过传动装置驱动轮轨上的车轮运动,从而使起重机沿轨道移动。
2. 起升原理:起升机构通过卷扬机驱动钢丝绳的卷放实现起重物的升降。
卷扬机由电机驱动,通过启动、停止和调节电流等方式控制钢丝绳的运动,从而实现起升和下降动作。
3. 行车原理:龙门式起重机在运行过程中,需要同时进行行走和起升操作。
行车原理是指起重机在移动过程中的平稳性和行车速度的控制。
通过电气控制系统对行走和起升机构进行协调控制,使起重机能够同时进行行走和起升操作。
4. 安全保护原理:龙门式起重机的安全保护原理是通过安装各种安全保护装置来确保工作过程的安全。
例如,起重机配备有重载保护装置,当超过起重机额定负荷时,保护装置会发出警报或停机,以避免超载造成的安全事故。
5. 远程操作原理:龙门式起重机可采用远程操作方式,即操作人员可以通过遥控器实现起重机的控制和操作。
龙门式起重机的结构分析及优化设计龙门式起重机是一种常见的起重设备,广泛应用于港口、工地、工厂等场所。
它具有结构简单、起重能力大、操作灵活等特点。
本文将对龙门式起重机的结构进行分析,并提出优化设计的建议。
1. 结构分析龙门式起重机的主要结构包括龙门架、起升机构、行走机构和操作台。
龙门架是起重机的主要支撑结构,承受起重荷载和运行过程中的力。
起升机构用于提升和放下重物,包括起重机构和卷扬机构。
行走机构负责起重机在轨道上的运行,提供移动和定位功能。
操作台上设有操纵杆、按钮等控制装置,用于操作和控制起重机的运行。
在结构分析中,需要考虑以下几个方面:1.1 龙门架的结构龙门架通常采用钢结构,需要具有足够的强度和刚度以承受起重荷载和风荷载。
结构设计应满足龙门架的刚性要求,减小振动和变形。
采用优化设计方法,可以通过优化截面形状和尺寸,减少材料消耗,提高结构的经济性。
1.2 起升机构的设计起升机构的设计应考虑起升的稳定性和安全性。
起重机构的设计要能够满足各项工作条件下的起重要求,并在不同工况下进行负载计算和结构强度验证。
卷扬机构的设计应考虑提升速度、可靠性和安全性,采用先进的传动系统和防护装置。
1.3 行走机构的设计行走机构的设计要满足起重机运行的平稳性和精确性要求。
在设计中需考虑起重机的最大行走速度、行走轮压力分布、减振装置等。
通过先进的控制系统和传感器,可以实现起重机的自动导航和定位功能,提高操作效率和安全性。
2. 优化设计为了进一步提高龙门式起重机的性能和经济性,可以采用以下优化措施:2.1 材料选择在龙门架的设计中,选择合适的材料可以减少结构重量和材料成本。
使用高强度钢材可以提高结构的承载能力,减小截面尺寸,从而减轻自重。
2.2 结构降噪设计在起升机构和行走机构中,结构的振动与噪声会影响操作员的工作环境和设备的可靠性。
通过优化结构设计和添加吸声材料,可以降低噪声和振动,提高操作员的舒适度和设备的使用寿命。
门式起重机结构优化设计摘要:门式起重机是一种常用的物料搬运机械,广泛应用于工业生产中,具有货场利用率高、运行成本低以及装卸效率高等优点。
金属结构是门式起重机的骨架,在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。
为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。
关键词:门式起重机;结构设计;设计要点1结构优化的基本概念1.1 设计变量每项设计方案需要通过一组基本的参数表示,这些基本参数主要包括:构件长度、截面尺寸、某些位置的坐标值、重量、惯性矩、应力、变形、固有频率以及效率等。
在对某个结构进行优化设计过程中,工艺和结构布置等方面的参数可以根据设计经验进行取值,其他参数可以在优化过程中进行调整,这些一直处于变化状态中的参数,被称为设计变量。
设计变量主要有连续和离散两种不同的类型,在机械优化设计中涉及到的变量大多数都是连续变量,可以通过常规的优化方法进行求解。
1.2 目标函数判定不同机械设计方案的优劣主要通过对设计指标进行系统全面的分析,设计指标通过一定的转化能够转变为相应的设计变量函数,该函数即为目标函数。
不同的优化方案具有不同的目标函数,目标函数的范围非常广泛,可以是重量、体积,可以是功耗、产量等。
建立目标函数是优化设计中的关键过程,目标函数根据目标数量的不同可以分为单目标函数和多目标函数,其中单目标函数是指在优化设计过程中,只对某一问题进行优化;多目标函数是指在优化设计过程中,同时对多个目标进行优化。
在实际的优化过程中,目标函数越多,越有利于提高设计的水平,能够取得较好的设计效果,但是其优化难度也较高。
2门式起重机结构优化设计的基本方法与步骤本项目开发的 800 t 吊钩门式起重机是国内较大起重量的门式起重机,具有结构复杂、制造难度大等特点,具体体现为结构轻量化、可靠性、配套件选型以及安装调试 4 个方面,其主要采用的结构优化设计的基本方法与步骤如下2.1采用有限元分析,实现结构最优化主结构设计时,为减轻结构自重,实现轻量化设计,采用 Midas/civil 有限元分析技术对整机结构件进行强度、刚度校核。
龙门式起重机的设计与优化分析龙门式起重机作为一种常见的起重设备,具有广泛的应用领域,包括工业、建筑、港口等行业。
本文将对龙门式起重机的设计与优化进行分析,包括结构设计、工作原理、优化措施等方面。
一、结构设计龙门式起重机主要由龙门桥架、起重机梁、大车、小车、起升机构和电气控制系统等组成。
龙门桥架是起重机的主体结构,承受重物的重量和提升力。
起重机梁则是用来连接龙门桥架和起重机的吊钩,起重机梁的结构设计需考虑材料的抗压强度、刚度和稳定性等因素。
在结构设计方面,首先要确定起重机的承载能力和工作范围,根据实际需求选择合适的材料和尺寸。
对于大型起重机,通常采用钢材作为主要结构材料,同时引入增强结构和补强措施,以提高起重机的稳定性和抗风能力。
二、工作原理龙门式起重机的工作原理基于悬臂悬挂制动机构。
起重机梁通过大车和小车的协同工作,实现负载的提升和运输。
大车沿龙门桥架进行水平移动,而小车则沿起重机梁进行上下移动。
起升机构则通过绞车机构来完成物体的起升。
龙门式起重机的工作原理需要保证各个部件的稳定性和协调性。
在设计中,要合理安排各个控制系统,如限位开关、传感器和安全装置,以保证起重机的安全运行。
同时,需要考虑重物的重心位置和干扰因素,以提供合适的控制策略和操作方法,以保证起重机的准确操作。
三、优化措施为提高龙门式起重机的工作效率和安全性,可以采取以下优化措施:1.采用先进的控制系统和传感器:利用先进的自动控制技术和传感器系统,可以实现更精确的控制和监测,提高起重机的工作效率和安全性。
2.设计合理的运动机构:对大车、小车和起升机构的运动机构进行合理的设计,减小机械摩擦和振动,提高运动精度和稳定性。
3.考虑环境因素:在设计中要考虑起重机工作环境的特点,如温度、湿度、风力等因素,以确保起重机在恶劣环境下的正常工作。
4.优化结构设计:通过优化起重机的结构设计,减少结构自重,提高起重机的承载能力和工作效率。
5.定期维护和检测:对起重机进行定期的维护和检测,发现问题及时修复,确保起重机的正常运行和安全性。
每10t 重18m 的A 型双梁门式起重机门架结构设计书第1章 总体方案设计1.1 基本参数和已知条件起重量Q :10t 跨度L :18m 工作级别j A :A5起升高度(主/副):10.5m 小车重量: 3.1t起升速度(主/副):10.45m/min 运行速度(大/小):60/44.5m/min 左悬臂长=右悬臂长:6940mm 有效悬臂长度:4500mm1.2 材料选择及许用应力根据总体结构采用箱形梁,主要采用板材及型材。
主梁、端梁均采用Q235-A 钢,二者的联接采用螺栓连接。
材料许用应力及性质:[]MPa n17633.1235≈==σσ 取[]σ=MPa 175[][]MPa10131753≈==στ 取[]τ=MPa 100[][]MPah 12321752≈==στ 取[]h τ=MPa 1201.3 门架的载荷计算1.3.1箱形结构门架自重箱形结构门架自重()t H QL G q 9.285.1094.6218105.05.000=⨯⨯+⨯== 式中—Q :额定起重量 0L :主梁全长 0H :起升高度 1.3.2惯性力(一根主梁) (1) 大车制动时引起的水平惯性力()()2121⨯⎪⎪⎭⎫ ⎝⎛++=⨯+=zdxc z d q xcdg q dg dg gt V G Q gt V G P P P =()N 612221605.38.960101.310605.38.960109.2844=⨯⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯++⨯⨯⨯⨯式中—d V :大车运行速度 z t :制动时间,取3.5s大车制动惯性力应受到主动轮打滑的限制,即 N fV P dg 1575010500015.01=⨯=≤ 式中—f :粘着系数,取0.151V :大车主动轮轮压,N V 105000410)101.39.28(41=⨯++=(2) 小车制动时引起的水平惯性力()()N gt V G Q P z x xc xg 1416605.38.925.44101.310214=⨯⨯⨯⨯⨯+=+=为了防止小车制动时打滑也应满足 N fV P x xg 5.49123275015.01=⨯=≤ 式中—1X V :小车主动轮轮压,()N V x 327504101.31041=⨯+=1.3.3风载荷(1) 作用于货物的风载荷 w f Q f F Cq P =式中—C :风力系数,取1.5 ∏f q :工作状态最大风压,取2m N150w F :货物迎风面积,当32t Q =时,2w 7m F = N P Q f 157571505.1=⨯⨯=∏ (2) 作用于小车上的风载荷 xc f xc f F Cq P ∏=式中—xc F :小车的迎风面积,由小车防雨罩的尺寸确定,2xc 4m F = N P xc f 90041505.1=⨯⨯=∏ (3) 作用于主梁上的风载荷 q f q f F Cq P =式中—q F :主梁q F 长度方向迎风面积,()()21m 65.5194.621862.12=⨯+⨯=+⨯=L L H F qN P q f 1162065.511505.1=⨯⨯= 将主梁上的风载荷化为均布载荷21m N 6.59969.0218116202=⨯+=+=L L P qq f q f(4) 作用在支腿上的风力 t f t f F Cq P =式中—t F :支腿迎风面积,2m 58.1462.19=⨯=t F 2m 5.328058.141505.1=⨯⨯=t f P 将支腿上的风载荷化为均布载荷2m N 5.36495.3280===hP qt f t f由于上述的各种载荷不可能同时作用于门架结构上,因此要根据门机的使用情况来确定这些载荷的组合。
龙门起重机计算说明书
一龙门起重机的结构形式、有限元模型及模型信息。
该龙门起重机由万能杆、钢管以及箱形梁组成。
上部由万能杆拼成,所有万能杆由三种型号组成,分别为2N1,2N4,2N5,所有最外围的竖杆由2N1组成,其他竖杆由2N4组成,所有斜杆由2N5组成,其他杆均为2N4;龙门起重机两侧下部得支撑架由钢管组成,钢管的型号为φ219⨯6、φ83⨯5,其中斜竖的钢管为φ219X6,其他钢管为φ83X5;龙门起重机上部和下支撑架之间由箱型梁连固接而成,下支撑架最下端和箱型梁相固连。
所有箱型梁由厚为6mm的钢板焊接而成。
对龙门起重机进行建模时,所选单元类型为Link8、Pipe16、Shell63三种单元类型。
有限元单元模型见图1。
模型的基本信息见下:
关键点数988
线数3544
面数162
体数0
节点数1060
单元数3526
加约束的节点数48
加约束的关键点数0
加约束的线数0
加约束的面数12
加载节点数18
加载关键点数18
加载的单元数0
加载的线数0
加载的面数0
二结构分析的建模方法和边界条件说明。
应力分析采用有限元的静力学分析原理,其建模方法采用实体建模法,采用体、面、线、点构造有限元实体。
其中所有箱形梁用面素建模,其余用线素建模,然后在实体上划分有限元网格,具体见单元图。
对于边界条件和约束条件,是在支撑架下的箱型梁的底面两端加X,Y,Z三方向的约束以模拟龙门起重机的实际情况。
载荷分布有4种情况:工作时的吊重、小车自重、风载荷、考虑两度偏摆时的水平惯性力,具体见下。
三载荷施加情况。
(1)工作时的吊重
工作时的吊重为40t,此载荷分布在小车压在轨道的4个位置,每个位置为10t。
由于小车在轨道上移动,故载荷的分布位置随小车的移动而改变,由于小车移动速度慢,我们只把吊重载荷的施加作两种情况处理:在最左端(或最右端),以及龙门架中部位置。
(2)小车自重
小车自重为7t,和吊重载荷分布位置相同。
(3)风载荷
风载荷:Ⅱ类风载。
(4)考虑20偏摆时的水平惯性力
该水平惯性力大小为吊重乘以角度大小为20的正切值,施加位置和吊重载荷施加位置相同,方向为水平的X向和Z向。
四计算结果与说明。
对应吊重载荷的施加位置,共有两种计算情况;
(1)小车在中间位置时:
万能杆应力分布云图如图2所示,最大应力分布云图如图3所示,钢管应力分布云图如图4示,最大应力分布云图如图5示,箱形梁应力分布云图如图6示,最大应力分布云图如图7示,X,Y,Z三方向位移分布云图如图8,9,10示。
总计算结果见表一,表二。
由于该龙门架结构主要杆结构组成,所以要对局部受力较大的杆进行稳定性计算。
对于型号为2N1的万能杆,其应力分布见图11示,从图中可以看出最大压应力为N=77.505,2N1的万能杆的稳定系数φmin=0.6936,
N/φmin=77.505/0.6936=111.74MPa<170MPa,所以不会失稳。
对于型号为2N4的万能杆,其应力分布见图12示,从图中可以看出最大压应力为N=44.604,2N4的万能杆的稳定系数φmin=0.79,
N/φmin=44.604/0.79=56.46MPa<170MPa,所以不会失稳。
对于型号为2N5的万能杆,其应力分布见图13示,从图中可以看出最大压应力为N=46.54,2N5的万能杆的稳定系数φmin=0.439,
N/φmin=46.54/0.439=106.01MPa<170MPa,所以不会失稳。
对于φ219×6的钢管,其应力分布见图14示,最大压应力为N=86.888,从图中可以看出弯曲应力为88.414,最长的φ219×6钢管的稳定系数φmin=0.856,
稳定性应力=86.888/0.856+88.414–86.888
=103.4Mpa<140MPa,所以不会失稳。
对于φ83×5的钢管,其应力分布见图15示,压应力为N=40MPa,弯曲应力为46Mpa,φ83×5钢管的稳定系数φmin=0.707,
稳定性应力=40/0.707+46–40
=62.6Mpa《140Mpa,所以不会失稳
(2)小车在最左(或最右)位置时:
万能杆应力分布云图如图16示,最大应力分布云图如图17示,钢管应力分布云图如图18示,大应力分布云图如图19示,板应力分布云图如图20示,最大应力分布云图如图21示,X,Y,Z三方向位移分布云图如图22,23,24示。
由于该龙门架结构主要杆结构组成,所以要对局部受力较大的杆进行稳定性计算。
对于型号为2N1的万能杆,其应力分布见图25示,从图中可以看出最大压应力为N=67.208,2N1的万能杆的稳定系数φmin=0.6936,
N/φmin=67.208/0.6936=96.9Mpa<170Mpa,所以不会失稳。
对于型号为2N4的万能杆,其应力分布见图26示,从图中可以看出最大压应力为N=52.997,2N4的万能杆的稳定系数φmin=0.79,
N/φmin=52.997/0.79=67.08Mpa<170Mpa,所以不会失稳。
对于型号为2N5的万能杆,其应力分布见图27示,从图中可以看出最大压应力为N=54.669,2N5的万能杆的稳定系数φmin=0.439,
N/φmin=54.669/0.439=124.53Mpa<170Mpa,所以不会失稳。
对于φ219×6的钢管,其应力分布见图14示,最大压应力为N=104.804MPa,从图中可以看出弯曲应力为106.345MPa,φ219×6钢管的稳定系数φmin=0.856,稳定性应力=104.804/0.856+106.345-104.804
=124Mpa<140MPa,所以不会失稳。
对于φ83×5的钢管,其应力分布见图29示,压应力为N=55.137MPa,弯曲应力为59.307Mpa,φ219×6钢管的稳定系数φmin=0.707
稳定性应力=55.137/0.707+59.307-55.137
=82.2<140Mpa,所以不会失稳.
图1单元模型图
图2整机主结构应力分布图
图3最大应力分布图
图4钢管应力分布图
图5大钢管最大应力分布图
图6箱形梁应力分布图
图7箱形梁最大应力分布图
图8X方向位移图
图9Y方向位移图
图10Z方向位移图
图112N1应力分布图
图122N4应力分布图
图132N5应力分布图
图14大钢管应力分图
图15小钢管应力分图
图16整机主结构应力分布图
图17整机主结构最大应力分布图
图18大钢管应力分布图
图19大钢管最大应力分布图
图20箱形梁应力分布图
图21箱形梁应力分布图
图22X方向位移图
图23Y方向位移图
图24Z方向位移图
图252N1应力分布图
图262N4应力分布图
图272N5应力分布图
图28大钢管应力分图
图29小钢管应力分图。