小学奥数牛吃草应用题问题及解答【三篇】
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
小学奥数之牛吃草问题(含答案)英国著名数学家XXX曾经提出了一个著名的数学问题,即“牛吃草问题”,也可以称之为追及问题或者工程问题。
它的具体形式是:在一个牧场上,有一片青草,每天都以相同的速度生长。
这片青草可以供给10头牛吃22天,或者供给16头牛吃10天。
那么,如果供给25头牛吃,它可以维持多少天呢?解决这个问题的关键在于找到一些不变的量。
首先,我们需要计算出每天新长出的草的数量,然后再计算出牧场上原有的草的数量。
接着,我们可以计算出每天实际消耗的草量,最后就可以得出可以供25头牛吃的天数。
具体而言,通过比较10头牛22天吃的总量和16头牛10天吃的总量,我们可以得到每天新长出的草的数量。
然后,我们可以将25头牛分成两部分,一部分吃新长出的草,另一部分吃原有的草,从而计算出可以供25头牛吃的天数。
除了这个经典的牛吃草问题,还有一些类似的问题,比如在一个牧场上,一堆草可以供10头牛吃3天,那么这堆草可以供6头牛吃几天呢?这个问题相对简单,我们可以通过简单的计算得到答案为5天。
但是,如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这种工作总量不固定的问题就是牛吃草问题。
小军家有一片牧场,上面长满了草。
这片牧场可供10头牛吃20天,也可供12头牛吃15天。
如果小军家养了24头牛,那么这些牛可以吃多少天呢?我们可以通过已知的两种情况来计算出每天新长出的草量,即每天5头牛的草量。
这样,我们就可以算出原有的草量是100份,每天新长出的草量是5份。
当有25头牛时,其中有5头牛专吃新长出来的草,剩下的20头牛吃原有的草。
这些牛吃完草需要5天。
因此,这片草地可供25头牛吃5天。
在这个例子中,我们需要注意以下三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的;2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量;3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。
“牛吃草问题就是追及问题,牛吃草问题就是工程问题。
”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
一牧场,可供58头牛吃7天,或者可供50头牛吃9天,假设草的生长量每天相等,每头牛每天的吃草量也相等,那么,可供多少头牛吃6天?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。
【解答】①假设1头牛1天吃1份草②每天的新长草:58×7=406(份),50×9=450(份)450-406=44(份),44÷(9-7)=22份,即每天新长草22份。
③原有草:406-7×22=252(份)④分牛讨论原有草原有草7天的新长草9天的新长草多出的2天新长草新长草:22份→22头(每天22头牛专门应付新长草)原有草:252份,252÷6=42(份)→42头合计22+42=64头牛答:可供64头牛吃6天(化动为静)有一片牧场,草每天都在迅速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。
设每头牛每天吃草的量是相等的,如果放牧18头牛,几天可以吃完牧草?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。
【解答】①假设1头牛1天吃1份草②每天的新长草:24×6=144(份),21×8=168(份)168-144=24(份),24÷(8-6)=12份,即每天新长草12份。
③原有草:144-6×12=72(份)④分牛讨论原有草原有草6天的新长草8天的新长草多出的2天新长草新长草:12份→12头(每天12头牛专门应付新长草)原有草:72份,72÷(18-12)=12(天)如果放牧18头牛,12天可以吃完牧草(化动为静)如果要使队伍10分钟消失,需要打开多少个检票口?【思路】其实这也是一道变形的牛吃草问题。
排队等候的人是“草”,检票口是“牛”,检票前若干分钟排队的人是“原有草”,每分钟新增的人是“新长草”。
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《五年级数学奥数:⽜吃草问题练习及答案【三篇】》供您查阅。
【第⼀篇】牧场上⼀⽚青草,每天牧草都匀速⽣长.这⽚牧草可供10头⽜吃20天,或者可供15头⽜吃10天.问:可供25头⽜吃⼏天? 分析:这类题难就难在牧场上草的数量每天都在发⽣变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新⽣长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速⽣长,所以这⽚草地每天新长出的草的数量相同,即每天新长出的草是不变的.即: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的. (2)在已知的两种情况中,任选⼀种,假定其中⼏头⽜专吃新长出的草,由剩下的⽜吃原有的草,根据吃的天数可以计算出原有的草量. (3)在所求的问题中,让⼏头⽜专吃新长出的草,其余的⽜吃原有的草,根据原有的草量可以计算出能吃⼏天. 解答:解:设1头⽜1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50. 为什么会多出这50呢?这是第⼆次⽐第⼀次多的那(20-10)=10天⽣长出来的,所以每天⽣长的青草为50÷10=5. 现从另⼀个⾓度去理解,这个牧场每天⽣长的青草正好可以满⾜5头⽜吃.由此,我们可以把每次来吃草的⽜分为两组,⼀组是抽出的15头⽜来吃当天长出的青草,另⼀组来吃是原来牧场上的青草,那么在这批⽜开始吃草之前,牧场上有多少青草呢?(10-5)×20=100. 那么:第⼀次吃草量20×10=200,第⼆次吃草量,15×10=150; 每天⽣长草量50÷10=5. 原有草量(10-5)×20=100或200-5×20=100. 25头⽜分两组,5头去吃⽣长的草,其余20头去吃原有的草那么100÷20=5(天). 答:可供25头⽜吃5天. 点评:解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题中所求的问题. 这类问题的基本数量关系是: 1、(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量. 2、⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草.【第⼆篇】由于天⽓逐渐冷起来,牧场上的草不仅不长⼤,反⽽以固定的速度在减少.已知某块草地上的草可供20头⽜吃5天,或可供15头⽜吃6天.照此计算,可供多少头⽜吃10天? 分析:20头⽜5天吃草:20×5=100(份):15头⽜6天吃草:15×6=90(份);青草每天减少:(100-90)÷(6-5)=10(份);⽜吃草前牧场有草:100+10×5=150(份); 150份草吃10天本可供:150÷10=15(头);但因每天减少10份草,相当于10头⽜吃掉;所以只能供⽜15-10=5(头). 解:①青草每天减少:(20×5-90)÷(6-5)=10(份); ②⽜吃草前牧场有草 10×5+20×5 =50+100, =150(份). ③150÷10-10, =5(头). 答:可供5头⽜吃10天. 点评:此题属于⽜吃草问题,这类题⽬有⼀定难度.对于本题⽽⾔,关键的是要求出青草每天减少的数量.【第三篇】有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管.进⽔管以均匀的速度不停地向这个蓄⽔池注⽔.后来有⼈想打开出⽔管,使池内的⽔全部排光(这时池内已注⼊了⼀些⽔).如果把8根出⽔管全部打开,需3⼩时把池内的⽔全部排光;如果仅打开5根出⽔管,需6⼩时把池内的⽔全部排光.问要想在4.5⼩时内把池内的⽔全部排光,需同时打开⼏个出⽔管? 分析:假设打开⼀根出⽔管每⼩时可排⽔“1份”,那么8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份);两种情况⽐较,可知3⼩时内进⽔管放进的⽔是30-24=6(份);进⽔管每⼩时放进的⽔是6÷3=2(份);在4.5⼩时内,池内原有的⽔加上进⽔管放进的⽔,共有8×3+(4.5-3)×2=27(份).由此解答即可. 解:设打开⼀根出⽔管每⼩时可排出⽔“1份”,8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份). 30-24=6(份),这6份是“6-3=3”⼩时内进⽔管放进的⽔. (30-24)÷(6-3)=6÷3=2(份),这“2份”就是进⽔管每⼩时进的⽔. [8×3+(4.5-3)×2]÷4.5 =[24+1.5×2]÷4.5 =27÷4.5 =6(根) 答:需同时打开6根出⽔管. 点评:此题属于⽜吃草问题,解答关键是把打开⼀根出⽔管每⼩时可排⽔“1份”,进⼀步分析推理求解.。
牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
所以,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
牛吃草问题牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【分析与解】一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以,③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是19 1262 -⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天.所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析与解】我们注意到:牛、马45天吃了原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤马、羊60天吃了原有+60天新长的草②牛、羊90天吃了原有+90天新长的草③↓↓↓马 90天吃了原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l÷11()9060+=36天.所以,牛、羊、马一起吃,需36天.5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.。
第三讲——牛吃草问题知识提要:解决“牛吃草问题”要根据题目所给的牛的数量、草的数量和时间量,一般是从牧场中草的生长量着手,先求出在单位时间内新生长的草量,再求出原有的草量,并同时用比较的方法求出这两部分草量的差,最后求得问题的解,草的计量单位,一般使用“1单位”。
(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的;草的生长速度=(牛的数量×吃的较多天数-牛的数量×吃的较少天数)÷(吃的较多的天数-吃的较少的天数)(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量:原有草量=牛的数量×吃的天数-草的生长速度×吃的天数(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天:吃的天数=原有草量÷(牛的数量-草的生长速度)牛的数量=原有草量÷吃的天数+草的生长速度例题精讲例题1:有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水)。
如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根水管,需6小时把池内的水全部排光。
要想4.5小时把池内的水全部排光,需同时打开多少根出水管?1、我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有相同量的泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,需要开动13台抽水机同时供水,那么多长时间可以把这池水抽完?2、有一个蓄水池装了21根相同的水管,其中一根是进水管,其余20根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水。
五年级奥数题及答案:牛吃草问题【三篇】
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天能够把草吃完?
牛吃草答案:
(1)设1头牛1天的吃草量为"1",那么天生长的草量为21*8-
24*6=24 ,所以,每天生长的草量为24/2=12也就是说,每天生长的
草量能够供12头牛吃1天。
那么要让草永远也吃不完,最多放养12
头牛。
(2)原有草量(24-12)*6=72 ,72/(36-12)=3天可供36头牛吃。
【第二篇】
牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧
草每周匀速生长,可供21头牛吃几周?
牛牛吃草答案:
可供21头牛吃12周
27头牛6周吃的草可供多少头牛吃一周?27×6=162
23头牛9周吃的草可供多少头牛吃一周?23×9=207
(9-6)周新长的草可供多少头牛吃一周?207-162=45
一周新长的草可供多少头牛吃一周?45÷3=15
原有的草可供多少头牛吃一周?162-15×6=72 或207-
15×9=72
21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃
原有的草几周吃完?
72÷(21-15)=12
【第三篇】
有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天?牛吃草答案:
【分析】45×20÷36=900÷36=25(天)。
奥数专题之牛吃草问题1【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。
【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。
问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】A.5台B.6台C.7台D.8台【答案】B【例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?A.16B.20C.24D.28【答案】C【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A.2周B.3周C.4周D.5周【答案】C【例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。
某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了A.2小时B.1.8小时C.1.6小时D.0.8小时【答案】D奥数专题之牛吃草问题21有一片牧场,草每天都匀速的生长,如果放牧24头牛,则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的,问2.如果放牧16头牛几天可吃完牧草?3.要使草永远吃不完,最多只能放牧几头牛?4,有一片牧草,如果养27头牛,这些牛6天可以把草吃尽,如果养23头牛,这些牛9天可以把草吃尽,如果养21头牛,这些牛几天可以把草吃尽?5,牧场上有一片牧草,供24头牛6周吃完,供18头牛10周吃完.假定草的生长速度不变,那么供19头牛需要几周吃完?6.有三块牧地,面积分别为3又1/3平方米,10平方米,24平方米,第一块牧地12头可吃4星期,第二块牧地21头可吃9星期,第三块牧地可供几头牛吃18星期?7.一批货物,用5匹马运,6天可以运完;用6头牛运,4天可以运完。
小学奥数应用题牛吃草问题的变例牛吃草变例问题,含核心知识和答案解析牛吃草问题的变例主要考察以下三个方面1.牛吃草问题的变例2.“牛的数量”发生变化3.多块地的牛吃草问题难度升级,但是只要抓住核心知识,多大的难题也能解决,看看宝贝们对核心知识点有没有了解的更加透彻。
加油!答案解析1、一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周,或供23头牛吃9周,那么这片草地可供21头牛吃几周?2、一片青草地,草每天均匀生长,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃多少天?3、24头牛6天可以将一片牧草吃完,21头牛 8天也可以将这片牧草吃完,如果每天草的增长量相等,要使这片牧草永远吃不完,至多放几头牛吃这片牧草?4、因天气渐冷,牧场上的草以固定的速度减少,已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?5、一块牧场的草够12头牛吃12天,或15头牛吃8天,如果在全部时间内青草能均匀生长,那么,这块牧场6天能养活多少头牛?6、一块草地,每天生长的速度相同,现在在这片牧场可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天吃的草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?7、有一池泉,泉底不断涌出泉水,且每小时涌出的泉水一样多,如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么14部抽水机多少小时能把全池泉水抽干?8、假设地球上新生的资源的增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年或可供90亿人生活210年,为使人类能够不断繁衍,那么地球最多能养活多少亿人?9、快中慢三车同时从A地出发,追赶一辆自行车,它们的速度分别是每小时24千米,每小时20千米和每小时19千米,快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?10商场的自动扶梯以均匀的速度由下往上行驶着,兄妹俩从扶梯上楼,兄每分钟走20级,妹每分钟走15级,结果兄5分钟到达楼上,妹6分钟到达楼上,问该自动扶梯共有多少级(可见)?11某车站在检票前若干分钟就开始排队,设每分钟来的旅客人数一样多,从开始检票到等候检票的队伍消失,若同时开4个检票口需30分钟;同时开5个检票口需要20分钟,买来同时开7个检票口需要多少分钟?为了使15分钟内检票队伍消失,至少需要开多少个检票口?。
小学奥数牛吃草应用题问题及解答【三篇】
解答:设每一个入场口每分钟通过”1”份人,摘录条件,将它们转化为如下形式方便分析
3个入场口9分钟3×9=27 :原有人+9分钟来的人
5个入场口5分钟5×5=25 :原有人+5分钟来的人
从上易发现:4分钟来的人=27-25=2,即1分钟来的人=0.5;那么原有的人:27-9×0.5=22.5;
这些人来到画展,用时间22.5÷0.5=45(分)。
第一个观众到达的时间为9点-45分=8点15分。
【第二篇】
一片牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天。
在东升牧场的西侧有一块6000平方米的牧场,6天中可供多少头牛吃草?
解答:设1头牛1天的吃草量为”1”,摘录条件,将它们转化为如下形式方便分析
18头牛16天18×16=288 :原有草量+16天自然减少的草量27头牛8天27× 8=216 :原有草量+8天自然减少的草量
从上易发现:2000平方米的牧场上16-8=8天生长草量=288-216=72,即1天生长草量=72÷8=9;
那么2000平方米的牧场上原有草量:288-16×9=144或216-
8×9=144。
则6000平方米的牧场1天生长草量=9×(6000÷2000)=27;原有草量:144×(6000÷2000)=432.
6天里,共草场共提供草432+27×6=594,可以让594÷6=99(头)牛吃6天
【第三篇】
一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。
在东升牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草
解答:设1头牛1天的吃草量为”1”,摘录条件,将它们转化为如下形式方便分析
12头牛25天12×25=300 :原有草量+25天自然减少的草量24头牛10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;
那么15公顷的牧场上原有草量:300-25×4=200;
则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.
20天里,共草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。