数码管扫描显示控制器设计与实现——数字电路实验报告
- 格式:doc
- 大小:680.00 KB
- 文档页数:22
一、实训目的本次实训旨在通过实际操作,让学生掌握数码管动态显示的原理,了解数码管动态扫描显示电路的设计方法,提高学生使用Verilog HDL进行层次化设计电路的能力。
通过实训,学生能够理解并应用动态扫描显示数码管、数据选择器及其信号分配方法,同时熟悉使用可编程芯片(如FPGA/CPLD)控制多位动态扫描数码管的显示。
二、实训环境1. 实训设备:FPGA开发板、数码管、信号源、示波器等。
2. 软件工具:Quartus II、ModelSim等。
3. 实训教材:相关电子设计教材、Verilog HDL编程指南。
三、实训原理数码管动态显示技术是利用人眼的视觉暂留效应,通过快速切换显示不同的数码管,使观察者感觉多个数码管同时显示。
具体原理如下:1. 数码管结构:数码管由若干个LED段组成,通过点亮不同的段来显示数字或字符。
2. 共阳/共阴数码管:数码管分为共阳和共阴两种类型。
共阳数码管的阳极连接在一起,共阴数码管的阴极连接在一起。
3. 动态扫描:通过控制每个数码管的点亮和熄灭,实现多位数码管的动态显示。
4. 数据选择器:用于选择要显示的数字或字符对应的段编码。
四、实训过程1. 设计3位数码管动态扫描显示电路:- 使用Verilog HDL设计数码管显示模块,包括段编码生成、位选控制、时钟分频等。
- 设计数据选择器,用于选择要显示的数字或字符对应的段编码。
- 设计主控制器,用于控制动态扫描的时序。
2. 实现显示功能:- 将学号的后3位数字输入到数码管显示电路中。
- 使用可编程芯片(如FPGA/CPLD)实现电路的编译和下载。
3. 提高性实验:- 增加一个功能切换控制开关,实现数码管显示数字的自动循环移位。
- 设计其他显示功能,如显示不同的字符或图案。
4. 实验测试:- 使用示波器观察数码管显示电路的时序信号,确保电路正常工作。
- 使用Quartus II进行仿真测试,验证电路的功能。
五、实验结果与分析1. 3位数码管动态扫描显示电路:- 成功实现了学号后3位数字的动态显示。
数电实验报告数码管显示控制电路设计实验目的:设计一个数码管显示控制电路,实现对数码管的显示控制。
实验器材:数码管、集成电路、电阻、开关、电源等。
实验原理:数码管是一种用它们来显示数字和字母的一种装置。
它由几个独立的发光二极管组成,每个数字由不同的发光二极管的组合表示。
对数码管的显示控制通常使用多路复用技术实现,即通过控制数码管的分段和共阴极或共阳极来实现不同数字的显示。
实验步骤:1.确定数码管的类型和接线方式。
本实验中使用共阳数码管,数码管共阳极通过电阻连接到正极电源。
2.选取适当的集成电路作为显示控制电路。
本实验中选择CD4511作为显示控制芯片,它可以实现对4位共阳数码管的显示控制。
3.连接电路。
将4位共阳数码管的阳极分别连接到CD4511芯片的A、B、C和D端口,共阴极连接到电源正极。
将CD4511芯片的输入端口IN1、IN2、IN3和IN4连接到微控制器的输出端口,控制微控制器输出的电平来选通不同的数码管。
4.设置微控制器的输出。
通过编程或手动设置微控制器的输出端口来控制数字的显示。
根据需要显示的数字,将相应的输出端口设置为高电平,其余端口设置为低电平。
通过适当的延时控制,便可以实现数字的连续显示。
实验结果与分析:经过上述步骤完成电路搭建后,我们可以通过改变微控制器的输出端口来控制数码管的显示。
当我们设置不同的输出端口为高电平时,相应的数码管会显示对应的数字。
通过适当的延时控制,我们可以实现数字的连续显示,从而实现对数码管的显示控制。
实验结论:通过本次实验,我们成功地设计并实现了一个数码管显示控制电路。
通过对微控制器输出端口的控制,我们可以实现对数码管的数字显示控制。
这对于数字显示系统的设计和开发具有重要意义。
实验心得:通过本次实验,我对数码管的显示控制有了更深入的了解。
数码管作为一种常见的数字显示装置,广泛应用于各种电子设备中。
掌握其显示控制原理和方法对于电子技术爱好者来说至关重要。
通过实际操作,我对数码管显示控制电路的设计和实现有了更深入的认识,同时也提高了我对数字显示系统的理解和设计能力。
led数码管实验报告
LED数码管实验报告
实验目的:通过LED数码管实验,掌握数字电路的基本原理和数字显示技术。
实验原理:LED数码管是一种数字显示装置,由多个LED灯组成,可以显示0-
9的数字。
在数字电路中,LED数码管通常用于显示数字信号,通过控制LED
的亮灭来显示不同的数字。
实验材料:LED数码管、数字电路实验板、数字信号发生器、数字电路元件等。
实验步骤:
1. 将LED数码管连接到数字电路实验板上,并接入电源。
2. 使用数字信号发生器产生不同的数字信号,将信号输入到LED数码管中。
3. 观察LED数码管的显示效果,记录不同数字信号对应的LED亮灭状态。
4. 分析LED数码管的工作原理,探讨数字信号与LED数码管的对应关系。
实验结果:通过实验观察和记录,得出了不同数字信号与LED数码管显示的对
应关系,掌握了LED数码管的工作原理和数字信号的显示技术。
实验结论:LED数码管是一种常用的数字显示装置,广泛应用于计时器、计数器、电子钟等领域。
通过本次实验,我们深入了解了LED数码管的工作原理,
掌握了数字信号与LED数码管的对应关系,为今后的数字电路设计和应用打下
了基础。
总结:LED数码管实验是数字电路实验的重要内容,通过实验学习,可以加深
对数字电路原理的理解,提高数字显示技术的应用能力。
希望同学们能够认真
学习实验内容,掌握实验技能,为将来的工程实践奠定坚实基础。
bcd译码的多位数码管扫描显示实验总结
BCD译码器是将二进制代码转换为十进制数码管显示的重要电子元器件之一,多位数码管扫描显示实验则是将多个BCD译码器联接起来,以实现同时显示多位数字。
该实验对于电子工程领域的学习和实践都具有重要意义,下面是本人对该实验的总结:
1. 实验目的
通过本实验,可以掌握BCD译码器的原理和使用方法,了解多位数码管的扫描显示原理,提高对数字电路的理解和应用能力。
2. 实验内容
本次实验主要内容包括搭建多位数码管扫描显示电路、编写控制程序实现数字的连续显示等。
3. 实验步骤
(1) 准备工作:选取适当数量的BCD译码器和数码管,按照电路图连接相应的引脚,确定好电源和地线的接法。
(2) 编写程序:根据所选单片机的指令集和IO口映射,编写相
应的控制程序,使得数字可以在多位数码管上连续显示。
(3) 调试测试:连接好电路后,进行电源接入并检查是否正常运行,检查各个引脚的连接是否正确。
然后进行程序的上传并测试,观察数码管上数字的连续变化情况。
4. 实验结果
通过本次实验,我成功地搭建了一个多位数码管扫描显示电路,并且编写了相应的控制程序,使得数字可以在多位数码管上连续显示。
在调试测试过程中,我发现有时会出现数字显示不清晰或者闪烁等问题,这可能是由于电压不稳定、引脚接触不良等原因造成的,需要进行相应的排查和处理。
5. 总结
通过本次实验,我对BCD译码器和多位数码管扫描显示的原理和应用有了更深入的了解和认识,同时也提高了自己的实践能力和动手能力。
在今后的学习和实践中,我将继续深入探究数字电路的相关知识,为自己的技术发展打下坚实的基础。
EDA实验报告-实验2-数码管扫描显⽰电路暨南⼤学本科实验报告专⽤纸课程名称 EDA 实验成绩评定实验项⽬名称数码管扫描显⽰电路指导教师郭江陵实验项⽬编号 02 实验项⽬类型验证实验地点 B305 学院电⽓信息学院系专业物联⽹⼯程组号: A6⼀、实验前准备本实验例⼦使⽤独⽴扩展下载板EP1K10_30_50_100QC208(芯⽚为EP1K100QC208)。
EDAPRO/240H 实验仪主板的VCCINT 跳线器右跳设定为3.3V ;EDAPRO/240H 实验仪主板的VCCIO 跳线器组中“VCCIO3.3V ”应短接,其余VCCIO 均断开;独⽴扩展下载板“EP1K10_30_50_100QC208”的VCCINT 跳线器组设定为 2.5V ;独⽴扩展下载板“EP1K10_30_50_100QC208”的VCCIO 跳线器组设定为3.3V 。
请参考前⾯第⼆章中关于“电源模块”的说明。
⼆、实验⽬的1、了解时序电路设计。
2、制作⼀个数码管显⽰的7段译码电路,以备以后调⽤。
三、实验原理在电⼦电路显⽰部分⾥,发光⼆极管(LED )、七段显⽰数码管、液晶显⽰(LCD )均是⼗分常见的⼈机接⼝电路。
通常点亮⼀个LED 所需的电流在5~20mA 之间,电流愈⼤,LED 的亮度也⾼,相对的使⽤寿命也愈短。
若以10mA 导通电流来估算⼀个接5V 的串接电阻值计算应为:(5-1.6)/10mA ≈0.34K Ω。
七段显⽰数码管分为共阳、共阴⼆种极性。
它们等效成⼋个LED 相连电路。
共阴极七段显⽰器的LED 位置定义和等效电路共阴极七段显⽰码⼗六进制转换表四、实验内容⽤拨码开关产⽣8421BCD 码,CPLD 器件产⽣译码及扫描电路,把BCD 码显⽰在LED 数码管上,通过改变扫描频率观察数码管刷新效果。
五、实验要求学习在MAX+PLUS II 中使⽤VHDL 设计功能模块,并将所⽣成的功能模块转换成MAX+PLUS II 原理图的符号库,以便在使⽤原理图时调⽤该库。
第1篇一、实验目的1. 熟悉数码显示模块的结构和工作原理;2. 掌握51单片机控制数码显示模块的方法;3. 学会使用移位寄存器实现数码显示的动态扫描;4. 提高单片机编程能力和实践操作能力。
二、实验原理数码显示模块是一种常见的显示器件,主要由7段LED组成,可以显示0-9的数字以及部分英文字符。
51单片机通过控制数码显示模块的段选和位选,实现数字的显示。
移位寄存器是一种常用的数字电路,具有数据串行输入、并行输出的特点。
在本实验中,使用移位寄存器74HC595实现数码显示的动态扫描。
三、实验仪器与材料1. 51单片机实验板;2. 数码显示模块;3. 移位寄存器74HC595;4. 电阻、电容等电子元件;5. 电路连接线;6. 编译软件Keil uVision;7. 仿真软件Proteus。
四、实验步骤1. 电路连接(1)将51单片机的P1口与数码显示模块的段选端相连;(2)将74HC595的串行输入端Q(引脚14)与单片机的P0口相连;(3)将74HC595的时钟端CLK(引脚11)与单片机的P3.0口相连;(4)将74HC595的锁存端LR(引脚12)与单片机的P3.1口相连;(5)将数码显示模块的位选端与74HC595的并行输出端相连。
2. 编写程序(1)初始化51单片机的P1口为输出模式,P3.0口为输出模式,P3.1口为输出模式;(2)编写数码显示模块的段码数据表;(3)编写74HC595的移位和锁存控制函数;(4)编写数码显示模块的动态扫描函数;(5)编写主函数,实现数码显示模块的循环显示。
3. 编译程序使用Keil uVision编译软件将编写的程序编译成hex文件。
4. 仿真实验使用Proteus仿真软件进行实验,观察数码显示模块的显示效果。
五、实验结果与分析1. 编译程序后,将hex文件下载到51单片机实验板上;2. 使用Proteus仿真软件进行实验,观察数码显示模块的显示效果;3. 通过实验验证,数码显示模块可以正常显示0-9的数字以及部分英文字符;4. 通过实验,掌握了51单片机控制数码显示模块的方法,学会了使用移位寄存器实现数码显示的动态扫描。
数电实验报告数码管显示控制电路设计一、实验目的1.学习数码管介绍和使用;2.熟悉数码管控制电路设计思路和方法;3.掌握数码管显示控制电路的实验过程和步骤。
二、实验原理数码管是数字显示器件,具有低功耗、体积小、寿命长等优点。
常见的数码管有共阳极和共阴极两种。
共阳极数码管的阳极端口是一个共用的端口,通过将不同的阴极端口接地来控制数码管的发光情况。
共阴极数码管的阴极端口是一个共用的端口,通过将不同的阳极端口接地来控制数码管的发光情况。
数码管的控制电路可以使用逻辑门电路或微控制器来实现。
本实验采用逻辑门电路来设计数码管显示控制电路。
三、实验器材和器件1.实验板一块;2.74LS47数码管译码器一颗;3.共阴极数码管四个;4.逻辑门IC:7404、7408、7432各一个;5.杜邦线若干。
四、实验步骤1.将74LS47数码管译码器插入实验板上的相应位置,并用杜邦线连接74LS47和逻辑门IC的引脚:1)将74LS47的A、B、C和D引脚依次连接到7408的输入端;2)将74LS47的LE引脚连接到VCC(高电平,表示使能有效);3)将74LS47的BI/RBO引脚连接到GND(低电平,表示译码输出);4)将7408的输出端依次连接到7432的输入端;5)将7432的输出端依次连接到数码管的阴极端口。
2.将四个数码管的阳极端口分别连接到4个控制开关上,并将开关接地。
3.将实验电路接入电源,调整电压和电流,观察数码管的显示情况。
五、实验结果和分析实验结果显示,控制开关的状态可以控制数码管的显示内容。
当其中一控制开关接地时,对应的数码管会显示相应的数字。
通过调整开关的状态,可以实现不同数字的显示。
六、实验总结通过这次实验,我学会了数码管的基本使用方法和控制电路的设计思路。
数码管作为一种数字显示元件,广泛应用于各种电子产品中,掌握其控制方法对于电子工程师来说非常重要。
在今后的学习和工作中,我将继续深入研究数码管的相关知识和应用,提高自己的技术水平。
数码管显示实验实验报告一、实验目的本次数码管显示实验的主要目的是深入了解数码管的工作原理和显示控制方式,通过实际操作掌握数码管与微控制器的接口技术,并能够编写相应的程序实现各种数字和字符的显示。
二、实验原理数码管是一种由多个发光二极管组成的显示器件,常见的有共阴数码管和共阳数码管两种类型。
共阴数码管是将所有发光二极管的阴极连接在一起,当阳极接高电平时,相应的二极管发光;共阳数码管则是将所有发光二极管的阳极连接在一起,当阴极接低电平时,相应的二极管发光。
在控制数码管显示时,通常采用动态扫描的方式,即依次快速地给每个数码管的段选端送入相应的字形码,同时使位选端选通对应的数码管,利用人眼的视觉暂留效应,使人看起来好像所有数码管同时在显示。
三、实验设备与材料1、实验开发板2、数码管模块3、杜邦线若干4、电脑5、编程软件四、实验步骤1、硬件连接将数码管模块与实验开发板进行连接,确定好段选和位选引脚的连接。
检查连接是否牢固,确保电路无短路或断路现象。
2、软件编程打开编程软件,选择相应的开发板型号和编程语言。
定义数码管的段选和位选引脚。
编写控制程序,实现数字 0 到 9 的循环显示。
3、编译与下载对编写好的程序进行编译,检查是否有语法错误。
将编译成功的程序下载到实验开发板上。
4、观察实验现象接通实验开发板的电源,观察数码管的显示情况。
检查显示的数字是否正确,显示的亮度和稳定性是否符合要求。
五、实验结果与分析1、实验结果数码管能够正常显示数字 0 到 9,并且能够按照设定的频率循环显示。
显示的数字清晰、稳定,没有出现闪烁或模糊的现象。
2、结果分析程序编写正确,能够准确地控制数码管的段选和位选信号,实现数字的显示。
动态扫描的频率设置合理,既保证了显示的稳定性,又不会出现明显的闪烁。
六、实验中遇到的问题及解决方法1、问题数码管显示出现闪烁现象。
解决方法调整动态扫描的频率,增加扫描的速度,减少每个数码管的点亮时间,从而减轻闪烁现象。
实验四数码管扫描显示控制器设计与实现2011211208班2011211055 4 于圣泽一、实验目的1.掌握VHDL语言的语法规范, 掌握时序电路描述方法;2.掌握多个数码管动态扫描显示的原理及设计方法。
二、实验原理三、多个数码管动态扫描显示, 是将所有数码管的相同段并联在一起, 通过选通信号分时控制各个数码管的公共端, 循环依次点亮多个数码管, 利用人眼的视觉暂留现象, 只要扫描的频率大于50Hz, 将看不到闪烁现象。
一个数码管要稳定显示要求显示频率大于50Hz, 那么6个数码管则需要50×6=300Hz以上才能看到持续稳定点亮的现象。
四、cat1~cat6是数码管选通控制信号, 分别对应于6个共阴极数码管的公共端, 当catn=‘0’时, 其对应的数码管被点亮。
因此, 通过控制cat1~cat6, 就可以控制6个数码管循环依次点亮。
五、实验内容1.用VHDL语言设计并实现六个数码管串行扫描电路, 要求同时显示0、1.2.3.4.5这6个不同的数字图形到6个数码管上, 仿真验证其功能, 并下载到实验板测试。
2.用VHDL语言设计并实现六个数码管滚动显示电路六、循环左滚动, 始终点亮6个数码管, 左出右进。
状态为: 012345→123450→234501→3450123→450123→501234→012345七、向左滚动, 用全灭的数码管填充右边, 直至全部变灭, 然后再依次从右边一个一个地点亮。
状态为:012345→12345X→2345XX→345XXX→45XXXX→5XXXXX→XXXXXX→XXXXX0→XXXX01→XXX012→XX0123→X01234→012345,其中‘X’表示数码管不显示。
八、设计思路和过程对50MHz时钟进行5000分频, 得到10kHZ时钟scanclk。
把scanclk作为6进制计数器的时钟, 对计数器的状态进行译码, 得到cat(5 downto 0)的选通脉冲。
数码管显示控制电路
班级:03051001班
学号:
姓名:
同组成员:
一、实验任务
1、能自动循环显示数字0、1、
2、
3、
4、1、3、0、2、4;
2、计数显示速度能由快到慢,再由慢到快循环变化。
二、实验设备
数字电路实验箱、数字双踪示波器、74LS00、74LS10、74LS147、74LS90、NE555、七段显示数码管、电阻和电容
三、实验原理
数码管显示控制电路原理框图
四、实验设计
1、555接成多谐振荡电路,产生计数脉冲;
2、74LS90接5421BCD计数时,真值表和74LS47的输入对应关系如表:
由真值表可得如下输出方程
3、考虑到要求技术显示速度能由快到慢、由慢到快循环变化,可以用作为片
选,控制两个555多谐振荡电路,产生不同频率的方波。
五、实验电路图
六、心得体会
这次实验综合性较强,主要考察了我们从实际问题中抽象出逻辑函数的能力。
在逻辑函数化简中,利用无关项来简化结果使得逻辑函数更为简单,电路更易搭建。
本次实验,通过对计数器工作过程的探索,基本上了解了计数器的工作原理,以及74LS90的数字特点,让我更进一步掌握了如何做好数字电路实验,也让我认识到自身理论知识的不足和实践能力的差距,以及对理论结合实践的科学方法有了更深刻理解。
另外,74LS90器件的连接方法选择也至关重要,必须要进行充分的准备,否则电路
不易搭建。
北京邮电大学实验报告实验名称:数码管扫描显示控制器设计与实现学院:信息与通信工程学院班级:姓名:学号:日期:2010年5月索引一.实验目的 (4)二.实验所用仪器及元器件 (4)三.实验任务要求 (4)四.实验设计思路及过程 (5)1.实验原理 (5)2.设计思路 (5)3.VHDL代码 (6)A.实验任务1 (6)B.实验任务2-I (9)C.实验任务2-II (12)五.仿真波形及分析 (13)1.仿真波形 (13)①实验任务1 (13)②实验任务2-I (14)3.波形分析 (19)①实验任务1 (19)②实验任务2-I (19)六.故障及问题分析 (20)1.频率设置问题 (20)2.触发问题 (20)3.逻辑实现问题 (20)七.本实验总结与结论 (21)八.学期总结 (21)九.参考文献 (21)一.实验目的1.掌握VHDL语言的语法规范,掌握时序电路描述方法2.掌握多个数码管动态扫描显示的原理及设计方法二.实验所用仪器及元器件1.计算机2.直流稳压电源3.数字系统与逻辑设计实验开发板三.实验任务要求1.用VHDL语言设计并实现六个数码管串行扫描电路,要求同时显示0,1,2,3,4,5这六个不同的数字图形到六个数码管上,仿真下载验证其功能。
2.用VHDL语言设计并实现六个数码管滚动显示电路。
(选作)I.循环滚动,始终点亮6个数码管,左出右进。
状态为:012345-123450-234501-345012-450123-501234-012345II.向左滚动,用全灭的数码管充右边,直至全部变灭,然后再依次从右边一个一个地点亮。
状态为:012345-12345X-2345XX-345XXX-45XXXX-5XXXXX-XXXXXX-XXXXX0-XXXX01-XXX012-XX0123-X01234-012345,其中’X’表示数码管不显示。
四.实验设计思路及过程1.实验原理为使得输入控制电路简单且易于实现,采用动态扫描的方式实现设计要求。
动态扫描显示需要由两组信号来控制:一组是字段输出口输出的字形代码,用来控制显示的字形,称为段码;另一组是位输出口输出的控制信号,用来选择第几位数码管工作,称为位码。
各位数码管的段线并联,段码的输出对各位数码管来说都是相同的。
因此在同一时刻如果各位数码管的位选线都处于选通状态的话,6位数码管将显示相同的字符。
若要各位数码管能够显示出与本位相应的字符,就必须采用扫描显示方式,即在某一时刻,只让某一位的位选线处于导通状态,而其它各位的位选线处于关闭状态。
同时,段线上输出相应位要显示字符的字型码。
这样在同一时刻,只有选通的那一位显示出字符,而其它各位则是熄灭的,如此循环下去,就可以使各位数码管显示出将要显示的字符。
虽然这些字符是在不同时刻出现的,而且同一时刻,只有一位显示,其它各位熄灭,但由于数码管具有余辉特性和人眼有视觉暂留现象,只要每位数码管显示间隔足够短,给人眼的视觉印象就会是连续稳定地显示。
总之,多个数码管动态扫描显示,是将所有数码管的相同段并联在一起,通过选通信号分时控制各个数码管的公共端,循环一次点亮多个数码管,并利用人眼的视觉暂留现象,只要扫描的频率大于50Hz,将看不到闪烁现象。
6个数码管则需要50*6=300Hz以上才能看到持续稳定点亮的现象。
2.设计思路设计时序电路,输入时钟经过一个分频器,产生2kHz的扫描信号作为时钟,驱动计数器工作。
选用模值为6的计数器,通过一个3线至6线译码器,产生段码,依次控制6个LED的亮灭,使得某一时刻有且仅有一个LED点亮,同时产生对应的,将点亮的LED数码管赋值显示为相应的数码予以显示。
由于扫描频率较高,6位LED数码管序列将显示持续稳定的0至5的数码。
3.VHDL代码A.实验任务1①实现代码②代码说明通过分频器输入产生选通脉冲,控制0至5号LED数码管依次亮灭,同时使用数码显示信号使得数码管显示相应数码。
实现时通过连接引入分频信号,通过数据选择器选择数码管。
计数器信号触发数据选择器,赋值给位码触发数码管显示数码。
最终实现动态扫描显示数字序列。
B.实验任务2-I①实现代码②代码说明代码主体和实验任务1中一致,基本思想也一致。
为实现移位,关键改动为新增一个计数器,技术周期远远大于扫描周期,这样,在一个大的计数周期内,对于要显示的6位数码进行动态扫描(和实验任务1中相同),显示出6种移位状态中的一种;在下一个大的周期内,利用FLAG标志,并使用求余运算将显示位的数码移位,比如,大的计数周期为0时,FLAG为0,显示“012345”六位数码,大的周期为1时,FALG为1,此时各位求余(即FLAG_A求余)对应的数码为123450,显示的数码也就为“123450”。
以此类推,实现循环移位。
C.实验任务2-II①实现代码②代码说明此处为关键部分代码,其余代码同实验任务2-I中基本相同。
实现基本思路为:先左移位,方法同实验任务2-I,进行加运算,稍有不同为左移出的数码不从右移入,因而没有取余运算,大于6的数码状态为灭灯,实现了左移且右端数码依次熄灭。
待全部灯熄灭(此时FLAG已经加到了7)后数码依次从右移入,此时进行减运算(加减运算由FLAG_SC控制),右端数码最先达到0,显示数码“0”,然后是右端第二位达到0,显示数码“0”,右端第一位为1,显示数码“1”,其余灯灭,以此类推,实现了右端逐位移入数码的功能。
五.仿真波形及分析1.仿真波形①实验任务1②实验任务2-I3.波形分析①实验任务1由波形可见,随着时钟模六计数的不断重复,0至5号LED数码管依次打开,其余管熄灭,同时,数码管显示数字从0至5依次出现,两者保持同步,即n号管亮时显示的数码为n。
这样每计数6次循环依次,可知仿真结果正确。
当扫描速度很快时,人眼将能看到持续稳定的0至5号数码显示。
在实验室实际测试时,下载到电路板测试成功,完成实验任务。
②实验任务2-I为了使仿真结果便于打印,这里修改了COUNT值为6,也即在一个大的计数周期内,只扫描一遍(实际实现时需要动态扫描多次,如同实验任务1,产生稳定显示,只需把COUNT值加大即可)。
由波形可见,随着大计数周期的增加,依次产生012345-123450-234501-345012-450123-501234-012345 ……,这样便实现了循环移位。
实验室实测时,加大COUNT值为5000,观察到稳定持续的周期循环移位的数码显示,完成实验任务。
六.故障及问题分析1.频率设置问题当频率设置过高时,计数周期将大大增加,每个周期内的扫描次数也增加,但考虑到人眼的分辨能力,频率只需大于300Hz即可,过大将增大系统开销,故采用2kHz分频器。
2.触发问题初始编写代码时,误将COUNT计数器放入p3进程中,导致触发逻辑错误,大周期计数不工作,显示数码不能移位。
后将模6和模5000两个计数器同时放入p2进程,统一使用一个时钟边沿触发,这样符合了同步时序电路设计的基本思想,触发正确,显示数码才正常移位。
3.逻辑实现问题实验任务2-II中,为节省硬件开销,摈弃使用过多CASE语句产生大量数据选择器的穷举法,采用一个加法器和一个减法器代替,小周期计数器控制每位数码的显示,大周期计数器控制数码的移位,加法器实现左移出,减法器实现右移入,综合起来实现实验任务要求。
逻辑分析包括硬件分析均无问题,但实际下载到电路板上实现时,部分移位出现乱码。
在实验室规定的时间内没能调试成功,真是遗憾。
分析问题可能出在移位时间的选择上,需要再从仿真波形着手,仔细分析逻辑中的小BUG。
七.本实验总结与结论1.经过逻辑分析,编写VHDL代码,然后调试,进行波形仿真,最后下载到实验板实现,一系列工序之后,成功实现了本实验要求的比做任务1和选作任务2-I,选作任务2-II逻辑上稍有问题,还需进一步改进编码,仿真测试。
2.进行数字电路实验,理论分析是十分重要的一环,只有逻辑分析透彻无误了,才能用语言进行描述,进而用硬件实现。
这次实验让我对VHDL这样一门硬件描述语言有了更加深刻的认识。
语言是描述设计者逻辑思想的,有什么样的逻辑思维就会产生什么样的代码,换句话说,逻辑思维错误将直接导致描述错误,进而不能实现数字逻辑。
应该着重优化逻辑思维,才能写出优秀的硬件代码。
3.硬件描述语言的学习,不同于一般编程语言的描述,它没有汇编那样深入硬件最底层,但从硬件抽象出来的逻辑却与硬件密不可分。
编写硬件描述代码,不仅要符合基本编程语言的规范,更应该时时刻刻联系实现功能的硬件,理解时序和组合的关系,理解同步和异步的差异,理解进程和信号的流程等等,这样才能使写出的代码效率更高。
八.学期总结1.这学期开始了数字电路与逻辑设计课程,从理论课堂学习基本设计理论到实验课动测试数字电路参数、编写VHDL代码实现逻辑功能,我对数字电路设计与实现的基本思想方法有了初步的了解,为以后进一步的学习和应用到通信等系统打下了扎实的基础。
2.在数字电路应用日趋广泛的今天,学习基本数字电路理论和实现方法有十分重要的意义。
而软件和硬件融合的趋势愈发明显,实验课开始VHDL编程也是很有意义的。
理论分析有助于优化和提升逻辑思维能力,动手操作有利于锻炼实践能力。
这两方面的训练都是很有益处的。
3.实验课使得我对课堂讲授的理论知识有了更加深刻的认识和体验,也让我体会到了数字电路的强大功能。
我喜欢实验课中那种提出问题,分析逻辑,仿真验证,具体实现这一过程。
尽管实验中困难也不少,但纠错和分析解决问题的过程总给人带来快乐,特别是经过长时间的思考,最终用电路板实现那些有趣的逻辑功能那一刹那,心中总是无比欣喜!九.参考文献[1] 数字电路与逻辑设计实验教程,北京:北京邮电大学电路中心,2010[2] 刘培植等.数字电路与逻辑设计,北京:北京邮电大学出版社,2009<报告结束>。