轧辊失效形式探讨
- 格式:pdf
- 大小:449.64 KB
- 文档页数:9
浅谈精轧工作辊失效形式及预防措施(郑强)检修中心轧钢维护部摘要:通过对轧辊在生产中发生的各种失效形式进行分析,并作出相应的预防措施。
关键词:裂纹;剥落;断裂前言轧辊是热轧厂生产中最大的消耗性、关键性备件,不仅其消耗量大、价格昂贵,而且其性能和使用情况的好坏,直接影响生产的作业率和成本、产品的产量和质量、辊耗等。
轧辊消耗量是轧钢生产技术经济指标之一,是考核轧钢生产的主要内容。
因此,提高轧辊使用寿命,是轧钢生产提高生产效率、实现增产节约、降低消耗的有力措施。
使用中的轧辊,由于和轧件直接接触引起的接触应力、热应力、剪切应力、残余应力和轧辊本身的制造缺陷等原因,常常在正常使用周期内被迫提前下机,甚至非正常报废,这就需要我们通过各种失效形式做出相应的分析,并加以预防和解决。
1.裂纹裂纹是轧辊使用中最常见的一种失效形式,又分正常裂纹和非正常裂纹两种。
1.1正常裂纹正常裂纹又叫热裂纹,热裂纹属正常轧制下产生的裂纹,初期呈很细的网状均匀分布在轧辊的整个辊身上,深度较浅。
热裂纹是由于多次温度循环产生的热应力所造成的逐渐破裂,是发生于轧辊辊身上的一种微表面层现象。
此种裂纹是轧制过程中轧辊受接触应力、热应力、剪切应力、残余应力影响,当应力超过材料的疲劳极限时,轧辊表面产生严重应变,逐渐导致热疲劳裂纹的产生。
预防措施:1、合理控制冷却水量和冷却水的分布;2、合理分配各机架轧制负荷;3、合理控制换辊周期;4、合理控制磨削量;1.2非正常裂纹轧制中发生的打滑、粘钢、卡钢、堆钢、甩尾、甚至断水轧制等轧制事故,这些轧制事故会造成轧辊局部温度升高而产生热应力和组织应力,当轧辊应力值超过材料强度极限时便产生热冲击裂纹,形成轧辊辊身表面一条母线上或局部深度和开口度较大的裂纹。
通过修磨,轧辊表面裂纹消除后可以继续使用,但其使用寿命明显降低,并在以后的使用中易出现剥落事故。
预防措施:1、轧制条件应满足轧辊的使用技术要求;2、合理分配各机架轧制负荷;3、提高轧制操作技能,尽量减少打滑、粘钢、卡钢、堆钢、甩尾、甚至断水轧制等轧制事故的发生;4、轧线必须及时把事故原因的信息传递到磨辊间,以便于磨辊间针对事故原因制定有效的对事故轧辊进行严格的超声波、涡流探伤及磨削处理;2.剥落剥落是轧辊使用中比较严重的一种失效形式,是由于轧辊表面裂纹的扩展或轧辊本身内部缺陷造成的。
冷轧辊的失效分析冷轧辊的失效分析材料工程1306封骥2013153冷轧辊的失效分析冷轧辊是冷轧机的大宗消耗备品,其能否安全运行将直接影响着轧机的生产率、成材率以及成本控制。
由于冷轧辊从材质、制造工艺、使用、维护及失效等诸方面与热轧辊有着较大的差异,故对初次进行冷轧生产的单位、轧辊管理者及使用者来说,需要掌握冷轧辊的失效机理及预防措施,通过对冷轧辊失效机理的论述及案例的相关分析,提出降低轧辊消耗的预防措施。
失效:金属装备及其构件在使用过程中,由于压力、时间、温度和环境介质和操作失误等因素的作用,丧失其规定功能的现象。
失效分析:对装备及其构件在使用过程中发生各种形式失效现象的特征及规律进行分析研究,从中找出产生失效的主要原因及防止失效的措施,称为失效分析。
失效分析的一般过程①深入装备失效现场、广泛收集、调查失效信息,寻找失效构件及相关实物证据。
②对失效构件进行全面深入的宏观分析,通过种类认定推理,初步确定失效件的失效类型。
③对失效件及其相关证物展开必要的微观分析、理化检验,进一步查找失效的原因。
④通过归纳、演绎、类比、假设、选择性推理,建立整个失效过程及其失效原因之间的联系,进行综合性分析。
⑤在可能的情况下,对重大的失效事件进行模拟试验,验证因果分析的正确性。
一、冷轧辊失效机理冷轧辊特性:目前冷轧厂常用的冷轧辊材质有高碳铬铝系及高碳铬铝钒系,一般生产工艺过程为电渣重熔或钢包精炼——铸锭——锻造——球化退火——粗加-——探伤——调质——精加工——探伤——工频感应淬火——低温回火——精加工成品。
为确保优良的使用性能,其表层组织要求为细针马氏体、隐针马氏体+少量残余奥氏体+粒状碳化物。
冷轧工作辊工作时要承受高的轧制压力、冲击载荷、疲劳及磨损,需要有足够的强度抵抗大的弯深而均匀的表面硬化层及耐磨层,以获得良好的耐磨性;三是要有优良的表层抗裂性及抗剥落性能。
冷轧辊的失效形式:冷轧工作辊工作时处于复杂的应力状态。
221管理及其他M anagement and other轧辊轴承失效现象分析和改进策略宁国燕(河钢集团邯钢公司邯宝热轧厂,河北 邯郸 056000)摘 要:随着轧制生产线产能的提升和用户对轧制产品质量要求的不断提高,轧辊轴承作为关系轧机设备良好稳定运行的重要零部件之一,它的使用与保养维护问题也日渐突出。
轧机轴承是轧机轴系中主要消耗件和易损件之一,在轧机生产中,轧辊轴承既承受着轧件传递给轧辊的巨大的轧制力,同时也承受着轧辊转动时带来的摩擦力,因此,研究轧辊轴承的磨损问题是非常必要的。
关键词:轧辊轴承;磨损失效;原因分析;日常维护中图分类号:TG333.17 文献标识码:A 文章编号:11-5004(2020)12-0221-2 收稿日期:2020-06作者简介:宁国燕,女,生于1987年,汉族,河北邯郸人,研究生,中级工程师,研究方向:机械设计及理论。
1 本文简介轧机是钢材成型的重要生产设备,包括主要设备、辅助设备﹑起重运输设备和附属设备等部分。
一般所说的轧机往往仅指主要设备,轧机的主要设备有工作机座和传动装置,工作机座由轧辊﹑轧辊轴承﹑机架、轨座﹑轧辊调整装置以及上轧辊平衡装置和换辊装置等组成。
其中,轧辊轴承用来支撑轧辊并使轧辊保持在机架的固定位置,轧辊轴承工作负荷重且变化大,因此要求轴承摩擦系数小,具有足够的强度和刚度,要方便更换轧辊。
不同的轧机选用不同类型的轧辊轴承,滚动轴承的刚性大,摩擦系数较小,承压能力较小,且外形尺寸较大,多用于板带轧机工作辊。
滑动轴承有半干摩擦与液体摩擦两种,半干摩擦轧辊轴承主要有胶木﹑铜瓦﹑尼龙瓦等材质的轴承,价格便宜,多用于型材轧机和开坯机;液体摩擦轴承有动压﹑静压和静动压三种,优点是摩擦系数比较小,承压能力较大,工作速度高,刚性好,缺点是油膜厚度随速度而变化,液体摩擦轴承多用于板带轧机支承辊和其它高速轧机。
轧辊轴承是轧机的核心部件之一,文章首先阐述了轧辊轴承的工作原理,对其疲劳寿命的计算给出了依据,分析了影响轧辊寿命的内外因素,最后针对轧辊轴承的失效原因提出相应的解决策略。
轧辊失效方式及其原因分析轧机在轧制生产过程中,轧辊处于复杂的应力状态。
热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。
如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。
轧辊失效主要有剥落、断裂、裂纹等形式。
任何一种失效形式都会直接导致轧辊使用寿命缩短。
因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。
1 、轧辊剥落(掉肉)轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。
轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。
1.1 支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽度上呈块状或大块片状剥落,剥落坑表面较平整。
支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力。
在离接触表面深度为 0.786b 处 ( b 为接触面宽度之半 ) 剪切应力最大,随着表层摩擦力的增大而移向表层。
疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在 Z 为 0.5b 的交变剪应力层处。
该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。
此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。
周期交变的剪切应力是轧辊损坏最常见的致因。
在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。
另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。
若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。
支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。
铸轧辊失效的形式:①热龟裂;②裂纹扩展快;③表面局部塑形变形;④断裂。
在轧制中,裂纹扩展速度快,有时纵向裂纹长300mm,深2-4mm,是辊套过早的失效,原因是:辊套热处理工艺不合格,内部较大的残余应力为消除,在轧制过程中,受铝液热应力与辊芯内冷却水冷应力的交替作用,加速了裂纹的生成和扩展。
辊套的正常失效按下公式计算:有效厚度=(Dmax-Dmin)/2 Dmax为铸轧辊的最大的外径,Dmin为最小外径,每次车磨4mm左右,直至有效厚度接近于零,此辊套就认为失效为重新更换。
辊芯失效形式:①水槽阻塞;②水槽破裂,辊芯的材质:42CrMo 辊芯硬度HB在500左右。
调质硬度范围为2000MPa<HB<4000MPa辊套:需具有良好的导热性,线性膨胀系数及弹性模数小,较高的抗拉强度、屈服强度及硬度,较好的耐热性、抗热疲劳及热变形等。
辊套粗糙度Ra为0.8-1.2μm。
辊套硬度HB为370-400左右,目前国内使用的辊套材质为PCrNi3Mou和32Cr3Mo1V钢。
冷却说的要求:水硬度:硬度总和不大于7. PH值:6-8 水压:0.4-0.6MPa悬浮物:不大于50PPM 水温:一般控制在15-28℃辊芯辊套热装时温度的计算:t=I/αD内·C 式中:I=σ+Δminσ-过盈量;Δmin-热装的最小间隔;α材料线膨胀系数过盈量配合量的经验公式为:过盈量一般为铸轧辊辊径的0.09%-0.11%。
辊芯尺寸在φ500mm-φ700mm,过盈量(mm)=辊芯尺寸x1/650辊芯尺寸在φ700mm-φ850mm, 过盈量(mm)=辊芯尺寸x1/700 当传递的轧制力矩一定时,辊套越薄,需要的过盈配合量越大。
辊套越薄所能产生的过盈压力越小,传递的轧制力矩越小。
对新辊(包括重新研磨的辊)进行热处理,首先用无水乙醇擦掉七表面的油污,后用自行配制的腐蚀溶液(只要成分是硝酸)均匀涂抹与辊面,待接近干燥,用清水洗净,此时辊面呈亮黑色,在轧辊完全干燥后,用800″砂纸沿轧制方向用力将其面的黑色物质打磨去掉。
轧辊轴承失效的原因轧辊轴承在轧制过程中会承受高强度的载荷和摩擦,因此容易出现失效。
轧辊轴承失效的原因可以归纳为以下几个方面:1.疲劳失效:轧辊轴承在轧制过程中要承受循环荷载,容易导致金属材料发生疲劳失效。
这种失效通常表现为轴承表面起初小裂纹,然后逐渐扩展成肉眼可见的大裂纹,并最终导致断裂。
2.磨损失效:在轧制过程中,轧辊轴承表面会受到较大的摩擦力和磨损,导致轴承表面磨损严重。
磨损失效会导致轴承表面粗糙度增加、尺寸减小,从而影响轴承的正常运转。
3.轴承负荷过大:若轧辊轴承受到的荷载超过了其承载能力,会导致轴承瞬时失效。
这种失效通常表现为轴承出现塑性变形或微裂纹,从而导致轴承无法正常工作。
4.润滑失效:轧辊轴承在运行过程中需要有足够的润滑,以减少摩擦和磨损。
但若润滑不到位,或润滑剂质量不好,会使轴承表面形成焦炭、热膜和凝粘物,进而导致轴承失效。
5.温度过高:轧辊轴承在运转过程中会产生热量,若轴承供应的润滑不到位,会导致摩擦产生的热量积聚在轴承内部,从而使轴承体温度升高。
当轴承温度超过其耐热极限时,会引发轴承失效。
6.安装不当:轧辊轴承的安装也是影响其寿命的重要因素。
若安装不当,例如安装时存在过度负载、不适当的配合间隙或轴向载荷过大,会导致轴承失效。
此外,如果轴承安装时没有按照规定的工艺进行操作,也会影响其使用寿命。
针对以上原因,可以采取以下措施来延长轧辊轴承的寿命:1.选择合适的轴承:根据轧辊轴承的工作条件和载荷大小,选择合适的轴承类型、规格和材料,使其能够承受工作环境中的载荷。
2.加强润滑管理:采用合适的润滑方式和润滑剂,确保轧辊轴承在工作过程中有足够的润滑。
同时,定期检查和更换润滑剂,清洗轴承表面,以避免润滑失效引发的问题。
3.控制负荷:通过改变轧辊间距、调整轧机参数等方式,减少轧辊轴承受到的负荷。
同时,注意控制轧机的工作温度,避免轴承过热。
4.正确安装轴承:遵循正确的安装工艺,确保轧辊轴承按照规定的预压力安装,并检查轴承的配合间隙和轴向负荷是否符合要求。
轧辊的失效及其修复技术摘要:轧辊生产率与生产成本都取决于轧制的生产质量,当轧辊不足供应,价格高时,整个轧辊都会磨损失效,这会导致大量的材料报废。
轧辊的修复是轧辊行业的主要问题。
过早磨损最常见轧辊失效的原因,轧辊的工作表面的硬度取决于耐磨性,正确的热处理符合辊的硬度要求。
轧机是轧辊变形的主要工具。
通过自己的材料和恶劣的工作条件,延长寿命需要修复技术,失效甚至报废。
概述了轧辊的工作条件、材料和失效,介绍了几种常见的修复技术。
关键词:冷轧辊热轧辊;失效修复;表面改性技术引言激光处理技术在钢铁工业中的应用越来越多。
随着钢铁工业的复苏和世界钢需求量的增加,我国的钢铁产量目前地位领先。
轧辊消费量大幅增加,进一步提高了产量和质量。
与此同时,各种新角色正在应用于钢铁行业。
因此,轧辊的修复和化是钢铁工作者和激光设备的一个重要问题。
减少组件消耗会对企业的生产成本和经济性产生积极影响,并提供显着的成本节约机会。
目前,激光用于加固和修复辊面,引起了业界的关注。
1轧辊的损坏形式1.1正常磨损轧辊金属微粒在轧制和磨削过程中辊身分离,工作层变薄,直径较小,吨位随磨辊次数的增加而减小。
如果直径太小,以致于表面硬度降低到某个特定值,则即使没有其他缺陷(自然磨损或正常磨损),辊也无法继续工作。
这种磨损是可预见的,也是有风险的,最危险的损害通常是非正常磨损。
1.2非正常损坏如果辊的直径和表面硬度仍处于连续运转状态,则由于另一个缺陷甚至断裂,无法使用,这称为“非正常”和“特殊损坏”,具体由:(1)表面裂纹。
冷轧辊的裂纹分别为60%和20%,且裂纹的区域通常位于辊的中心。
裂缝有所不同的概率大致相同。
轧辊的制造质量对裂缝的形成和扩大至关重要。
因此,减少裂纹是提高轧辊的制造质量的关键。
例如,碎裂是轧槽经轧制过程中的冷热影响以及钢坯的磨损较低,导致轧槽表面上出现网格裂纹,从而导致断裂。
冷却水压力不足可能导致裂内部的汽化扩张力大,有助于增加裂缝。
冷轧辊的失效分析材料工程1306封骥2013153冷轧辊的失效分析冷轧辊是冷轧机的大宗消耗备品,其能否安全运行将直接影响着轧机的生产率、成材率以及成本控制。
由于冷轧辊从材质、制造工艺、使用、维护及失效等诸方面与热轧辊有着较大的差异,故对初次进行冷轧生产的单位、轧辊管理者及使用者来说,需要掌握冷轧辊的失效机理及预防措施,通过对冷轧辊失效机理的论述及案例的相关分析,提出降低轧辊消耗的预防措施。
失效:金属装备及其构件在使用过程中,由于压力、时间、温度和环境介质和操作失误等因素的作用,丧失其规定功能的现象。
失效分析:对装备及其构件在使用过程中发生各种形式失效现象的特征及规律进行分析研究,从中找出产生失效的主要原因及防止失效的措施,称为失效分析。
失效分析的一般过程①深入装备失效现场、广泛收集、调查失效信息,寻找失效构件及相关实物证据。
②对失效构件进行全面深入的宏观分析,通过种类认定推理,初步确定失效件的失效类型。
③对失效件及其相关证物展开必要的微观分析、理化检验,进一步查找失效的原因。
④通过归纳、演绎、类比、假设、选择性推理,建立整个失效过程及其失效原因之间的联系,进行综合性分析。
⑤在可能的情况下,对重大的失效事件进行模拟试验,验证因果分析的正确性。
一、冷轧辊失效机理冷轧辊特性:目前冷轧厂常用的冷轧辊材质有高碳铬铝系及高碳铬铝钒系,一般生产工艺过程为电渣重熔或钢包精炼——铸锭——锻造——球化退火——粗加-——探伤——调质——精加工——探伤——工频感应淬火——低温回火——精加工成品。
为确保优良的使用性能,其表层组织要求为细针马氏体、隐针马氏体+少量残余奥氏体+粒状碳化物。
冷轧工作辊工作时要承受高的轧制压力、冲击载荷、疲劳及磨损,需要有足够的强度抵抗大的弯深而均匀的表面硬化层及耐磨层,以获得良好的耐磨性;三是要有优良的表层抗裂性及抗剥落性能。
冷轧辊的失效形式:冷轧工作辊工作时处于复杂的应力状态。
受残余应力、接触应力、弯曲应力、扭转应力以及因温度分布不均引起的热应力等的影响,失效形式有早期磨损、粗糙化、略坑、勒痕、裂纹、剥落以及断裂,但工作层剥落是冷轧辊的主要失效形式,占到工作辊正常失效的50%以上,轧辊剥落往往造成轧辊彻底报废。